JPH0845552A - Charging method of lead-acid battery - Google Patents

Charging method of lead-acid battery

Info

Publication number
JPH0845552A
JPH0845552A JP6197856A JP19785694A JPH0845552A JP H0845552 A JPH0845552 A JP H0845552A JP 6197856 A JP6197856 A JP 6197856A JP 19785694 A JP19785694 A JP 19785694A JP H0845552 A JPH0845552 A JP H0845552A
Authority
JP
Japan
Prior art keywords
charging
battery
active material
positive electrode
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6197856A
Other languages
Japanese (ja)
Inventor
Ken Sawai
研 沢井
Yuichi Okada
祐一 岡田
Katsuto Takahashi
克仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP6197856A priority Critical patent/JPH0845552A/en
Publication of JPH0845552A publication Critical patent/JPH0845552A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent the generation of a passive state layer at the interface of a positive electrode grid including no antimony, and to improve the service life property of a battery, by selecting a charging time suitable for the positive electrode active material density of the battery. CONSTITUTION:A lead-acid battery using a lead alloy grid including no antimony actually is charged as follows: When the positive electrode active material density of a battery to be charged is made rho (g/cm<3>), and the time from the starting to the finishing of the charging (the charge time) is made T (h), the charging is completed within the charge 1 time shown in the formula T<=5rho-13.5. By such a charging method, the charging is completed before a corrosive layer having a high reactivity is formed, and as a result, the generation of a passive state layer can be prevented, and the service life property of the battery can be improved extensively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アンチモンを含まない
鉛合金格子を用いた鉛蓄電池の充電方法に関し、さらに
詳しくは、交互に充放電して用いる電池の充電方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a lead storage battery using a lead alloy grid containing no antimony, and more particularly to a method for charging a battery used by alternately charging and discharging.

【0002】[0002]

【従来の技術とその課題】鉛蓄電池の極板格子には、従
来より主として鉛−アンチモン系合金が用いられている
が、補水等の保守が不要な、いわゆるメンテナンスフリ
ータイプの鉛蓄電池では、電解液の水の損失を防ぐため
に、通常、鉛−カルシウム合金などのアンチモンを含ま
ない鉛合金が用いられている。
2. Description of the Related Art Conventionally, lead-antimony alloys have been mainly used for the electrode plate grids of lead-acid batteries, but so-called maintenance-free type lead-acid batteries that do not require maintenance such as replenishing water are To prevent loss of liquid water, lead alloys that do not contain antimony, such as lead-calcium alloys, are commonly used.

【0003】ところが、この種の合金を用いた電池で
は、深い充放電を繰り返すと、放電中に正極板の格子と
活物質との界面に硫酸鉛の不働態層が形成されて早期に
容量が低下することがあり、特に活物質密度の低い正極
板を用いた高性能の電池ではその傾向が顕著である。し
たがって、長寿命が要求される用途では、アンチモン合
金を用いた電池に比べてかなり活物質密度の高い極板を
用いざるを得ず、重量エネルギー密度が小さくなってし
まうという問題点があった。
However, in a battery using this type of alloy, when deep charge and discharge are repeated, a passivation layer of lead sulfate is formed at the interface between the lattice of the positive electrode plate and the active material during discharge, and the capacity is quickly reduced. The tendency is remarkable particularly in a high-performance battery using a positive electrode plate having a low active material density. Therefore, in applications where a long life is required, there is no choice but to use an electrode plate having a considerably higher active material density than a battery using an antimony alloy, and there is a problem that the weight energy density becomes small.

【0004】また、このような早期容量低下を防止する
手段として、従来より、アンチモン合金以外でなおかつ
格子と活物質との界面に不働態層が形成されにくい合金
組成について種々検討がなされているが、アンチモン合
金に匹敵するような合金は未だに開発されておらず、短
寿命の問題を克服するにはいたっていない。
As a means for preventing such an early capacity decrease, various alloy compositions other than antimony alloys have been conventionally studied, in which a passivation layer is not easily formed at the interface between the lattice and the active material. , Alloys comparable to antimony alloys have not yet been developed, and short-lived problems have not been overcome.

【0005】[0005]

【課題を解決するための手段】本発明者は、アンチモン
を含まない正極格子の界面における不働態層生成の防止
方法について鋭意研究を重ねた結果、従来から検討され
てきた格子合金組成の改良によってではなく、格子が腐
食下におかれる条件を最適化すること、すなわち充電方
法を最適化することによって不働態層の生成を防ぎ、電
池の寿命性能を著しく向上させることができることを見
いだし、本発明に到達した。その要旨は、電池の正極活
物質密度に適した充電時間を選択することにある。具体
的には、充電する電池の正極活物質密度をρ、充電時間
をT時間として、T≦5ρ−13.5で表わされる充電
時間以内に充電することにある。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies as to a method for preventing the formation of a passive layer at the interface of a positive electrode lattice containing no antimony, and as a result, have improved the lattice alloy composition which has been studied conventionally. However, it has been found that by optimizing the conditions under which the grid is subjected to corrosion, that is, by optimizing the charging method, the formation of the passivation layer can be prevented and the life performance of the battery can be significantly improved. Reached The gist is to select a charging time suitable for the density of the positive electrode active material of the battery. Specifically, charging is performed within the charging time represented by T ≦ 5ρ−13.5, where ρ is the positive electrode active material density of the battery to be charged and T is the charging time.

【0006】アンチモンを含まない鉛合金格子を用いた
正極板の格子と活物質の界面に硫酸鉛の不働態層が形成
される原因は、格子腐食層が活物質に比べて反応性が高
く、放電時に活物質が充分放電される前に腐食層が放電
されることによるものである。一方、アンチモン合金格
子の腐食層は、活物質に比べて放電しにくく安定であ
る。このような腐食層の反応性の違いは腐食層の組成や
構造の違いによって生ずるものと考えられる。
The reason why the lead sulfate passivation layer is formed at the interface between the active material and the grid of the positive electrode plate using the lead alloy grid containing no antimony is that the grid corrosion layer is more reactive than the active material. This is because the corrosion layer is discharged before the active material is sufficiently discharged during discharging. On the other hand, the corrosion layer of the antimony alloy lattice is more resistant to discharge and more stable than the active material. It is considered that such a difference in reactivity of the corrosion layer is caused by a difference in the composition and structure of the corrosion layer.

【0007】腐食層の組成や構造は合金の組成や結晶構
造によって異なるが、それ以外に、格子界面の電位、電
流密度、水素イオン濃度(pH)などの、格子が腐食下
におかれる条件や、その腐食条件下におかれる時間とい
った電気化学的な条件によっても大きく変化する。
The composition and structure of the corrosion layer differ depending on the composition and crystal structure of the alloy. In addition to this, the conditions such as the potential at the lattice interface, the current density, the hydrogen ion concentration (pH), etc. under which the lattice is exposed to corrosion and However, it also greatly changes depending on the electrochemical conditions such as the time it is exposed to the corrosive conditions.

【0008】本発明者は、このような腐食層が形成され
る条件に着目し、研究を重ねた結果、腐食層の反応性に
は、格子界面のpHおよび電流密度と密接に関係してい
る正極活物質密度と、格子界面が高い電位にさらされて
いる時間、すなわち充電時間が大きく影響しており、あ
る一定の活物質密度の正極板を用いた電池では、一定時
間以上高い電位にさらされると反応性に富んだ腐食層が
形成されることを見いだした。
The inventors of the present invention have paid attention to the conditions under which such a corrosion layer is formed, and as a result of repeated research, the reactivity of the corrosion layer is closely related to the pH and current density at the lattice interface. The positive electrode active material density and the time during which the lattice interface is exposed to a high potential, that is, the charging time, have a large effect, and a battery using a positive electrode plate with a certain active material density is exposed to a high potential for a certain period or longer. It was found that a corrosive layer with high reactivity was formed.

【0009】本発明は、この研究結果をふまえ、反応性
が高い腐食層の形成を防止する充電条件を正極活物質密
度との関係において詳細に検討して、その最適値を見い
だしたものである。本発明になる充電方法を用いて、反
応性に富んだ腐食層が形成される前に充電を終了するこ
とによって、不働態層の生成を防ぎ、電池の寿命性能を
著しく向上させることが可能となる。その詳細につい
て、以下に実施例を用いて説明する。
Based on the results of this research, the present invention has investigated the charging conditions for preventing the formation of a highly reactive corrosion layer in detail in relation to the density of the positive electrode active material, and found the optimum value. . By using the charging method according to the present invention to terminate charging before the formation of a highly reactive corrosion layer, it is possible to prevent the formation of the passivation layer and significantly improve the life performance of the battery. Become. The details will be described below using examples.

【0010】[0010]

【実施例】【Example】

(実施例1)鉛−0.1%カルシウム合金格子に、完全
充電状態での活物質密度3.7g/cm3 (ρ=3.7)
の活物質を充填した正極板と、負極板とを微細ガラス繊
維セパレータを介し交互に積層して極板群を形成し、硫
酸を吸収、保持させて、2V−6Ahの密閉形鉛蓄電池
を作製した。
(Example 1) A lead-0.1% calcium alloy lattice with an active material density of 3.7 g / cm 3 (ρ = 3.7) in a fully charged state.
The positive electrode plate filled with the active material and the negative electrode plate are alternately laminated via the fine glass fiber separator to form an electrode plate group, which absorbs and holds sulfuric acid to prepare a 2V-6Ah sealed lead-acid battery. did.

【0011】この電池を用いて、室温(25℃)中にて
種々の充電条件で充放電サイクル寿命試験を行った。放
電は、2Aで1.65Vまでとし、充電は定電流−定電
圧方式(3A−2.4V)とした。本発明になる充電方
法(T≦5ρ−13.5=5)の実施例として充電時間
(T)を3、4、5時間とした場合、また比較例として
充電時間(T)を6、8、10時間とした場合について
試験を行った結果を図1に示す。この結果から明らかな
ように、本発明になる充電方法、すなわち充電時間を5
時間以内とした場合には良好な容量推移を示すが、5時
間を超えて充電した場合には充電時間を長くするほど容
量低下が激しくなることがわかる。
Using this battery, a charge / discharge cycle life test was conducted at room temperature (25 ° C.) under various charging conditions. The discharge was performed up to 1.65 V at 2 A, and the charge was performed by a constant current-constant voltage system (3 A-2.4 V). As an example of the charging method (T ≦ 5ρ−13.5 = 5) according to the present invention, when the charging time (T) is set to 3, 4, 5 hours, and as a comparative example, the charging time (T) is 6, 8 The results of the tests conducted for 10 hours are shown in FIG. As is clear from this result, the charging method according to the present invention, that is, the charging time is 5
It can be seen that when the charging time is within the time, the capacity changes favorably, but when the charging is performed for more than 5 hours, the capacity decrease becomes more severe as the charging time is lengthened.

【0012】容量低下の原因を明らかにするため、5時
間を超えて充電した電池について容量が初期の50%と
なった時点で電池を解体調査したところ、正極板の格子
と活物質との界面に不働態層が形成されていることが確
認された。また、充電時間を5時間以内としたものにつ
いては、500サイクルの時点で電池を解体調査した
が、不働態層の形成はみられなかった。
In order to clarify the cause of the capacity decrease, when the battery charged for more than 5 hours reached a capacity of 50% of the initial capacity, the battery was disassembled and investigated, and the interface between the grid of the positive electrode plate and the active material was found. It was confirmed that a passivation layer was formed on the. Further, regarding the battery having the charging time of 5 hours or less, the battery was disassembled and examined at the time of 500 cycles, but formation of the passivation layer was not observed.

【0013】なお、充電時間を3時間としたものについ
ては、初期から容量が低めに推移しているが、これは電
池が満充電されていないことを示しており、必要に応じ
て補充電を行なえば容量は回復し、寿命性能上特に問題
はないものである。 (実施例2)実施例1と同様の試験を充電電圧を2.5
V、2.3Vとした場合についても実施した。充電電圧
を2.5Vとした場合の結果を図2に、2.3Vとした
場合の結果を図3に示す。この結果から明らかなよう
に、いずれの充電電圧でも、充電時間(T)を5時間以
内とした場合には良好な容量推移を示しているが、5時
間を超えて充電した場合には充電時間を長くするほど容
量低下が激しくなることがわかる。 (実施例3)実施例1、2の場合と同じ活物質密度3.
7g/cm3 の正極板を用いた電池を用いて、電流、時間
を変えた充電条件で同様のサイクル寿命試験を行った。
なお、充電方式は定電流−定電圧方式とし、いずれもほ
ぼ満充電になるように充電条件を設定した。試験の結果
を図4に示す。
Regarding the charging time of 3 hours, the capacity has been relatively low from the beginning, which means that the battery is not fully charged. If necessary, supplementary charging is required. If this is done, the capacity will be restored, and there is no particular problem in terms of life performance. (Example 2) The same test as in Example 1 was conducted with a charging voltage of 2.5.
It was carried out also in the case of V and 2.3V. FIG. 2 shows the result when the charging voltage was 2.5 V, and FIG. 3 shows the result when the charging voltage was 2.3 V. As is clear from this result, at any charging voltage, a good capacity transition is shown when the charging time (T) is within 5 hours, but the charging time is exceeded when charging is performed for more than 5 hours. It can be seen that the longer the value is, the more the capacity decreases. Example 3 Same active material density as in Examples 1 and 2.
Using a battery using a positive electrode plate of 7 g / cm 3 , the same cycle life test was performed under charging conditions with different current and time.
The charging method was a constant current-constant voltage method, and the charging conditions were set so that all were almost fully charged. The test results are shown in FIG.

【0014】なお、図4においてaは充電条件を10A
−2.4Vで2時間、bは5A−2.4Vで3時間、c
は3A−2.4Vで4時間、dは2A−2.4Vで5時
間、eは1.5A−2.4Vで6時間、fは1A−2.
4Vで8時間、gは0.8A−2.4Vで10時間とし
た場合である。
In FIG. 4, a indicates a charging condition of 10 A.
-2.4V for 2 hours, b is 5A-2.4V for 3 hours, c
Is 3A-2.4V for 4 hours, d is 2A-2.4V for 5 hours, e is 1.5A-2.4V for 6 hours, and f is 1A-2.
4V is 8 hours, and g is 0.8A-2.4V and 10 hours.

【0015】この結果から明らかなように、充電電流を
大きくして充電時間を短くするほど寿命性能が大きく向
上し、特に充電時間を5時間以内とした場合には良好な
容量推移を示すことがわかる。 (実施例4)実施例1〜3に示した試験の温度条件を1
0〜40℃まで変えて行なった場合の試験結果を充電時
間と寿命サイクル数との関係としてまとめて図5に示
す。なお、ここで寿命サイクル数は、初期の容量の50
%を切った時点とした。この結果から明らかなように、
サイクル寿命性能は充電時間を短くするほど向上し、特
に充電時間を5時間以内とした場合には良好な容量推移
を示すことがわかる。 (実施例5)さらに、活物質密度が3.3g/cm3
3.5g/cm3 、3.9g/cm3 (t=3.3、3.
5、3.9)の正極板を用いて電池を製作し、種々の充
電条件で実施例1〜4に示した試験と同様のサイクル寿
命試験を行った。試験結果を実施例4の結果と合わせて
図6に示す。試験結果から明かなように、電池の正極活
物質密度をρg/cm3 、充電時間をT時間とすると、ρ
=3.3のときT≦3、t=3.5のときT≦4、t=
3.7のときT≦5、t=3.9のときT≦6の条件で
充電すれば、すなわち、活物質密度ρg/cm3 の正極板
を用いた電池を充電する場合に(5ρ−13.5)時間
以内に充電すれば、寿命性能が著しく向上することがわ
かる。
As is clear from these results, the life performance is greatly improved as the charging current is increased and the charging time is shortened, and particularly when the charging time is within 5 hours, a good capacity transition is exhibited. Recognize. (Example 4) The temperature conditions of the tests shown in Examples 1 to 3 were set to 1
The test results in the case of changing the temperature from 0 to 40 ° C. are collectively shown in FIG. 5 as the relationship between the charging time and the life cycle number. The number of life cycles here is 50 times the initial capacity.
It was the time when the percentage was cut off. As is clear from this result,
It can be seen that the cycle life performance is improved as the charging time is shortened, and particularly the capacity transition is excellent when the charging time is within 5 hours. (Example 5) Further, the active material density is 3.3 g / cm 3 ,
3.5 g / cm 3 , 3.9 g / cm 3 (t = 3.3, 3 .
A battery was manufactured using the positive electrode plate of No. 5, 3.9), and a cycle life test similar to the tests shown in Examples 1 to 4 was performed under various charging conditions. The test results are shown in FIG. 6 together with the results of Example 4. As is clear from the test results, if the battery positive electrode active material density is ρg / cm 3 and the charging time is T hours, ρ
= 3.3 when T ≦ 3, when t = 3.5 T ≦ 4, t =
When the battery is charged under the conditions of T ≦ 5 when 3.7 and T ≦ 6 when t = 3.9, that is, when a battery using a positive electrode plate having an active material density ρg / cm 3 is charged (5ρ− It can be seen that the life performance is significantly improved if the battery is charged within 13.5) hours.

【0016】なお、実施例では充電方式として定電流−
定電圧方式を用いたが、定電流−定電圧−定電流方式、
段別定電流方式、準定電圧方式など、他の充電方式を用
いた場合でも、本発明になる充電方法によって充電を行
なえば同様の効果を得ることができる。
In the embodiment, the charging method is constant current-
The constant voltage method was used, but the constant current-constant voltage-constant current method,
Even when another charging method such as a stepwise constant current method or a quasi-constant voltage method is used, the same effect can be obtained by performing charging by the charging method according to the present invention.

【0017】[0017]

【発明の効果】本発明になる充電方法を用いることによ
り、アンチモンを含まない鉛合金格子を用いた電池の寿
命性能を著しく向上させることができる。さらに、本発
明により、従来短寿命で実用にならなかった高性能の電
池を用いることも可能となって、その工業的価値は非常
に大きい。
By using the charging method according to the present invention, the life performance of a battery using a lead alloy grid containing no antimony can be significantly improved. Further, according to the present invention, it is possible to use a high-performance battery which has been short-lived and has not been practically used in the past, and its industrial value is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の寿命試験結果を示す図FIG. 1 is a diagram showing a life test result of Example 1.

【図2】実施例2において充電電圧を2.5Vとしたと
きの寿命試験結果を示す図
FIG. 2 is a diagram showing a life test result when the charging voltage is 2.5 V in Example 2.

【図3】実施例2において充電電圧を2.3Vとしたと
きの寿命試験結果を示す図
FIG. 3 is a diagram showing a life test result when the charging voltage is 2.3 V in Example 2.

【図4】実施例3の寿命試験結果を示す図FIG. 4 is a diagram showing a life test result of Example 3;

【図5】充電時間と寿命サイクル数との関係を示す図FIG. 5 is a diagram showing a relationship between charging time and life cycle number.

【図6】活物質密度の異なる極板における充電時間と寿
命サイクル数との関係を示す図
FIG. 6 is a diagram showing the relationship between the charging time and the number of life cycles in electrode plates having different active material densities.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 実質的にアンチモンを含まない鉛合金格
子を用いた鉛蓄電池を充電する方法であって、充電する
電池の正極活物質密度をρ(g/cm3 )、充電開始から
充電終了までの時間(充電時間)をT(時間)として、
T≦5ρ−13.5で表わされる充電時間以内に充電を
終了することを特徴とする鉛蓄電池の充電方法。
1. A method for charging a lead storage battery using a lead alloy lattice substantially free of antimony, wherein the density of the positive electrode active material of the battery to be charged is ρ (g / cm 3 ), from the start of charging to the end of charging. Up to (charge time) T (hours),
A charging method for a lead storage battery, characterized in that charging is completed within a charging time represented by T ≦ 5ρ−13.5.
JP6197856A 1994-07-28 1994-07-28 Charging method of lead-acid battery Withdrawn JPH0845552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6197856A JPH0845552A (en) 1994-07-28 1994-07-28 Charging method of lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6197856A JPH0845552A (en) 1994-07-28 1994-07-28 Charging method of lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0845552A true JPH0845552A (en) 1996-02-16

Family

ID=16381478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6197856A Withdrawn JPH0845552A (en) 1994-07-28 1994-07-28 Charging method of lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0845552A (en)

Similar Documents

Publication Publication Date Title
US4086392A (en) Method for reducing the float current of maintenance-free battery
JP4081698B2 (en) Lead-acid battery charging method
JP3496241B2 (en) How to charge lead storage batteries
JP3582068B2 (en) How to charge lead storage batteries
JPH0845552A (en) Charging method of lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
US4046642A (en) Method of making electric storage batteries
JP2003346890A (en) Valve regulated lead-acid battery and its manufacturing method
JPH0845551A (en) Charging method of lead-acid battery
JPH0837029A (en) Method for charging lead-acid battery
JPH0837031A (en) Method for charging lead-acid battery
JPH0750616B2 (en) Lead acid battery
JP2720689B2 (en) Lead storage battery
JPS58117658A (en) Sealed lead-acid battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JPH10189057A (en) Charging method for lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JPH03147262A (en) Collector for lead-acid battery
JPH10241746A (en) Charging method of sealed-type lead storage battery
JP3648752B2 (en) Lead storage battery charge control method
JPS61118969A (en) Substrate for lead storage battery
JPH01117279A (en) Lead-acid battery
JPS6047376A (en) Lead storage battery
JP2001160422A (en) Charging control method of lead storage battery
JP2000058105A (en) Lead-acid battery

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040206