JP3582068B2 - How to charge lead storage batteries - Google Patents

How to charge lead storage batteries Download PDF

Info

Publication number
JP3582068B2
JP3582068B2 JP17752094A JP17752094A JP3582068B2 JP 3582068 B2 JP3582068 B2 JP 3582068B2 JP 17752094 A JP17752094 A JP 17752094A JP 17752094 A JP17752094 A JP 17752094A JP 3582068 B2 JP3582068 B2 JP 3582068B2
Authority
JP
Japan
Prior art keywords
charging
hours
battery
specific gravity
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17752094A
Other languages
Japanese (ja)
Other versions
JPH0822843A (en
Inventor
研 沢井
祐一 岡田
克仁 高橋
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP17752094A priority Critical patent/JP3582068B2/en
Publication of JPH0822843A publication Critical patent/JPH0822843A/en
Application granted granted Critical
Publication of JP3582068B2 publication Critical patent/JP3582068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、アンチモンを含まない鉛合金格子を用いた鉛蓄電池の充電方法に関し、さらに詳しくは、交互に充放電して用いる電池の充電方法に関するものである。
【0002】
【従来の技術とその課題】
鉛蓄電池の極板格子には、従来より主として鉛−アンチモン系合金が用いられているが、補水等の保守が不要な、いわゆるメンテナンスフリータイプの鉛蓄電池では、電解液の水の損失を防ぐために、通常、鉛−カルシウム合金などのアンチモンを含まない鉛合金が用いられている。
【0003】
ところが、この種の合金を用いた電池では、深い充放電を繰り返すと、放電中に正極板の格子と活物質との界面に硫酸鉛の不働態層が形成されて早期に容量が低下することがあり、特に高比重の電解液を用いた高性能の電池ではその傾向が顕著である。したがって、長寿命が要求される用途では低比重の電解液を用いざるを得ず、放電性能を犠牲にしなければならなかった。
【0004】
また、このような早期容量低下を防止する手段として、従来より、アンチモン合金以外でなおかつ格子と活物質との界面に不働態層が形成されにくい合金組成について種々検討がなされているが、アンチモン合金に匹敵するような合金は未だに開発されておらず、短寿命の問題を克服するにはいたっていない。
【0005】
【発明が解決するための手段】
本発明者は、アンチモンを含まない正極格子の界面における不働態層生成の防止方法について鋭意研究を重ねた結果、従来から検討されてきた格子合金組成の改良によってではなく、格子が腐食下におかれる条件を最適化すること、すなわち充電方法を最適化することによって不働態層の生成を防ぎ、電池の寿命性能を著しく向上させることができることを見いだし、本発明に到達した。その要旨は、電池の電解液比重に適した充電時間を選択することにある。具体的には、充電する電池の電解液比重をs、充電時間をT時間として、2≦T≦71−50sで表わされる充電時間以内に充電することにある。
【0006】
アンチモンを含まない鉛合金格子を用いた正極板の格子と活物質の界面に硫酸鉛の不働態層が形成される原因は、格子腐食層が活物質に比べて反応性が高く、放電時に活物質が充分放電される前に腐食層が放電されることによるものである。一方、アンチモン合金格子の腐食層は、活物質に比べて放電しにくく安定である。このような腐食層の反応性の違いは腐食層の組成や構造の違いによって生ずるものと考えられる。
【0007】
腐食層の組成や構造は合金の組成や結晶構造によって異なるが、それ以外に、格子界面の電位、電流密度、水素イオン濃度(pH)などの、格子が腐食下におかれる条件や、その腐食条件下におかれる時間といった電気化学的な条件によっても大きく変化する。
【0008】
本発明者は、このような腐食層が形成される条件に着目し、研究を重ねた結果、腐食層の反応性には、格子界面のpHと密接に関係している電解液比重と、格子界面が高い電位にさらされている時間、すなわち充電時間が大きく影響しており、ある一定の比重の電解液を用いた電池では、一定時間以上高い電位にさらされると反応性に富んだ腐食層が形成されることを見いだした。
【0009】
本発明は、この研究結果をふまえ、反応性が高い腐食層の形成を防止する充電条件を電解液比重との関係において詳細に検討して、その最適値を見いだしたものである。本発明になる充電方法を用いて、反応性に富んだ腐食層が形成される前に充電を終了することによって、不働態層の生成を防ぎ、電池の寿命性能を著しく向上させることが可能となる。その詳細について、以下に実施例を用いて説明する。
【0010】
【実施例】
(実施例1)
鉛−0.1%カルシウム合金格子に活物質を充填した正極板と負極板とを微細ガラス繊維セパレータを介し交互に積層して極板群を形成し、比重1.32(s=1.32)の硫酸を吸収、保持させて、2V−6Ahの密閉形鉛蓄電池を作製した。電解液比重は開回路電圧から算出して確認を行った。
【0011】
この電池を用いて、室温(25℃)中にて種々の充電条件で充放電サイクル寿命試験を行った。放電は、2Aで1.65Vまでとし、充電は定電流−定電圧方式(3A−2.4V)とした。本発明になる充電方法(2≦T≦5)の実施例として充電時間(T)を3、4、5時間とした場合、また比較例として充電時間(T)を6、8、10時間とした場合について試験を行った結果を図1に示す。この結果から明らかなように、本発明になる充電方法、すなわち充電時間を2時間以上、5時間以内とした場合には良好な容量推移を示すが、5時間を超えて充電した場合には充電時間を長くするほど容量低下が激しくなることがわかる。
【0012】
容量低下の原因を明らかにするため、5時間を超えて充電した電池について容量が初期の50%となった時点で電池を解体調査したところ、正極板の格子と活物質との界面に不働態層が形成されていることが確認された。また、充電時間を2時間以上、5時間以内としたものについては、500サイクルの時点で電池を解体調査したが、不働態層の形成はみられなかった。
【0013】
【発明の実施の形態】
なお、充電時間を3時間としたものについては、初期から容量が低めに推移しているが、これは電池が満充電されていないことを示しており、必要に応じて補充電を行なえば容量は回復し、寿命性能上特に問題はないものである。
(実施例2)実施例1と同様の試験を充電電圧を2.5V、2.3Vとした場合についても実施した。充電電圧を2.5Vとした場合の結果を図2に、2.3Vとした場合の結果を図3に示す。この結果から明らかなように、いずれの充電電圧でも、充電時間(T)を2時間以上、5時間以内とした場合には良好な容量推移を示しているが、5時間を超えて充電した場合には充電時間を長くするほど容量低下が激しくなることがわかる。
(実施例3)実施例1、2の場合と同じ電解液比重1.32の電池を用いて、電流、時間を変えた充電条件で同様のサイクル寿命試験を行った。なお、充電方式は定電流−定電圧方式とし、いずれもほぼ満充電になるように充電条件を設定した。試験の結果を図4に示す。
【0014】
なお、図4においてaは充電条件を10A−2.4Vで2時間、bは5A−2.4Vで3時間、cは3A−2.4Vで4時間、dは2A−2.4Vで5時間、eは1.5A−2.4Vで6時間、fは1A−2.4Vで8時間、gは0.8A−2.4Vで10時間とした場合である。
【0015】
この結果から明らかなように、充電電流を大きくして充電時間を短くするほど寿命性能が大きく向上し、特に充電時間を2時間以上、5時間以内とした場合には良好な容量推移を示すことがわかる。
(実施例4)実施例1〜3に示した試験の温度条件を10〜40℃まで変えて行なった場合の試験結果を充電時間と寿命サイクル数との関係としてまとめて図5に示す。なお、ここで寿命サイクル数は、初期の容量の50%を切った時点とした。この結果から明らかなように、サイクル寿命性能は充電時間を短くするほど向上し、特に充電時間を2時間以上、5時間以内とした場合には良好な容量推移を示すことがわかる。
(実施例5)さらに、比重が1.28、1.30、1.34(s=1.28、1.30、1.34)の電解液を用いて電池を製作し、種々の充電条件で実施例1〜4に示した試験と同様のサイクル寿命試験を行った。試験結果を実施例4の結果と合わせて図6に示す。試験結果から明かなように、電池の電解液比重をs、充電時間をT時間とすると、s=1.34のとき2≦T≦4、s=1.32のとき2≦T≦5、s=1.30のとき2≦T≦6、s=1.28のとき2≦T≦7の条件で充電すれば、すなわち、比重sの電解液を用いた電池を充電する場合に、2時間以上、(71−50s)時間以内に充電すれば、寿命性能が著しく向上することがわかる。
【0016】
なお、実施例では充電方式として定電流−定電圧方式を用いたが、定電流−定電圧−定電流方式、段別定電流方式、準定電圧方式など、他の充電方式を用いた場合でも、本発明になる充電方法によって充電を行なえば同様の効果を得ることができる。
【0017】
【発明の効果】
本発明になる充電方法を用いることにより、実質的にアンチモンを含まない鉛合金格子を用いた電池の寿命性能を著しく向上させることができる。さらに、本発明により、従来短寿命で実用にならなかった高性能の電池を用いることも可能となって、その工業的価値は非常に大きい。
【図面の簡単な説明】
【図1】実施例1の寿命試験結果を示す図
【図2】実施例2において充電電圧を2.5Vとしたときの寿命試験結果を示す図
【図3】実施例2において充電電圧を2.3Vとしたときの寿命試験結果を示す図
【図4】実施例3の寿命試験結果を示す図
【図5】充電時間と寿命サイクル数との関係を示す図
【図6】電解液比重の異なる電池における充電時間と寿命サイクル数との関係を示す図
[0001]
[Industrial applications]
The present invention relates to a method for charging a lead storage battery using a lead alloy grid not containing antimony, and more particularly, to a method for charging a battery used by alternately charging and discharging.
[0002]
[Prior art and its problems]
Conventionally, lead-antimony alloys have been mainly used for the plate grid of lead-acid batteries.However, maintenance-free lead-acid batteries, which do not require maintenance such as water replenishment, are used to prevent loss of electrolyte water. Usually, a lead alloy containing no antimony, such as a lead-calcium alloy, is used.
[0003]
However, in batteries using this kind of alloy, when deep charge and discharge are repeated, a passive phase layer of lead sulfate is formed at the interface between the grid of the positive electrode plate and the active material during discharge, and the capacity decreases early. This tendency is particularly remarkable in a high-performance battery using an electrolyte having a high specific gravity. Therefore, in applications that require a long life, an electrolyte having a low specific gravity has to be used, and the discharge performance has to be sacrificed.
[0004]
As means for preventing such early capacity reduction, various studies have conventionally been made on alloy compositions other than antimony alloys and in which a passive layer is difficult to be formed at the interface between the lattice and the active material. Alloys comparable to have not yet been developed and have not been able to overcome the short-life problem.
[0005]
Means for Solving the Invention
The present inventors have conducted intensive studies on a method for preventing the formation of a passive layer at the interface of a positive electrode lattice containing no antimony.As a result, the lattice was not corroded, not by the improvement of the lattice alloy composition, which has been conventionally studied. It has been found that by optimizing the conditions under which the charge is applied, that is, by optimizing the charging method, the formation of a passive layer can be prevented and the life performance of the battery can be remarkably improved. The gist is to select a charging time suitable for the specific gravity of the electrolyte of the battery. Specifically, the battery is to be charged within a charging time represented by 2 ≦ T ≦ 71-50 s, where s is the electrolyte specific gravity of the battery to be charged and T is the charging time.
[0006]
The reason why the passive layer of lead sulfate is formed at the interface between the active material and the grid of the positive electrode plate using a lead alloy grid that does not contain antimony is that the grid corrosion layer is more reactive than the active material and is active during discharge. This is because the corroded layer is discharged before the substance is sufficiently discharged. On the other hand, the corrosion layer of the antimony alloy lattice is less likely to be discharged than the active material and is stable. It is considered that such a difference in reactivity of the corroded layer is caused by a difference in composition or structure of the corroded layer.
[0007]
The composition and structure of the corroded layer differs depending on the composition and crystal structure of the alloy. In addition, other conditions such as the potential at the lattice interface, current density, and hydrogen ion concentration (pH) that cause the lattice to be corroded and its corrosion It changes greatly depending on the electrochemical conditions such as the time under which the conditions are maintained.
[0008]
The present inventors have focused on the conditions under which such a corroded layer is formed, and as a result of repeated studies, the reactivity of the corroded layer shows that the specific gravity of the electrolyte solution, which is closely related to the pH of the lattice interface, The time during which the interface is exposed to a high potential, that is, the charging time, has a significant effect.In a battery using an electrolyte with a certain specific gravity, a corrosive layer that is highly reactive when exposed to a high potential for more than a certain time Is formed.
[0009]
The present invention has been made based on the results of this study, and has studied in detail the charging conditions for preventing the formation of a highly reactive corrosive layer in relation to the specific gravity of the electrolytic solution, and has found the optimum value. By using the charging method according to the present invention and terminating charging before a highly reactive corrosive layer is formed, it is possible to prevent the formation of a passive layer and significantly improve the battery life performance. Become. The details will be described below using examples.
[0010]
【Example】
(Example 1)
A positive electrode plate and a negative electrode plate each of which is filled with an active material in a lead-0.1% calcium alloy lattice are alternately laminated via a fine glass fiber separator to form an electrode plate group, and have a specific gravity of 1.32 (s = 1.32). ) Was absorbed and held to produce a 2V-6Ah sealed lead-acid battery. The specific gravity of the electrolyte was calculated from the open circuit voltage and confirmed.
[0011]
Using this battery, a charge / discharge cycle life test was performed at room temperature (25 ° C.) under various charging conditions. Discharging was performed up to 1.65 V at 2 A, and charging was performed under a constant current-constant voltage system (3 A-2.4 V). As an example of the charging method ( 2 ≦ T ≦ 5 ) according to the present invention, the charging time (T) was set to 3, 4, and 5 hours. As a comparative example, the charging time (T) was set to 6, 8, and 10 hours. FIG. 1 shows the results of a test performed for the case where the test was performed. As is apparent from the results, the charging method according to the present invention, that is, when the charging time is set to 2 hours or more and 5 hours or less, a good capacity change is exhibited, but when the charging is performed for more than 5 hours, the charging is performed. It can be seen that the longer the time, the more the capacity is reduced.
[0012]
In order to clarify the cause of the capacity reduction, when the battery charged for more than 5 hours had its capacity reduced to 50% of the initial value, the battery was dismantled and inspected. It was confirmed that a layer was formed. When the charging time was set to 2 hours or more and 5 hours or less, the battery was disassembled and inspected at 500 cycles, but no passive layer was formed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the case where the charging time was set to 3 hours, the capacity changed from the initial stage to a lower level, which indicates that the battery was not fully charged. Recovers and there is no particular problem in the life performance.
(Example 2) The same test as in Example 1 was also performed when the charging voltage was set to 2.5 V and 2.3 V. FIG. 2 shows the result when the charging voltage was set to 2.5 V, and FIG. 3 shows the result when the charging voltage was set to 2.3 V. As is clear from these results, at any charging voltage, when the charging time (T) is set to 2 hours or more and 5 hours or less, a favorable capacity change is shown. However, when charging is performed for more than 5 hours. It can be seen that the longer the charging time, the more severe the capacity drop.
(Example 3) The same cycle life test was carried out using batteries having the same specific gravity of the electrolytic solution of 1.32 as in the case of Examples 1 and 2 under different charging conditions with different currents and times. Note that the charging method was a constant current-constant voltage method, and charging conditions were set so that each battery was almost fully charged. FIG. 4 shows the results of the test.
[0014]
In FIG. 4, a is a charging condition of 2 hours at 10A-2.4V, b is 3 hours at 5A-2.4V, c is 4 hours at 3A-2.4V, and d is 5 hours at 2A-2.4V. Time, e is 6 hours at 1.5A-2.4V, f is 8 hours at 1A-2.4V, and g is 10 hours at 0.8A-2.4V.
[0015]
As is evident from these results, the longer the charging current and the shorter the charging time, the more the life performance is improved. In particular, when the charging time is set to 2 hours or more and 5 hours or less, a good capacity change is exhibited. I understand.
(Example 4) FIG. 5 shows the test results when the temperature conditions of the tests shown in Examples 1 to 3 were changed from 10 to 40 ° C. as a relationship between the charging time and the number of life cycles. Here, the number of life cycles was set at a point when 50% of the initial capacity was cut. As is apparent from the results, the cycle life performance is improved as the charging time is shortened. In particular, when the charging time is set to 2 hours or more and 5 hours or less, a good capacity transition is exhibited.
(Example 5) Further, batteries were manufactured using electrolytes having specific gravities of 1.28, 1.30, 1.34 (s = 1.28, 1.30, 1.34), and various charging conditions were used. A cycle life test similar to the test shown in Examples 1 to 4 was performed. FIG. 6 shows the test results together with the results of Example 4. As is clear from the test results, assuming that the specific gravity of the electrolyte of the battery is s and the charging time is T, 2 ≦ T ≦ 4 when s = 1.34, 2 ≦ T ≦ 5 when s = 1.32, When charging is performed under the condition of 2 ≦ T ≦ 6 when s = 1.30 and 2 ≦ T ≦ 7 when s = 1.28, that is, when charging a battery using an electrolyte having a specific gravity s , 2 It can be seen that if the battery is charged for more than an hour and within (71-50 s) hours, the life performance is remarkably improved.
[0016]
In the embodiment, the constant current-constant voltage method is used as the charging method. The same effect can be obtained if the charging is performed by the charging method according to the present invention.
[0017]
【The invention's effect】
By using the charging method according to the present invention, the life performance of a battery using a lead alloy lattice substantially containing no antimony can be significantly improved. Further, according to the present invention, it is possible to use a high-performance battery which has not been practically used because of its short life, and its industrial value is very large.
[Brief description of the drawings]
FIG. 1 is a diagram showing a life test result of Example 1. FIG. 2 is a diagram showing a life test result when a charging voltage is set to 2.5 V in Example 2. FIG. FIG. 4 shows the results of a life test at 0.3 V. FIG. 4 shows the results of the life test of Example 3. FIG. 5 shows the relationship between the charging time and the number of life cycles. Diagram showing the relationship between charging time and number of life cycles in different batteries

Claims (1)

実質的にアンチモンを含まない鉛合金格子を用いた、完全充電状態での電解液比重が1.24以上1.38以下の鉛蓄電池を充電する方法であって、充電する電池の完全充電状態における電解液比重をs、充電開始から充電終了までの時間(充電時間)をT(時間)として、2≦T≦71−50sで表わされる充電時間以内に充電を終了することを特徴とする鉛蓄電池の充電方法。A method for charging a lead-acid battery having a specific gravity of 1.24 or more and 1.38 or less in a fully charged state using a lead alloy grid substantially free of antimony, wherein the charged battery has a specific gravity in a fully charged state. A lead-acid battery wherein charging is completed within a charging time represented by 2 ≦ T ≦ 71-50 s, where s is an electrolyte specific gravity, and T (time) is a time (charging time) from the start of charging to the end of charging. Charging method.
JP17752094A 1994-07-05 1994-07-05 How to charge lead storage batteries Expired - Fee Related JP3582068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17752094A JP3582068B2 (en) 1994-07-05 1994-07-05 How to charge lead storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17752094A JP3582068B2 (en) 1994-07-05 1994-07-05 How to charge lead storage batteries

Publications (2)

Publication Number Publication Date
JPH0822843A JPH0822843A (en) 1996-01-23
JP3582068B2 true JP3582068B2 (en) 2004-10-27

Family

ID=16032358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17752094A Expired - Fee Related JP3582068B2 (en) 1994-07-05 1994-07-05 How to charge lead storage batteries

Country Status (1)

Country Link
JP (1) JP3582068B2 (en)

Also Published As

Publication number Publication date
JPH0822843A (en) 1996-01-23

Similar Documents

Publication Publication Date Title
JPS62290071A (en) Organic electrolyne secondary battery
JP3582068B2 (en) How to charge lead storage batteries
JP2004014283A (en) Valve regulated lead battery
JP4081698B2 (en) Lead-acid battery charging method
JP3496241B2 (en) How to charge lead storage batteries
JPS58117658A (en) Sealed lead-acid battery
JPH0750616B2 (en) Lead acid battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JPH09147841A (en) Negative electrode plate for lead acid battery and its manufacture
JPH0845552A (en) Charging method of lead-acid battery
JPH0845551A (en) Charging method of lead-acid battery
JPH0837031A (en) Method for charging lead-acid battery
JPH10189057A (en) Charging method for lead-acid battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JPH0837029A (en) Method for charging lead-acid battery
JP3648752B2 (en) Lead storage battery charge control method
JP2553598B2 (en) Sealed lead acid battery
JPH01117279A (en) Lead-acid battery
JPH10241746A (en) Charging method of sealed-type lead storage battery
JPH03147262A (en) Collector for lead-acid battery
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JP2000058105A (en) Lead-acid battery
JPS61118969A (en) Substrate for lead storage battery
JPS6322428B2 (en)
JPS63211574A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040718

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees