JPH10241746A - Charging method of sealed-type lead storage battery - Google Patents

Charging method of sealed-type lead storage battery

Info

Publication number
JPH10241746A
JPH10241746A JP9039343A JP3934397A JPH10241746A JP H10241746 A JPH10241746 A JP H10241746A JP 9039343 A JP9039343 A JP 9039343A JP 3934397 A JP3934397 A JP 3934397A JP H10241746 A JPH10241746 A JP H10241746A
Authority
JP
Japan
Prior art keywords
charging
discharge
battery
electric
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9039343A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamaguchi
義彰 山口
Naoaki Matsumoto
修明 松本
Takahide Nakayama
恭秀 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP9039343A priority Critical patent/JPH10241746A/en
Publication of JPH10241746A publication Critical patent/JPH10241746A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the life time performance of a battery for making electric power efficiency superior by making change electric quantity after discharging to have a specific range exceeding the last discharge electric quantity, and dividing the discharge current into two stages or more, regardless of the depth of an electric discharge and the size of an electric discharge current. SOLUTION: A charged electric quantity after an electric discharge in a sealed-type lead storage battery, wherein an irregular electric discharge is repeated, is made exceeding 100% and equal or less than 105% of the last discharge electric quantity, regardless of the depth of electric discharge or the size of an electric discharge current. Overcharge quantity is minimized, while the last discharge quantity can be nearly completely charged, to minimize the reduction of an electrolyte and the corrosion of an aggregate. Charge quantity at that time is divided into at least two stages or more, to change the shape of the crystal particle of an active material for ensuring the diffusion path of an electrolyte, thereby keeping subsequent discharge capacity. A charging current is gradually reduced as full charge is approached, to suppress the generation of an oxygen gas from a positive electrode, also to increase the charging efficiency of both the electrodes and it is desirable that battery temperature while charging to be controlled at 10-50 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉形鉛蓄電池の
充電方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a sealed lead-acid battery.

【0002】[0002]

【従来の技術とその課題】補水等の電池の保守が不必要
であることを最大の特徴とする密閉形鉛蓄電池は、これ
まで、充電に必要な電気量は放電の110%〜120%
といわれ、これを下回ると次第に容量が低下し寿命を短
くすると言われてきた。そのために常に10%〜20%
の過充電が毎サイクル行われ以下のような過充電による
悪影響が指摘されてきた。
2. Description of the Related Art A sealed lead-acid battery characterized by the fact that maintenance of the battery such as water replenishment is not required is the largest amount of electricity required for charging up to 110% to 120% of discharge.
It has been said that if it falls below this, the capacity will gradually decrease and the life will be shortened. For that, always 10% -20%
Overcharge is performed every cycle, and the following adverse effects due to overcharge have been pointed out.

【0003】密閉形鉛蓄電池は、従来の液式電池とは異
なり、過充電時に正極で水の電気分解によって発生する
酸素ガスを、負極で水に還元する反応によって電解液の
減少を防止している。しかしながら、現実にはこの密閉
形鉛蓄電池における酸素ガスを水に還元する効率は完全
に100%ではないために、過充電量の増加とともに電
池内部の電解液の量は減少していくことが知られてい
る。この様な電解液の減少は電解液に占める硫酸濃度の
増加や内部抵抗の増加を招き、その結果電池のサイクル
寿命を短くする原因となっていた。
[0003] Unlike a conventional liquid battery, a sealed lead-acid battery prevents reduction of electrolyte by a reaction of reducing oxygen gas generated by electrolysis of water at the positive electrode to water at the negative electrode during overcharge. I have. However, in reality, the efficiency of reducing oxygen gas to water in this sealed lead-acid battery is not completely 100%, and therefore, it is known that the amount of electrolyte inside the battery decreases as the overcharge amount increases. Have been. Such a decrease in the electrolytic solution causes an increase in the concentration of sulfuric acid in the electrolytic solution and an increase in the internal resistance, thereby shortening the cycle life of the battery.

【0004】さらに、鉛蓄電池を過充電する際には、正
極の集電体(あるいは格子体)に用いられている鉛合金
が腐食して二酸化鉛に変化するため、集電体の導電性や
強度の低下、あるいは初期の形状からの変形等が発生
し、やはり電池のサイクル寿命を短くする大きな原因と
なっていた。これまで、この過充電による集電体の腐食
を抑制するために、合金に錫を添加する等の組成面での
改良が加えられ、寿命延長に対する効果が得られている
が、現状以上の寿命延長を達成するためには十分とはい
えなかった。
Further, when the lead storage battery is overcharged, the lead alloy used for the current collector (or grid) of the positive electrode corrodes and changes to lead dioxide, so that the conductivity and the conductivity of the current collector are reduced. A decrease in strength, deformation from the initial shape, or the like occurs, which is also a major cause of shortening the cycle life of the battery. Until now, in order to suppress the corrosion of the current collector due to this overcharging, improvements in composition such as adding tin to the alloy have been made, and the effect of extending the life has been obtained. It was not enough to achieve the extension.

【0005】これらの密閉形鉛蓄電池の過充電に対する
問題を解決するために、近年、充電方法からの寿命改善
策として特開平8−22844号公報に記載されている
様に、電池に対する絶対的な過充電量を減らし、電解液
の減少および集電体の腐食の双方を抑制してサイクル寿
命を延長することが提案されている。しかしながら、こ
の方法では、通常のサイクル時には放電量に対して完全
な充電を行っていない為に、極板中の活物質、特に、負
極活物質中に充電によって還元されにくい大きな結晶の
硫酸鉛が成長しやすいことや、前述の現象を抑制するた
めに数サイクルに1 回の過充電が必要で、電池の寿命が
その頻度に左右されたり、充電のシステムやパターンが
複雑になるという問題があった。
In order to solve the problem of overcharging of the sealed lead-acid battery, in recent years, as described in Japanese Patent Application Laid-Open No. Hei. It has been proposed to reduce the amount of overcharge, suppress both the reduction of the electrolyte and the corrosion of the current collector and extend the cycle life. However, in this method, since the battery is not completely charged with respect to the discharge amount during a normal cycle, the active material in the electrode plate, in particular, the large crystalline lead sulfate that is difficult to be reduced by the charge in the negative electrode active material is formed. It is difficult to grow, and overcharging is required once every few cycles to suppress the above-mentioned phenomena.Therefore, the life of the battery depends on the frequency, and the charging system and pattern become complicated. Was.

【0006】さらに、鉛蓄電池の特徴として過充電時に
は、電池の電圧が大きく立ち上がるために充電に使用さ
れる電力(Wh=充電電流×電池電圧)が大きくなり、
電力効率(放電電力/充電電力)が悪くなるという問題
もあった。
Further, as a feature of the lead storage battery, at the time of overcharging, the power of the battery (Wh = charging current × battery voltage) increases because the voltage of the battery rises greatly,
There is also a problem that power efficiency (discharge power / charge power) deteriorates.

【0007】本発明は、上記問題点に鑑みてなされたも
のであって、その目的とするところは、密閉形鉛蓄電池
の寿命性能を向上させると共に電力効率の優れた密閉形
鉛蓄電池の充電方法を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for charging a sealed lead-acid battery which has improved power-efficiency while improving the life performance of the sealed lead-acid battery. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は密閉形鉛蓄電池
の性能を損なうことなく、その充電方法を制御すること
によって電池の寿命性能を向上させることにあり、放電
後の充電電気量を、放電の深さや放電電流の大きさに関
係なく、前回放電電気量の100%を超えて105%以
下とすること、その充電電流を少なくとも2段階以上に
分けること、その充電電流を満充電に近づくにつれて徐
々に小さくすること、そして、この充放電中の電池温度
を10℃以上50℃以下に制御することを特徴とする密
閉形鉛蓄電池の充電方法である。
SUMMARY OF THE INVENTION The present invention is to improve the life performance of a sealed lead-acid battery by controlling its charging method without deteriorating the performance of the battery. Irrespective of the depth of discharge and the magnitude of discharge current, it should be more than 100% of the amount of previous discharge and not more than 105%, the charge current should be divided into at least two stages, and the charge current should be close to full charge. And charging the battery during charging / discharging to a temperature of 10 ° C. or more and 50 ° C. or less.

【0009】[0009]

【作用】電気自動車やロードレベリング等の電源として
用いられているサイクルサービス用途の密閉形鉛蓄電池
においては、放電後の充電方法を制御することがその寿
命性能を向上させるための必要不可欠な要素のひとつで
ある。またこの様なサイクルサービス用の電池は、使用
者の都合にあわせて使用されるため、その放電電流の大
きさや放電深度が一定とは限らない。
In a sealed lead-acid battery for use in cycle services, which is used as a power source for electric vehicles and road leveling, controlling the charging method after discharging is an indispensable element for improving its life performance. One. Further, since such a battery for cycle service is used according to the convenience of the user, the magnitude of the discharge current and the depth of discharge are not always constant.

【0010】この様な不規則な放電が繰り返されるサイ
クルサービス用途の密閉形鉛蓄電池の放電後の充電電気
量を、放電の深さや放電電流の大きさに関係なく、前回
放電電気量の100%を超えて105%以下とすること
によって、前回放電量をほぼ完全に充電しつつ、過充電
量を最小限に抑えることによって電解液の減少および集
電体の腐食を最小限にする。このような充電を繰り返す
ことによって、密閉形鉛蓄電池の寿命性能を向上させ
る。
[0010] The amount of charged electricity of a sealed lead-acid battery for cycle service in which such irregular discharge is repeated is 100% of the previously discharged amount of electricity regardless of the depth of discharge and the magnitude of discharge current. To 105% or less to minimize the amount of electrolyte and the corrosion of the current collector by minimizing the amount of overcharge while charging the previously discharged amount almost completely. By repeating such charging, the life performance of the sealed lead-acid battery is improved.

【0011】このときの充電電流を少なくとも2段階以
上に分けることによって活物質の結晶粒子の形状を変化
させ、電解液の拡散経路を確保し、後の放電容量を維持
させること、また、満充電に近づくにつれて充電電流を
徐々に小さくすることによって、正極からの酸素ガスの
発生を抑え、かつ両極の充電効率が上がり、さらに密閉
形鉛蓄電池の寿命性能と放電性能が向上する。
At this time, the charge current is divided into at least two or more steps to change the shape of the crystal grains of the active material, secure a diffusion path for the electrolyte, and maintain a discharge capacity afterward. By gradually decreasing the charging current as the distance approaches, the generation of oxygen gas from the positive electrode is suppressed, the charging efficiency of both electrodes is increased, and the life performance and discharge performance of the sealed lead-acid battery are improved.

【0012】また、これらの充電方法を行うことによ
り、過充電に伴う電力ロスを小さく抑えることができる
ため、充放電時の電力効率を高めることができる。
In addition, by performing these charging methods, power loss due to overcharging can be suppressed, so that power efficiency during charging and discharging can be improved.

【0013】さらに、電池温度が10℃未満になった場
合、活物質の充電のされ易さが極端に低下するため、充
電不足になり易く、また、電池温度が50℃を越えると
正極活物質の自己放電速度が極端に上昇して充電不足に
なると共に集電体の腐食速度も高まるため、電池温度を
10℃以上50℃以下に制御することによってこれら現
象を抑制できる。
Further, when the battery temperature is lower than 10 ° C., the easiness of charging the active material is extremely reduced, so that the battery is apt to be insufficiently charged. The self-discharge rate is extremely increased to cause insufficient charging and the corrosion rate of the current collector increases. Therefore, these phenomena can be suppressed by controlling the battery temperature to 10 ° C. or more and 50 ° C. or less.

【0014】[0014]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)12V系で3時間率公称容量が30Ahの
リテーナー式ペースト式密閉形鉛蓄電池を組み立て、温
度25℃にて表1の条件で充放電を行った。
(Example 1) A closed paste type lead-acid storage battery of the 12V type having a nominal capacity of 30 Ah for 3 hours was assembled and charged and discharged at a temperature of 25 ° C under the conditions shown in Table 1.

【0015】その試験結果を図1に示す。なお、図中の
数字は表1の条件の番号を示す。
FIG. 1 shows the test results. The numbers in the figure indicate the numbers of the conditions in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】電池の3時間率容量が、初期容量に対して
80%以下になった時点で寿命とすると、充電の絶対量
が不足している条件1および2ではそれぞれ30、50
サイクルで、また、通常の充電条件といわれている条件
9および10では約200サイクル前後で寿命となった
のに対し、条件4から条件7までの、充電電気量が10
0%を超えて105%以下の条件では約400から60
0サイクルで寿命となった。また、条件3の放電電気量
=充電電気量のものは条件1および2よりも寿命推移は
良く、140サイクルで寿命となり、条件8の充電電気
量が約106%のものは、約300サイクルで寿命とな
った。
Assuming that the life is at the time when the three-hour rate capacity of the battery becomes 80% or less of the initial capacity, under the conditions 1 and 2 in which the absolute amount of charge is insufficient, 30 and 50 respectively.
Under the conditions 9 and 10, which are referred to as normal charging conditions, the life was about 200 cycles, whereas the amount of charge in conditions 4 to 7 was 10%.
Approximately 400 to 60 under the condition of more than 0% and 105% or less
The life reached 0 cycles. The condition 3 where the amount of discharged electricity = the amount of charged electricity has a better life transition than the conditions 1 and 2, and the life is 140 cycles. The condition 8 where the amount of charged electricity is about 106% is about 300 cycles. Life has expired.

【0018】これらの電池について、試験終了後に電池
重量測定による電解液減少量は条件1から条件7までは
初期の電解液量に対して、0.01%/サイクル〜0.
02%/サイクルでほとんど差がなかったのに対し、条
件8では0.04%/サイクル、条件9および10では
0.08%/サイクルと急激に増加していた。
For these batteries, after the test was completed, the amount of decrease in the electrolyte by weight measurement of the battery was 0.01% / cycle to 0.1% of the initial amount of the electrolyte under conditions 1 to 7.
While there was almost no difference at 02% / cycle, there was a sharp increase to 0.04% / cycle under Condition 8, and 0.08% / cycle under Conditions 9 and 10.

【0019】また、解体後、これらの電池の寿命原因を
調査した結果、条件1から条件3では正極の集電体の腐
食がほとんど見られなかったが、両極の活物質中から放
電生成物である硫酸鉛が30%から80%と多量に検出
され、特に負極の硫酸鉛の結晶が粗大化していわゆるサ
ルフェーションを生じていた。さらに、条件8から条件
10では、上記のような負極のサルフェーションはほと
んど見られなかったが、正極の集電体が腐食してその体
積の半分以上が二酸化鉛化し、強度、導電性が低下して
その機能が低下していた。条件4から条件7では、寿命
原因としては負極活物質の硫酸鉛化であったが、その量
は30%以下と少なく、また、結晶の大きさも条件1 か
ら条件3と比較して小さかった。さらに、正極の集電体
の腐食も、条件1から条件3よりは進んでいるが、これ
まで200サイクル程度で集電体の機能が低下していた
ことを考えると、十分にその腐食速度が抑制されていた
ことがわかった。
After disassembly, the cause of the life of these batteries was examined. As a result, under conditions 1 to 3, corrosion of the current collector of the positive electrode was scarcely observed. A certain amount of lead sulfate was detected in a large amount of 30% to 80%, and in particular, the lead sulfate crystal of the negative electrode was coarsened to cause so-called sulfation. Further, under conditions 8 to 10, almost no sulfation of the negative electrode as described above was observed, but the current collector of the positive electrode corroded, and more than half of its volume was converted to lead dioxide, resulting in reduced strength and conductivity. Its function had been reduced. In Conditions 4 to 7, the cause of the life was lead sulfate formation of the negative electrode active material, but the amount was as small as 30% or less, and the crystal size was smaller than in Conditions 1 to 3. Further, the corrosion of the current collector of the positive electrode is also advanced from the condition 1 to the condition 3, but considering that the function of the current collector has been reduced in about 200 cycles so far, the corrosion rate is sufficiently high. It was found that it was suppressed.

【0020】これらのことから、充電電気量を放電電気
量の100%を超えて105%以下とすると、電解液の
減少、負極のサルフェーションおよび正極集電体の腐食
を同時に抑制し、その結果、密閉形鉛蓄電池のサイクル
寿命を、これまでの2から3倍に延長できることがわか
った。
From these facts, when the amount of charged electricity is more than 100% and not more than 105% of the amount of discharged electricity, the decrease of the electrolyte, the sulfation of the negative electrode and the corrosion of the positive electrode current collector are suppressed at the same time. It has been found that the cycle life of the sealed lead-acid battery can be extended by two to three times.

【0021】さらに、大きな過充電を伴う条件9および
条件10の電力効率が、70%から75%だったのに対
し、過充電量が小さい条件4から条件7では75%から
85%と、より高い充放電の電力効率が得られることが
わかった。
Further, while the power efficiency in the conditions 9 and 10 with a large overcharge is 70% to 75%, the power efficiency in the conditions 4 to 7 where the overcharge is small is from 75% to 85%. It was found that high charging and discharging power efficiency was obtained.

【0022】(実施例2)また、実施例1と全く同じ仕
様の電池を組み立て、温度25℃にて表2の条件で充放
電を行った。
Example 2 A battery having exactly the same specifications as in Example 1 was assembled and charged and discharged at a temperature of 25 ° C. under the conditions shown in Table 2.

【0023】その試験結果を図2に示す。なお、図中の
数字は表2の条件の番号を示す。
FIG. 2 shows the test results. The numbers in the figure indicate the numbers of the conditions in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】電池の3時間率容量が、初期容量に対して
80%以下になった時点で寿命とすると、いずれの充電
電気量も放電電気量に対して103.1%であるが、充
電の電流を段階的に変化させることにより、最大100
サイクルの寿命延長が可能となった。これらの電池を解
体した結果、段階的に電流を変化させた電池は、両極の
活物質ともその粒径が均一でなく、大小の様々な結晶径
に変化していることがわかった。この様な結晶形態が次
の放電の時の電解液の拡散経路を保証しているため、特
に寿命末期における容量の確保を可能にしていると考え
られる。従って、この段階的な電流の変化を可能な限り
短い時間で行う様な充電、すなわちパルス的な電流によ
る充電においても、同様な効果が得られる。
Assuming that the life is at the time when the three-hour rate capacity of the battery becomes 80% or less of the initial capacity, the amount of charged electricity is 103.1% of the amount of discharged electricity. By changing the current stepwise, up to 100
The cycle life can be extended. As a result of disassembling these batteries, it was found that in the batteries in which the current was changed stepwise, the active materials of both electrodes did not have a uniform particle size, but changed to various large and small crystal diameters. It is considered that such a crystal morphology guarantees a diffusion path of the electrolytic solution at the time of the next discharge, so that it is possible to secure a capacity particularly at the end of life. Therefore, the same effect can be obtained in charging such that the stepwise change of current is performed in a time as short as possible, that is, in charging by pulse current.

【0026】さらに、段階的な電流変化は条件6−1、
条件6−2、および条件6−5の様に充電末期に近づく
に従って小さくしていくと、その寿命延長の効果が大き
いことがわかった。これは、前述の効果とともに、電流
が小さいことによる活物質の充電効率の増加が大きく起
因していると考えられる。鉛蓄電池の正極は、満充電に
対して80%を超えた付近から、酸素ガスの発生を伴い
ながら充電されるが、発生した酸素ガスは当然負極で反
応するため、負極の充電効率も低下する。本実施例のよ
うな、過充電電気量が5%以下の充電方法では、この負
極の酸素との反応が、結果的に負極のサルフェーション
を促進すると考えられる。充電電流を満充電に近づくに
連れて小さくすることは、満充電付近での正極の充電効
率を高めることができ、酸素ガスの発生を抑制し、結果
的に負極の充電効率を高めるため、この様な過充電電気
量の少ない充電方法において、より効果を発揮する。
Further, the stepwise change of the current is the condition 6-1.
It was found that, as in conditions 6-2 and 6-5, the effect of extending the life was prominent when the value was reduced toward the end of charging. It is considered that this is largely due to the above-described effects and an increase in the charging efficiency of the active material due to the small current. The positive electrode of a lead-acid battery is charged with the generation of oxygen gas from around 80% of the full charge with the generation of oxygen gas. However, the generated oxygen gas naturally reacts at the negative electrode, so that the charging efficiency of the negative electrode also decreases. . In the charging method in which the amount of overcharge electricity is 5% or less as in this example, it is considered that the reaction of the negative electrode with oxygen eventually promotes the sulfation of the negative electrode. Reducing the charging current as it approaches full charge can increase the charge efficiency of the positive electrode near full charge, suppress the generation of oxygen gas, and eventually increase the charge efficiency of the negative electrode. In such a charging method with a small amount of overcharge electricity, the effect is more exhibited.

【0027】また、電力効率については、やはりこれら
の充電方法の全てが75%から90%の効率を示し、特
に充電末期の電流を小さくしていく方法が電流、電池電
圧ともに小さくなるため高い電力効率を得られることが
わかった。
As for the power efficiency, all of these charging methods also exhibit an efficiency of 75% to 90%. Particularly, the method of reducing the current at the end of charging has a high power because both the current and the battery voltage are small. It turns out that efficiency can be obtained.

【0028】(実施例3)さらに、実施例1と全く同じ
仕様の電池を複数個組み立て、各々の電池温度を表3の
条件に保ちながら放電条件を10A×2時間、充電条件
を1段目が10A×1時間36分、2段目が1.5A×
3時間4分の2段定電流充電(放電電気量の103%)
でサイクル試験を行った。
(Example 3) Further, a plurality of batteries having exactly the same specifications as those in Example 1 were assembled, and the discharge conditions were set to 10 A x 2 hours and the charge conditions were set to the first stage while maintaining the respective battery temperatures under the conditions shown in Table 3. Is 10A x 1 hour and 36 minutes, the second stage is 1.5A x
Two-stage constant current charging for 3 hours and 4 minutes (103% of discharged electricity)
A cycle test was performed.

【0029】[0029]

【表3】 [Table 3]

【0030】それらの電池A〜Jの25℃で3時間率の
容量試験を数サイクル毎に行った結果を図3に示す。た
だし、図3では各々の電池A〜Jの推移を示さずに、電
池温度が−10℃〜10℃、10℃〜50℃、50℃〜
80℃の範囲に含まれるものは一括して示した。図3よ
り電池A〜Jの3時間率容量が初期容量に対して80%
以下になった時点で寿命とすると、いずれの充電方法も
放電電気量に対して103%の2段充電であるが、−1
0℃〜10℃、および50℃〜80℃の電池は、10℃
〜50℃の電池に比べ短寿命であることがわかった。
FIG. 3 shows the results of carrying out a capacity test of these batteries A to J at a rate of 3 hours at 25 ° C. every several cycles. However, FIG. 3 does not show the transition of each of the batteries A to J, and indicates that the battery temperature is −10 ° C. to 10 ° C., 10 ° C. to 50 ° C., 50 ° C.
Those included in the range of 80 ° C. are collectively shown. From FIG. 3, the three-hour rate capacity of the batteries A to J is 80% of the initial capacity.
Assuming that the service life is reached at the time when the battery life becomes below, any of the charging methods is a two-stage charge of 103% with respect to the amount of discharged electricity.
0 ° C to 10 ° C and 50 ° C to 80 ° C batteries are 10 ° C
It was found that the battery life was shorter than that of the battery at 5050 ° C.

【0031】また、実施例1と全く同じ仕様の電池をさ
らに複数個組み立て、各々の電池温度を表4の条件に保
ちながら前記電池A〜Jと同じ条件でサイクル試験を行
った。その結果を図4に示す。図4も図3と同様に電池
温度が10℃〜25℃、25℃〜35℃、35℃〜50
℃の範囲に含まれる電池毎にサイクル特性を一括して示
している。
Further, a plurality of batteries having exactly the same specifications as those of Example 1 were assembled, and a cycle test was performed under the same conditions as those of the batteries A to J while maintaining the battery temperature of each battery under the conditions shown in Table 4. FIG. 4 shows the results. FIG. 4 also shows battery temperatures of 10 ° C. to 25 ° C., 25 ° C. to 35 ° C., and 35 ° C.
The cycle characteristics are collectively shown for each battery included in the range of ° C.

【0032】[0032]

【表4】 [Table 4]

【0033】この試験結果より、電池温度を10℃〜5
0℃の範囲に制御するもののうち特に25℃〜35℃の
範囲では、より長寿命になることがわかった。
From the test results, it was found that the battery temperature was 10 ° C. to 5 ° C.
It was found that the life was longer when the temperature was controlled in the range of 0 ° C., especially in the range of 25 ° C. to 35 ° C.

【0034】次に、これら電池を解体して調査した結
果、電池温度を−10℃〜10℃の範囲内に制御して充
放電された電池は、活物質の硫酸鉛化、特に負極のサル
フェーションが寿命原因であり、50℃〜80℃に制御
して充放電された電池は、正極活物質の硫酸鉛化と集電
体の腐食が原因であった。
Next, these batteries were disassembled and investigated. As a result, the batteries charged and discharged with the battery temperature controlled within the range of -10 ° C. to 10 ° C. were converted to lead sulfate of the active material, particularly, the sulfation of the negative electrode. The battery was charged and discharged at a temperature of 50 ° C. to 80 ° C. due to lead sulfate of the positive electrode active material and corrosion of the current collector.

【0035】さらに、電力効率については、10℃〜5
0℃の電池で80〜90%の効率を示し、高い電力効率
が得られることがわかった。
Further, regarding the power efficiency, 10 ° C. to 5 ° C.
The battery at 0 ° C. exhibited an efficiency of 80 to 90%, indicating that high power efficiency was obtained.

【0036】以上実施例1〜実施例3に述べた効果は、
実験に用いた密閉形鉛蓄電池以外に、容量の大小、集電
体が鋳造格子体またはエキスパンド式格子体、ゲル式ま
たはその他の電解液保持方式の等の、密閉形鉛蓄電池等
の形式の如何にかかわらず同様に得られた。
The effects described in the first to third embodiments are as follows.
In addition to the sealed lead-acid batteries used in the experiment, the size of the capacity and the type of the sealed lead-acid batteries, such as the type of current collector, such as a cast grid or expanded grid, gel type or other electrolytic solution holding method, etc. Regardless, it was obtained similarly.

【0037】[0037]

【発明の効果】以上述べたように、本発明によれば次に
記載する効果を奏する。
As described above, according to the present invention, the following effects can be obtained.

【0038】(1)請求項1によれば、密閉形鉛蓄電池
の構造や構成を変えることなく、充電方法を制御するこ
とのみによって、密閉形鉛蓄電池の性能を損なうことな
く、その寿命性能を向上させることができ、さらに電池
の充放電にともなう電力のロスを小さくできる。
(1) According to the first aspect, the life performance of the sealed lead-acid battery can be improved without changing the structure or configuration of the sealed lead-acid battery and by only controlling the charging method without impairing the performance of the sealed lead-acid battery. Power loss due to the charge and discharge of the battery.

【0039】(2)請求項2によれば、正極及び負極の
充電効率を高め、過充電電気量が少なくなり、密閉形鉛
蓄電池の寿命性能を向上させることができる。
(2) According to the second aspect, the charging efficiency of the positive electrode and the negative electrode can be increased, the amount of overcharged electricity can be reduced, and the life performance of the sealed lead-acid battery can be improved.

【0040】(3)請求項3によれば、上記(2)の効
果を顕著にできる。
(3) According to the third aspect, the effect of the above (2) can be remarkable.

【0041】(4)請求項4によれば、充電不足や集電
体の腐食速度が高まることを防止でき、密閉形鉛電池の
寿命性能を向上できる。
(4) According to the fourth aspect, insufficient charging and an increase in the corrosion rate of the current collector can be prevented, and the life performance of the sealed lead battery can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】放電電流と放電時間を一定にして、充電電流一
定の条件下で充電電気量を変化させたときの、3時間率
容量の推移を示したグラフである。
FIG. 1 is a graph showing a transition of a three-hour rate capacity when a discharge current and a discharge time are constant and a charge amount is changed under a condition of a constant charge current.

【図2】放電電流と充電電気量を一定にした条件下で、
充電電流と時間を変化させたときの、3時間率容量の推
移を示したグラフである。
FIG. 2 shows a condition where a discharge current and a charge amount are constant.
It is the graph which showed transition of three hour rate capacity when changing charging current and time.

【図3】電池温度を−10℃〜10℃、10℃〜50
℃、50℃〜80℃の範囲内の一定値に制御して本発明
の方法で電池を充放電試験したときの3時間容量の推移
を示したグラフである。
FIG. 3 shows a battery temperature of −10 ° C. to 10 ° C. and 10 ° C. to 50 ° C.
4 is a graph showing a change in capacity for 3 hours when a battery is subjected to a charge / discharge test by the method of the present invention while controlling to a constant value within a range of 50 ° C. to 50 ° C. to 80 ° C.

【図4】電池温度を10℃〜25℃、25℃〜35℃、
35℃〜50℃の範囲内の一定値に制御して本発明の方
法で電池を充放電試験した時の3時間容量の推移を示す
グラフである。
FIG. 4 shows battery temperatures of 10 ° C. to 25 ° C., 25 ° C. to 35 ° C.,
5 is a graph showing a transition of a three-hour capacity when a battery is subjected to a charge / discharge test by a method of the present invention while controlling the battery to a constant value in a range of 35 ° C. to 50 ° C.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 不規則な放電が繰り返されるサイクルサ
ービス用途の密閉形鉛蓄電池において、放電後の充電電
気量を、放電の深さや放電電流の大きさに関係なく、前
回放電電気量の100%を超えて105%以下とするこ
とを特徴とする密閉形鉛蓄電池の充電方法。
1. In a sealed lead-acid battery for use in cycle services in which irregular discharge is repeated, the amount of charged electricity after discharging is determined to be 100% of the previously discharged amount of electricity irrespective of the depth of discharge and the magnitude of discharge current. A method for charging a sealed lead-acid battery, characterized by exceeding 105% and not more than 105%.
【請求項2】 請求項1に記載する充電方法において、
充電電流を少なくとも2段階以上に分けることを特徴と
する密閉形鉛蓄電池の充電方法。
2. The charging method according to claim 1, wherein
A method for charging a sealed lead-acid battery, wherein the charging current is divided into at least two or more stages.
【請求項3】 請求項1に記載する充電方法において、
満充電に近づくにつれて充電電流を徐々に小さくするこ
とを特徴とする密閉形鉛蓄電池の充電方法。
3. The charging method according to claim 1, wherein
A method for charging a sealed lead-acid battery, characterized in that the charging current is gradually reduced as the battery approaches full charge.
【請求項4】 充放電中の電池温度が10℃以上50℃
以下であることを特徴とする請求項1〜請求項3のいず
れかに記載の密閉形鉛蓄電池の充電方法。
4. The battery temperature during charging and discharging is 10 ° C. or more and 50 ° C.
The method for charging a sealed lead-acid battery according to any one of claims 1 to 3, wherein:
JP9039343A 1997-02-24 1997-02-24 Charging method of sealed-type lead storage battery Pending JPH10241746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9039343A JPH10241746A (en) 1997-02-24 1997-02-24 Charging method of sealed-type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9039343A JPH10241746A (en) 1997-02-24 1997-02-24 Charging method of sealed-type lead storage battery

Publications (1)

Publication Number Publication Date
JPH10241746A true JPH10241746A (en) 1998-09-11

Family

ID=12550449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9039343A Pending JPH10241746A (en) 1997-02-24 1997-02-24 Charging method of sealed-type lead storage battery

Country Status (1)

Country Link
JP (1) JPH10241746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275006B1 (en) 1998-05-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery
CN108539277A (en) * 2018-03-26 2018-09-14 南京国轩电池有限公司 A kind of partial volume method of power-type lithium ion battery
JP2021099262A (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Method for estimating charge state of control valve type lead storage battery, reduced liquid quantity of electrolyte or sulfuric acid concentration of electrolyte, and device for monitoring control valve type lead storage battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275006B1 (en) 1998-05-27 2001-08-14 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery
USRE40223E1 (en) * 1998-05-27 2008-04-08 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery
CN108539277A (en) * 2018-03-26 2018-09-14 南京国轩电池有限公司 A kind of partial volume method of power-type lithium ion battery
JP2021099262A (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Method for estimating charge state of control valve type lead storage battery, reduced liquid quantity of electrolyte or sulfuric acid concentration of electrolyte, and device for monitoring control valve type lead storage battery

Similar Documents

Publication Publication Date Title
US4166155A (en) Maintenance-free battery
JPH10241746A (en) Charging method of sealed-type lead storage battery
JPH0869811A (en) Lead-acid battery
JP2003317711A (en) Formation method of lead-acid battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP2001155762A (en) Sealed lead cell for automobile
JP4742424B2 (en) Control valve type lead acid battery
JP2001185227A (en) Maintenance method of lead-acid battery
JPH1140186A (en) Lead-acid battery
JPH0745274A (en) Lead acid battery use positive plate and manufacture thereof
JP3582068B2 (en) How to charge lead storage batteries
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JP2913482B2 (en) Lead storage battery
JP3496241B2 (en) How to charge lead storage batteries
JP2001126771A (en) Charging method of sealed lead-acid battery
JP2002165378A (en) Charging system of control valve type lead-acid battery
JPH10255853A (en) Charging method of sealed lead-acid battery
JPH0770321B2 (en) Sealed lead acid battery
JP2001157376A (en) Method of charging sealed lead accumulator
JPH03147262A (en) Collector for lead-acid battery
JP2001160422A (en) Charging control method of lead storage battery
JP2553598B2 (en) Sealed lead acid battery
JP2000299134A (en) Lead-acid battery charging method
JPH08329989A (en) Method for charging sealed lead-acid battery
JP2002042899A (en) Charging system for control valve type lead-acid battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051013