JP3496241B2 - How to charge lead storage batteries - Google Patents

How to charge lead storage batteries

Info

Publication number
JP3496241B2
JP3496241B2 JP19904693A JP19904693A JP3496241B2 JP 3496241 B2 JP3496241 B2 JP 3496241B2 JP 19904693 A JP19904693 A JP 19904693A JP 19904693 A JP19904693 A JP 19904693A JP 3496241 B2 JP3496241 B2 JP 3496241B2
Authority
JP
Japan
Prior art keywords
charging
battery
time
electrode plate
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19904693A
Other languages
Japanese (ja)
Other versions
JPH0729610A (en
Inventor
祐一 岡田
克仁 高橋
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP19904693A priority Critical patent/JP3496241B2/en
Publication of JPH0729610A publication Critical patent/JPH0729610A/en
Application granted granted Critical
Publication of JP3496241B2 publication Critical patent/JP3496241B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、アンチモンを含まない
鉛合金格子を用いた鉛蓄電池の充電方法に関し、さらに
詳しくは、交互に充放電して用いる電池の充電方法に関
するものである。 【0002】 【従来の技術とその課題】鉛蓄電池の極板格子には、従
来より主として鉛−アンチモン系合金が用いられている
が、補水等の保守が不要な、いわゆるメンテナンスフリ
ータイプの鉛蓄電池では、電解液の水の損失を防ぐため
に、通常、鉛−カルシウム合金などのアンチモンを含ま
ない鉛合金が用いられている。 【0003】ところが、この種の合金を用いた電池で
は、深い充放電を繰り返すと、放電中に正極板の格子と
活物質との界面に硫酸鉛の不働態層が形成されて早期に
容量が低下することがあり、特に薄形極板を用いた高性
能の電池ではその傾向が顕著である。したがって、長寿
命が要求される用途では、アンチモン合金を用いた電池
に比べてかなり厚形の極板を用いざるを得ず、放電性能
を犠牲にしなければならなかった。 【0004】また、このような早期容量低下を防止する
手段として、従来より、アンチモン合金以外でなおかつ
格子と活物質との界面に不働態層が形成されにくい合金
組成について種々検討がなされているが、アンチモン合
金に匹敵するような合金は未だに開発されておらず、短
寿命の問題を克服するにはいたっていない。 【0005】 【課題を解決するための手段】本発明者は、アンチモン
を含まない正極格子の界面における不働態層生成の防止
方法について鋭意研究を重ねた結果、従来から検討され
てきた格子合金組成の改良によってではなく、格子が腐
食下におかれる条件を最適化すること、すなわち充電方
法を最適化することによって不働態層の生成を防ぎ、電
池の寿命性能を著しく向上させることができることを見
いだし、本発明に到達した。その要旨は、電池の正極板
厚さに適した充電時間を選択することにある。具体的に
は、充電する電池の正極板厚さをtmm、充電時間をT
時間として、2≦T≦t+2で表わされる充電時間に充
電することにある。 【0006】アンチモンを含まない鉛合金格子を用いた
正極板の格子と活物質の界面に硫酸鉛の不働態層が形成
される原因は、格子腐食層が活物質に比べて反応性が高
く、放電時に活物質が充分放電される前に腐食層が放電
されることによるものである。一方、アンチモン合金格
子の腐食層は、活物質に比べて放電しにくく安定であ
る。このような腐食層の反応性の違いは腐食層の組成や
構造の違いによって生ずるものと考えられる。 【0007】腐食層の組成や構造は合金の組成や結晶構
造によって異なるが、それ以外に、格子界面の電位、電
流密度、水素イオン濃度(pH)などの、格子が腐食下
におかれる条件や、その腐食条件下におかれる時間とい
った電気化学的な条件によっても大きく変化する。 【0008】本発明者は、このような腐食層が形成され
る条件に着目し、研究を重ねた結果、腐食層の反応性に
は、格子界面のpHと密接に関係している極板厚さと、
格子界面が高い電位にさらされている時間、すなわち充
電時間が最も大きく影響しており、ある一定の極板厚さ
の正極板を用いた電池では、一定時間以上高い電位にさ
らされると反応性に富んだ腐食層が形成されることを見
いだした。 【0009】本発明は、この研究結果をふまえ、反応性
が高い腐食層の形成を防止する充電条件を正極板厚さと
の関係において詳細に検討して、その最適値を見いだし
たものである。本発明になる充電方法を用いて、反応性
に富んだ腐食層が形成される前に充電を終了することに
よって、不働態層の生成を防ぎ、電池の寿命性能を著し
く向上させることが可能となる。その詳細について、以
下に実施例を用いて説明する。 【0010】 【実施例】 (実施例1)鉛−0.1%カルシウム合金格子に活物質
を充填した厚さ3mm(t=3)の正極板と負極板とを
微細ガラス繊維セパレータを介し交互に積層して極板群
を形成し、比重1.32の硫酸を吸収、保持させて、2
V−6Ahの密閉形鉛蓄電池を作製した。 【0011】 この電池を用いて、室温(25℃)中に
て種々の充電条件で充放電サイクル寿命試験を行った。
放電は、2Aで1.65Vまでとし、充電は定電流−定
電圧方式(3A−2.4V)とした。本発明になる充電
方法(2≦T≦t+2)の実施例として充電時間(T)
を3、4、5時間とした場合、また比較例として充電時
間(T)を6、8、10時間とした場合について試験を
行った結果を図1に示す。この結果から明らかなよう
に、本発明になる充電方法、すなわち充電時間を3〜5
時間とした場合には良好な容量推移を示すが、5時間を
超えて充電した場合には充電時間を長くするほど容量低
下が激しくなることがわかる。 【0012】容量低下の原因を明らかにするため、5時
間を超えて充電した電池について容量が初期の50%と
なった時点で電池を解体調査したところ、正極板の格子
と活物質との界面に不働態層が形成されていることが確
認された。また、充電時間を5時間以内としたものにつ
いては、500サイクルの時点で電池を解体調査した
が、不働態層の形成はみられなかった。 【0013】なお、充電時間を3時間としたものについ
ては、初期から容量が低めに推移しているが、これは電
池が満充電されていないことを示しており、必要に応じ
て補充電を行なえば容量は回復し、寿命性能上特に問題
はないものである。 (実施例2)実施例1と同様の試験を充電電圧を2.5
V、2.3Vとした場合についても実施した。充電電圧
を2.5Vとした場合の結果を図2に、2.3Vとした
場合の結果を図3に示す。この結果から明らかなよう
に、いずれの充電電圧でも、充電時間(T)を5時間以
内とした場合には良好な容量推移を示しているが、5時
間を超えて充電した場合には充電時間を長くするほど容
量低下が激しくなることがわかる。 (実施例3)実施例1、2の場合と同じ厚さ3mmの正
極板を用いた電池を用いて、電流、時間を変えた充電条
件で同様のサイクル寿命試験を行った。なお、充電方式
は定電流−定電圧方式とし、いずれもほぼ満充電になる
ように充電条件を設定した。試験の結果を図4に示す。 【0014】なお、図4においてaは充電条件を10A
−2.4Vで2時間、bは5A−2.4Vで3時間、c
は3A−2.4Vで4時間、dは2A−2.4Vで5時
間、eは1.5A−2.4Vで6時間、fは1A−2.
4Vで8時間、gは0.8A−2.4Vで10時間とし
た場合である。 【0015】 この結果から明らかなように、充電電流
を大きくして充電時間を短くするほど寿命性能が大きく
向上し、特に充電時間を2〜5時間とした場合には良好
な容量推移を示すことがわかる。 (実施例4)実施例1〜3に示した試験の温度条件を1
0〜40℃まで変えて行なった場合の試験結果を充電時
間と寿命サイクル数との関係としてまとめて図5に示
す。なお、ここで寿命サイクル数は、初期の容量の50
%を切った時点とした。この結果から明らかなように、
サイクル寿命性能は充電時間を短くするほど向上し、特
に充電時間を5時間以内とした場合には良好な容量推移
を示すことがわかる。 (実施例5)さらに、厚さが1mm、2mm、4mm
(t=1、2、4)の正極板を用いて電池を製作し、種
々の充電条件で実施例1〜4に示した試験と同様のサイ
クル寿命試験を行った。試験結果を実施例4の結果と合
わせて図6に示す。 【0016】 試験結果から明らかなように、電池の正
極板厚さをtmm、充電時間をT時間とすると、t=1
のとき2≦T≦3、t=2のとき2≦T≦4、t=3の
とき2≦T≦5、t=4のとき2≦T≦6の条件で充電
すれば、すなわち、厚さtmmの正極板を用いた電池を
充電する場合に、2時間以上、t+2時間以内に充電す
れば、寿命性能が著しく向上することがわかる。 【0017】なお、実施例では充電方式として定電流−
定電圧方式を用いたが、定電流−定電圧−定電流方式、
段別定電流方式、準定電圧方式など、他の充電方式を用
いた場合でも、本発明になる充電方法によって充電を行
なえば同様の効果を得ることができる。 【0018】 【発明の効果】本発明になる充電方法を用いることによ
り、アンチモンを含まない鉛合金格子を用いた電池の寿
命性能を著しく向上させることができる。さらに、本発
明により、従来短寿命で実用にならなかった高性能の電
池を用いることも可能となって、その工業的価値は非常
に大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of charging a lead storage battery using a lead alloy grid not containing antimony, and more particularly, to a battery used by alternately charging and discharging. Charging method. 2. Description of the Related Art Although a lead-antimony alloy has been mainly used for an electrode plate grid of a lead-acid battery, a so-called maintenance-free type lead-acid battery which does not require maintenance such as water replenishment. In order to prevent water loss in the electrolyte, a lead alloy containing no antimony, such as a lead-calcium alloy, is usually used. However, in a battery using this kind of alloy, when deep charge and discharge are repeated, a passivation layer of lead sulfate is formed at the interface between the grid of the positive electrode plate and the active material during the discharge, and the capacity is quickly reduced. In particular, this tendency is remarkable in a high-performance battery using a thin electrode plate. Therefore, in an application requiring a long life, a considerably thicker electrode plate has to be used as compared with a battery using an antimony alloy, and the discharge performance has to be sacrificed. As means for preventing such an early capacity decrease, various studies have been made on alloy compositions other than the antimony alloy, which are difficult to form a passivation layer at the interface between the lattice and the active material. However, alloys comparable to antimony alloys have not yet been developed and have not been able to overcome the short-life problem. SUMMARY OF THE INVENTION The present inventors have conducted intensive studies on a method for preventing the formation of a passive layer at the interface of a positive electrode lattice containing no antimony. As a result, the lattice alloy composition which has been conventionally studied has been studied. Not by improving the conditions under which the grid is exposed to corrosion, but by optimizing the charging method, can prevent the formation of a passive layer and significantly improve the life performance of the battery. Reached the present invention. The gist is to select a charging time suitable for the thickness of the positive electrode plate of the battery. Specifically, the thickness of the positive electrode plate of the battery to be charged is tmm, and the charging time is T
The charging is to be performed for a charging time represented by 2 ≦ T ≦ t + 2 . [0006] The reason why a passive layer of lead sulfate is formed at the interface between the active material and the grid of the positive electrode plate using a lead alloy grid containing no antimony is that the grid corrosion layer has higher reactivity than the active material. This is because the corroded layer is discharged before the active material is sufficiently discharged at the time of discharge. On the other hand, the corrosion layer of the antimony alloy lattice is less likely to be discharged than the active material and is stable. It is considered that such a difference in reactivity of the corroded layer is caused by a difference in composition or structure of the corroded layer. [0007] The composition and structure of the corroded layer differ depending on the composition and crystal structure of the alloy. It also varies greatly depending on the electrochemical conditions such as the time under which the corrosion is performed. The present inventor has focused on the conditions under which such a corroded layer is formed, and as a result of repeated studies, the reactivity of the corroded layer shows that the electrode thickness is closely related to the pH of the lattice interface. Sato,
The time during which the lattice interface is exposed to a high potential, that is, the charging time, has the greatest effect.In a battery using a positive electrode plate with a certain plate thickness, the reactivity becomes higher when the cell is exposed to a higher potential for more than a certain time. It was found that a rich corrosion layer was formed. In the present invention, based on the results of this study, the charging conditions for preventing the formation of a highly reactive corrosive layer were studied in detail in relation to the thickness of the positive electrode plate, and the optimum value was found. By using the charging method according to the present invention and terminating charging before a highly reactive corrosive layer is formed, it is possible to prevent the formation of a passive layer and significantly improve the battery life performance. Become. The details will be described below using examples. EXAMPLE 1 A positive electrode plate and a negative electrode plate each having a thickness of 3 mm (t = 3) in which a lead-0.1% calcium alloy lattice is filled with an active material are alternately arranged via a fine glass fiber separator. To form an electrode plate group, absorb and hold sulfuric acid having a specific gravity of 1.32,
A sealed lead-acid battery of V-6Ah was produced. Using this battery, a charge / discharge cycle life test was performed at room temperature (25 ° C.) under various charging conditions.
Discharging was performed up to 1.65 V at 2 A, and charging was performed under a constant current-constant voltage system (3 A-2.4 V). As an example of the charging method ( 2 ≦ T ≦ t + 2 ) according to the present invention, the charging time (T)
FIG. 1 shows the results of tests conducted when the charging time (T) was set to 6, 8, and 10 hours as Comparative Examples. As is clear from the results, the charging method according to the present invention, that is, the charging time is 3 to 5
It can be seen that when the time is set as time , a good capacity change is shown, but when charging is performed for more than 5 hours, the capacity is more greatly reduced as the charging time is increased. In order to clarify the cause of the capacity decrease, when the battery charged for more than 5 hours was disassembled and inspected when the capacity reached 50% of the initial value, the interface between the grid of the positive electrode plate and the active material was determined. It was confirmed that a passivation layer was formed on the substrate. When the charging time was set to 5 hours or less, the battery was disassembled and inspected at the time of 500 cycles, but no passive layer was formed. In the case where the charging time is set to 3 hours, the capacity has changed to a low level from the beginning. This indicates that the battery is not fully charged. If done, the capacity will be restored, and there will be no particular problem in the life performance. (Example 2) The same test as in Example 1 was performed with a charging voltage of 2.5.
V and 2.3 V, respectively. FIG. 2 shows the result when the charging voltage was set to 2.5 V, and FIG. 3 shows the result when the charging voltage was set to 2.3 V. As is clear from these results, at any charging voltage, when the charging time (T) was set to 5 hours or less, a good capacity transition was shown. It can be seen that the longer the is, the more the capacity is reduced. (Embodiment 3) The same cycle life test was carried out using a battery using the same positive electrode plate having a thickness of 3 mm as in the case of Embodiments 1 and 2 under charging conditions of different currents and different times. Note that the charging method was a constant current-constant voltage method, and charging conditions were set so that each battery was almost fully charged. FIG. 4 shows the results of the test. In FIG. 4, a represents a charging condition of 10A.
-2.4V for 2 hours, b is 5A-2.4V for 3 hours, c
Is 4 hours at 3A-2.4V, d is 5 hours at 2A-2.4V, e is 6 hours at 1.5A-2.4V, and f is 1A-2.
8 hours at 4V and g for 10 hours at 0.8A-2.4V. As is apparent from the results, as the charging current is increased and the charging time is shortened, the life performance is greatly improved. Particularly, when the charging time is set to 2 to 5 hours , a good capacity transition is exhibited. I understand. (Example 4) The temperature conditions of the tests shown in Examples 1 to 3 were set to 1
FIG. 5 shows the test results when the temperature was changed from 0 to 40 ° C. as a relationship between the charging time and the number of life cycles. Here, the life cycle number is 50 times the initial capacity.
It was the time when% was cut. As evident from this result,
It can be seen that the cycle life performance is improved as the charging time is shortened, and particularly when the charging time is set to 5 hours or less, a good capacity transition is exhibited. (Example 5) Further, the thickness is 1 mm, 2 mm, and 4 mm.
Batteries were manufactured using the positive electrode plates (t = 1, 2, 4), and cycle life tests similar to the tests shown in Examples 1 to 4 were performed under various charging conditions. FIG. 6 shows the test results together with the results of Example 4. As is clear from the test results, when the thickness of the positive electrode plate of the battery is tmm and the charging time is T time, t = 1
2 ≦ T ≦ 3 when t = 2, 2 ≦ T ≦ 4 when t = 2, 2 ≦ T ≦ 5 when t = 3, and 2 ≦ T ≦ 6 when t = 4. It can be seen that when charging a battery using a positive electrode plate having a thickness of tmm , if the battery is charged within 2 hours or more and within t + 2 hours, the life performance is significantly improved. In the embodiment, a constant current-
The constant voltage method was used, but the constant current-constant voltage-constant current method,
Similar effects can be obtained even when other charging methods such as a stepwise constant current method and a quasi-constant voltage method are used, if charging is performed by the charging method according to the present invention. By using the charging method according to the present invention, the life performance of a battery using a lead alloy lattice not containing antimony can be remarkably improved. Further, according to the present invention, it is possible to use a high-performance battery which has not been practically used because of its short life, and its industrial value is very large.

【図面の簡単な説明】 【図1】実施例1の寿命試験結果を示す図 【図2】実施例2において充電電圧を2.5Vとしたと
きの寿命試験結果を示す図 【図3】実施例2において充電電圧を2.3Vとしたと
きの寿命試験結果を示す図 【図4】実施例3の寿命試験結果を示す図 【図5】充電時間と寿命サイクル数との関係を示す図 【図6】厚さの異なる極板における充電時間と寿命サイ
クル数との関係を示す図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a life test result of Example 1. FIG. 2 is a diagram showing a life test result when a charging voltage is set to 2.5 V in Example 2. FIG. FIG. 4 is a diagram showing a life test result when a charging voltage is set to 2.3 V in Example 2. FIG. 4 is a diagram showing a life test result of Example 3. FIG. 5 is a diagram showing a relationship between a charging time and a life cycle number. FIG. 6 is a diagram showing the relationship between the charging time and the number of life cycles in electrode plates having different thicknesses.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 アンチモンを含まない鉛合金格子を用い
た鉛蓄電池を充電する方法であって、充電する電池の正
極板厚さをtmm、充電開始から充電終了までの時間
(充電時間)をT時間として、2≦T≦t+2で表わさ
れる充電時間に充電を終了することを特徴とする鉛蓄電
池の充電方法。
(1) A method for charging a lead-acid battery using a lead alloy grid not containing antimony, wherein the thickness of the positive electrode plate of the battery to be charged is tmm, and charging is started and stopped. A method of charging a lead storage battery, wherein charging is terminated at a charging time represented by 2 ≦ T ≦ t + 2, where T is a time until the charging time (charging time).
JP19904693A 1993-07-15 1993-07-15 How to charge lead storage batteries Expired - Fee Related JP3496241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19904693A JP3496241B2 (en) 1993-07-15 1993-07-15 How to charge lead storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19904693A JP3496241B2 (en) 1993-07-15 1993-07-15 How to charge lead storage batteries

Publications (2)

Publication Number Publication Date
JPH0729610A JPH0729610A (en) 1995-01-31
JP3496241B2 true JP3496241B2 (en) 2004-02-09

Family

ID=16401218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19904693A Expired - Fee Related JP3496241B2 (en) 1993-07-15 1993-07-15 How to charge lead storage batteries

Country Status (1)

Country Link
JP (1) JP3496241B2 (en)

Also Published As

Publication number Publication date
JPH0729610A (en) 1995-01-31

Similar Documents

Publication Publication Date Title
US4166155A (en) Maintenance-free battery
JP3496241B2 (en) How to charge lead storage batteries
JP4081698B2 (en) Lead-acid battery charging method
JP3582068B2 (en) How to charge lead storage batteries
JPH0750616B2 (en) Lead acid battery
JP2003346890A (en) Valve regulated lead-acid battery and its manufacturing method
US4006035A (en) Maintenance-free battery and method for reducing the current draw of such batteries
JPH0845552A (en) Charging method of lead-acid battery
JPH0837031A (en) Method for charging lead-acid battery
JPH0845551A (en) Charging method of lead-acid battery
JPH0837029A (en) Method for charging lead-acid battery
JPH10189057A (en) Charging method for lead-acid battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JPH03147262A (en) Collector for lead-acid battery
JPH08115718A (en) Manufacture of lead-acid battery
JPS61128465A (en) Electrode plate for lead-acid battery
JPH10241746A (en) Charging method of sealed-type lead storage battery
JPH0770321B2 (en) Sealed lead acid battery
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JP2000058105A (en) Lead-acid battery
JPS61198574A (en) Lead storage battery
JPS63298979A (en) Sealed lead-acid battery
JPH07111164A (en) Life increasing method for lead-acid battery
JPS6322428B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101128

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees