JPH10189057A - Charging method for lead-acid battery - Google Patents

Charging method for lead-acid battery

Info

Publication number
JPH10189057A
JPH10189057A JP8356001A JP35600196A JPH10189057A JP H10189057 A JPH10189057 A JP H10189057A JP 8356001 A JP8356001 A JP 8356001A JP 35600196 A JP35600196 A JP 35600196A JP H10189057 A JPH10189057 A JP H10189057A
Authority
JP
Japan
Prior art keywords
battery
charging
lead
charge
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8356001A
Other languages
Japanese (ja)
Inventor
Yuichi Okada
祐一 岡田
Masaaki Shiomi
塩見  正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP8356001A priority Critical patent/JPH10189057A/en
Publication of JPH10189057A publication Critical patent/JPH10189057A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To prevent a passive state layer from being formed on a positive electrode plate and restrain a rise in the temperature of a battery for extending the service life thereof by establishing the preset stop time at every prescribed stage in a process from a charge start to a charge end in charging the lead-acid battery having a lead alloy grid substantially containing no antimony. SOLUTION: A lead-acid battery having a lead alloy grid formed to substantially contain no antimony is charged by use of, for example, constant current and constant voltage. In this case, a charge stop time equal to or longer than one minute is established at every stage, for example, at every time equal to or longer than one minute in a process from a charge start to a charge end. As a result, the temperature rise of the battery is restrained and the voltage of an electrode plate drops to a level near equilibrium voltage during the stop time. In addition, a time for exposing the battery to high potential is shortened, thereby preventing the formation of a passive state layer on the electrode plate, as well as a drop in capacity. According to this construction, the life cycle number of the battery is substantially increased, and the service life function thereof is remarkably improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、実質的にアンチモ
ンを含まない鉛合金格子を用いた鉛蓄電池の充電方法に
関し、さらに詳しくは、交互に充放電して用いる電池の
充電方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging a lead storage battery using a lead alloy grid substantially free of antimony, and more particularly to a method for charging a battery used by alternately charging and discharging. .

【0002】[0002]

【従来の技術】鉛蓄電池の極板格子には、従来より主と
して鉛−アンチモン系合金が用いられているが、補水等
の保守が不要な、いわゆるメンテナンスフリータイプの
鉛蓄電池では、電解液の水の損失を防ぐために、通常、
鉛−カルシウム合金などのアンチモンを含まない鉛合金
が用いられている。
2. Description of the Related Art Lead-antimony alloys have been mainly used for electrode grids of lead-acid batteries. However, in a so-called maintenance-free type lead-acid battery which does not require maintenance such as water replenishment, the water of the electrolytic solution is not used. To prevent loss of
A lead alloy containing no antimony, such as a lead-calcium alloy, is used.

【0003】[0003]

【発明が解決しようとする課題】ところが、この種のア
ンチモンを含まない鉛合金を用いた電池では、深い充放
電を繰り返すと、放電中に正極板の格子と活物質との界
面に不働態層が形成され、早期に容量が低下するという
問題点があった。
However, in such a battery using a lead alloy containing no antimony, when deep charge and discharge are repeated, a passivation layer is formed at the interface between the grid of the positive electrode plate and the active material during discharge. Is formed, and there is a problem that the capacity is reduced at an early stage.

【0004】本発明者は、アンチモンを含まない正極格
子の界面における不働態層生成の防止方法について鋭意
研究を重ねた結果、電池の充電条件によって格子界面に
おける不働態層の形成のされやすさが大きく変わること
を見いだし、さらに、正極板が高い電位におかれる時間
を短くするほど不働態層が形成されにくく、電池の寿命
性能が著しく向上することを見いだした。充電時に高い
電位におかれる時間を短くするためには、大きな電流で
短時間に充電を行わなければならないが、容量の大きな
電池を大電流で充電する場合には、電池の温度上昇が大
きくなるという別の問題点が生じてしまう。
The present inventor has conducted intensive studies on a method for preventing the formation of a passive layer at the interface of the positive electrode lattice containing no antimony. As a result, it was found that the formation of the passive layer at the lattice interface depending on the charging conditions of the battery. It was found that the change greatly changed, and further, the shorter the time the positive electrode plate was kept at a high potential, the more difficult it was to form a passivation layer, and that the life performance of the battery was significantly improved. In order to shorten the time of being kept at a high potential during charging, it is necessary to perform charging with a large current in a short time, but when charging a large capacity battery with a large current, the temperature rise of the battery becomes large. Another problem arises.

【0005】[0005]

【課題を解決するための手段】本発明鉛蓄電池の充電方
法は、実質的にアンチモンを含まない鉛合金格子を用い
た鉛蓄電池を充電する方法であって、充電開始から充電
終了までの間に所定時間毎に休止時間を設け、かつ、該
休止時間が1分以上であることを特徴とする。
A method for charging a lead storage battery according to the present invention is a method for charging a lead storage battery using a lead alloy grid which does not substantially contain antimony. A pause time is provided for each predetermined time, and the pause time is one minute or more.

【0006】[0006]

【発明の実施の形態】本発明による鉛蓄電池の充電方法
は、実質的にアンチモンを含まない鉛合金格子を用いた
鉛蓄電池を充電するのに、充電開始から充電終了までの
間に所定時間毎に1分以上の休止時間を設ける。このよ
うにすることにより、不働態の形成を防ぎ、かつ、電池
の温度上昇を抑えて電池の寿命を向上させることができ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for charging a lead-acid battery according to the present invention is characterized in that a lead-acid battery using a lead alloy grid substantially free of antimony is charged every predetermined time from the start of charging to the end of charging. For at least one minute. By doing so, the formation of a passive state can be prevented, and the temperature rise of the battery can be suppressed to improve the life of the battery.

【0007】容量の大きな電池を大電流で充電すると、
電池の温度上昇が大きくなるが、充電中に休止時間を設
ければ、休止中に放熱されるため、温度上昇は抑えられ
る。一方、休止中の電池の電圧は充電時の電圧から徐々
に平衡電圧に近づいていくが、たとえばパルス充電のよ
うに休止時間が短いと、電圧がまだ高い状態のまま次の
充電に入るため、充電開始から終了まで、休止中も含め
た長時間高い電圧に維持され続けることになり、不働態
層が形成されやすくなってしまう。
When a large capacity battery is charged with a large current,
Although the temperature rise of the battery is large, if a pause time is provided during charging, heat is released during the pause, so that the temperature rise can be suppressed. On the other hand, the voltage of the battery during resting gradually approaches the equilibrium voltage from the voltage at the time of charging, but if the resting time is short, such as pulse charging, the next charging is performed while the voltage is still high. From the start to the end of the charging, the high voltage is maintained for a long time even during the pause, and the passive layer is easily formed.

【0008】本発明者は、休止時間と不働態層の形成の
されやすさとの関係について詳細に調査した結果、休止
時間が1分以上であれば休止中の電圧も平衡電圧に近く
まで下がるため、不働態層が形成されにくくなることを
つきとめ、本発明に至った。
As a result of a detailed investigation of the relationship between the pause time and the easiness of formation of the passive layer, the present inventor has found that if the pause time is 1 minute or more, the voltage during the pause can be reduced to near the equilibrium voltage. The present inventors have found that it is difficult to form a passivation layer, and have reached the present invention.

【0009】本発明になる充電方法を用いることによっ
て、不働態層の形成を防止しかつ電池の温度上昇を抑え
ることができ、電池の寿命性能を著しく向上させること
が可能となる。以下に本発明を実施例を用いて説明す
る。
By using the charging method according to the present invention, it is possible to prevent the formation of a passive layer and suppress a rise in the temperature of the battery, and it is possible to significantly improve the life performance of the battery. Hereinafter, the present invention will be described with reference to examples.

【0010】[0010]

【実施例】【Example】

(実施例1)鉛−0.1%カルシウム−1%スズ合金格
子に活物質を充填した正極板と負極板とを微細ガラス繊
維セパレータを介し交互に積層して極板群を形成し、比
重1.32の硫酸を吸収、保持させて、12V−150
Ahの密閉形鉛蓄電池を作製した。
(Example 1) A positive electrode plate and a negative electrode plate each of which is filled with an active material in a lead-0.1% calcium-1% tin alloy lattice are alternately laminated with a fine glass fiber separator therebetween to form an electrode plate group. Absorb and retain 1.32 sulfuric acid, 12V-150
A sealed lead-acid battery of Ah was produced.

【0011】この電池を用いて、室温(25℃)中にて
種々の充電条件で充放電サイクル寿命試験を行った。放
電は50Aで9.9Vまでとし、充電は150A(1
C)−14.7Vの定電流−定電圧方式で休止時間を
a.休止なし、b.100ミリ秒充電毎に100ミリ秒
休止、c.1秒充電毎に1秒休止、d.1分充電毎に1
分休止、e.5分充電毎に5分休止、f.10分充電毎
に10分休止として、放電量の110%までおこなっ
た。
Using this battery, a charge / discharge cycle life test was conducted at room temperature (25 ° C.) under various charging conditions. Discharge is up to 9.9 V at 50 A, and charge is 150 A (1
C) A pause time of a constant current-constant voltage method of -14.7 V. a. No pause, b. Pause 100 ms every 100 ms charge, c. Pause for 1 second every 1 second charge, d. 1 per minute charge
Minute pause, e. 5 minutes pause every 5 minutes charge, f. Each 10-minute charge was suspended for 10 minutes, and the discharge was performed up to 110% of the discharge amount.

【0012】表1に容量が初期の80%に低下するまで
のサイクル数と充電開始から終了までの時間および充電
中の電池温度上昇値を示す。
Table 1 shows the number of cycles until the capacity is reduced to 80% of the initial value, the time from the start to the end of charging, and the temperature rise value of the battery during charging.

【0013】[0013]

【表1】 休止なし(a)の場合には充電時間が短く、したがって
高い電位におかれる時間が短いため、不働態層は形成さ
れにくいが、電池の温度上昇が大きく、そのため寿命性
能が低下する。充電方法bおよびcの場合には、温度上
昇は小さいものの、休止時間が短いために休止中も高い
電圧に維持され続けて不働態層が形成され、かえって寿
命性能は低下する。
[Table 1] In the case of non-pause (a), the passivation layer is hardly formed because the charging time is short and therefore the time of being placed at a high potential is short, but the temperature rise of the battery is large and the life performance is reduced. In the case of the charging methods b and c, although the temperature rise is small, the pause time is short, so that the passivation layer is continuously formed at the high voltage during the pause, and the life performance is rather deteriorated.

【0014】一方、本発明になる充電方法(d、e、
f)で充電した場合には、電池の温度上昇が少なくかつ
休止中の電圧も平衡電圧に近くまで下がるため、高い電
位におかれる時間が短く、良好な寿命性能が得られるこ
とがわかる。
On the other hand, the charging method (d, e,
In the case of charging in f), since the temperature rise of the battery is small and the voltage during suspension also drops to near the equilibrium voltage, the time for which the battery is kept at a high potential is short, and it can be seen that good life performance can be obtained.

【0015】(実施例2)実施例1と同様、12V−1
50Ahの密閉形鉛蓄電池を作製し、室温(25℃)中
にて種々の充電条件で充放電サイクル寿命試験を行っ
た。放電は、50Aで9.9Vまでとし、充電は75A
(0.5C)−14.7Vの定電流−定電圧方式で休止
時間をa.休止なし、b.300ミリ秒充電毎に100
ミリ秒休止、c.3秒充電毎に1秒休止、d.3分充電
毎に1分休止、e.15分充電毎に5分休止、f.30
分充電毎に10分休止として、放電量の110%までお
こなった。
(Embodiment 2) As in Embodiment 1, 12V-1
A 50 Ah sealed lead-acid battery was manufactured, and a charge / discharge cycle life test was performed at room temperature (25 ° C.) under various charging conditions. Discharge is up to 9.9V at 50A and charge is 75A
(0.5C) A constant current-constant voltage method of -14.7 V and a pause time a. No pause, b. 100 per 300 ms charge
Millisecond pause, c. Pause for 1 second every 3 seconds of charging, d. 1 minute pause every 3 minutes charge, e. 5 minutes pause every 15 minutes charge, f. 30
Each minute charge was suspended for 10 minutes, and the discharge was performed to 110% of the discharge amount.

【0016】表2に容量が初期の80%に低下するまで
のサイクル数と充電開始から終了までの時間および充電
中の電池温度上昇値を示す。
Table 2 shows the number of cycles until the capacity is reduced to 80% of the initial value, the time from the start to the end of charging, and the temperature rise of the battery during charging.

【0017】[0017]

【表2】 実施例1と同様に、休止なし(a)の場合には充電時間
が短く、したがって高い電位におかれる時間が短いた
め、不働態層は形成されにくいが、電池の温度上昇が大
きく、そのため寿命性能が低下する。充電方法bおよび
cの場合には、温度上昇は小さいものの、休止時間が短
いために休止中も高い電圧に維持され続けて不働態層が
形成され、かえって寿命性能は低下する。
[Table 2] As in the case of the first embodiment, in the case of the non-pause (a), the charging time is short, and hence the time of being kept at a high potential is short, so that the passive layer is difficult to be formed. Performance decreases. In the case of the charging methods b and c, although the temperature rise is small, the pause time is short, so that the passivation layer is continuously formed at the high voltage during the pause, and the life performance is rather deteriorated.

【0018】一方、本発明になる充電方法(d、e、
f)で充電した場合には、電池の温度上昇が少なくかつ
休止中の電圧も平衡電圧に近くまで下がるため、高い電
位におかれる時間が短く、良好な寿命性能が得られるこ
とがわかる。
On the other hand, the charging method (d, e,
In the case of charging in f), since the temperature rise of the battery is small and the voltage during suspension also drops to near the equilibrium voltage, the time for which the battery is kept at a high potential is short, and it can be seen that good life performance can be obtained.

【0019】その他、上記の実施例以外にも種々の充電
条件で充電を行う場合が考えられるが、その場合には、
電池や充電電流の大きさに応じて、電池の温度上昇が大
きくならないように、充電時間と1分以上の休止時間の
比率を適宜調整すればよい。
In addition, in addition to the above-described embodiment, there may be cases where charging is performed under various charging conditions.
The ratio between the charging time and the pause time of one minute or more may be appropriately adjusted so that the temperature rise of the battery does not increase in accordance with the magnitude of the battery or the charging current.

【0020】また、実施例では充電方式として定電流−
定電圧方式を用いたが、定電流−定電圧−定電流方式、
段別定電流方式、準定電圧方式など、他の充電方式を用
いた場合でも、本発明になる充電方法によって充電を行
なえば同様の効果を得ることができる。
In the embodiment, a constant current-
The constant voltage method was used, but the constant current-constant voltage-constant current method,
Even when other charging methods such as a stepwise constant current method and a quasi-constant voltage method are used, the same effect can be obtained if charging is performed by the charging method according to the present invention.

【0021】[0021]

【発明の効果】本発明になる充電方法を用いることによ
り、アンチモンを含まない鉛合金格子を用いた電池の寿
命性能を著しく向上させることができ、その工業的価値
は非常に大きい。
By using the charging method according to the present invention, the life performance of a battery using a lead alloy lattice containing no antimony can be remarkably improved, and its industrial value is very large.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 実質的にアンチモンを含まない鉛合金格
子を用いた鉛蓄電池を充電する方法であって、充電開始
から充電終了までの間に所定時間毎に休止時間を設け、
かつ、該休止時間が1分以上であることを特徴とする鉛
蓄電池の充電方法。
1. A method for charging a lead storage battery using a lead alloy grid substantially free of antimony, wherein a pause is provided at predetermined intervals from the start of charging to the end of charging.
A method of charging a lead storage battery, wherein the pause time is 1 minute or more.
JP8356001A 1996-12-24 1996-12-24 Charging method for lead-acid battery Pending JPH10189057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8356001A JPH10189057A (en) 1996-12-24 1996-12-24 Charging method for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8356001A JPH10189057A (en) 1996-12-24 1996-12-24 Charging method for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH10189057A true JPH10189057A (en) 1998-07-21

Family

ID=18446824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8356001A Pending JPH10189057A (en) 1996-12-24 1996-12-24 Charging method for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH10189057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40223E1 (en) 1998-05-27 2008-04-08 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery
CN106058347A (en) * 2016-06-30 2016-10-26 济源市万洋绿色能源有限公司 Container formation pulse charging method for lead-acid storage battery
CN111477983A (en) * 2020-04-15 2020-07-31 天能电池(芜湖)有限公司 Charging process for improving battery cycle performance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40223E1 (en) 1998-05-27 2008-04-08 Matsushita Electric Industrial Co., Ltd. Method for charging secondary battery
CN106058347A (en) * 2016-06-30 2016-10-26 济源市万洋绿色能源有限公司 Container formation pulse charging method for lead-acid storage battery
CN106058347B (en) * 2016-06-30 2018-12-14 济源市万洋绿色能源有限公司 A kind of lead-acid accumulator is internalized into pulse charge method
CN111477983A (en) * 2020-04-15 2020-07-31 天能电池(芜湖)有限公司 Charging process for improving battery cycle performance

Similar Documents

Publication Publication Date Title
US4031293A (en) Maintenance free lead storage battery
JPH10189057A (en) Charging method for lead-acid battery
JP4081698B2 (en) Lead-acid battery charging method
JP2720689B2 (en) Lead storage battery
JP3648752B2 (en) Lead storage battery charge control method
JPH0869811A (en) Lead-acid battery
JP3374462B2 (en) Sealed lead storage battery
JP3582068B2 (en) How to charge lead storage batteries
JP3614890B2 (en) Charge control method for sealed lead-acid batteries
JP3648761B2 (en) How to charge sealed lead-acid batteries
JPH08329948A (en) Lead-acid battery
JPS63231880A (en) Charge control method for lead-acid battery
JP2001160422A (en) Charging control method of lead storage battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JPH0193058A (en) Lead-acid battery
JPH07111164A (en) Life increasing method for lead-acid battery
JPH06283176A (en) Sealed lead-acid battery
JPH0837030A (en) Method for charging sealed type lead-acid battery
JP2003151641A (en) Charging and discharging control method for lead battery
JPH0729610A (en) Charging method for lead-acid battery
JPS63211574A (en) Sealed lead-acid battery
JPH04223051A (en) Hermetic type lead storage battery
JPH0837031A (en) Method for charging lead-acid battery
JPH10199537A (en) Sealed lead storage battery
JPH07111163A (en) Charge control method for lead-acid battery