JPH10199537A - Sealed lead storage battery - Google Patents

Sealed lead storage battery

Info

Publication number
JPH10199537A
JPH10199537A JP8358330A JP35833096A JPH10199537A JP H10199537 A JPH10199537 A JP H10199537A JP 8358330 A JP8358330 A JP 8358330A JP 35833096 A JP35833096 A JP 35833096A JP H10199537 A JPH10199537 A JP H10199537A
Authority
JP
Japan
Prior art keywords
thickness
positive electrode
grid
electrode plate
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8358330A
Other languages
Japanese (ja)
Inventor
Toshimichi Nakamura
中村  利通
Kenji Nakamura
中村  憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP8358330A priority Critical patent/JPH10199537A/en
Publication of JPH10199537A publication Critical patent/JPH10199537A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To enable Pb-Sb based alloy to be used in the positive electrode lattice to eliminate early stage capacity drop of a lead storage battery, owing to such a result that even though Sb is eluated from the grid, it is occluded on positive pole active substance so that Sb eluated quantity into electrolytic liquid and Sb deposit it quantity on a negative electrode plate may be reduced by controlling the positive active material filling thickness in response to Sb quantity and the grid thickness in the positive electrode grid alloy. SOLUTION: When the thickness of a positive active material and a Sb quantity in a positive electrode grid are optimized by using a positive electrode plate in which Sb quantity in the positive electrode grid is in a range from 0.7 to 1.7%, and the total thickness of the positive electrode plate is 110% of the total grid thickness, Sb can be hardly detected on a negative electrode. Hereat, when Sb quantity is more than 1.7%, even if the thickness of active material is increased, the eluated Sb quantity of the negative electrode plate is much. This happens because even though fusing out Sb quantity from the lattice is much, and the thickness of active substance filling is increased, storage of Sb becomes hard. Meanwhile, when Sb quantity is less than 0.7%, the Sb quantity is too small, and water supply is impossible and a drop of the capacity takes place in an early stage, therefore, the Sb quantity is set within a range from 0.7 to 1.7%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は正極格子にPb-Sb系
合金格子を用いた密閉形鉛蓄電池の寿命性能の向上に関
するもので、特に格子合金中のSb量に応じた極板の活
物 質充填厚みを適用することにより、Sbの溶出を抑
えて密閉形鉛蓄電池 の寿命性能の向上と安定化を図る
ことを目的とするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the improvement of the life performance of a sealed lead-acid battery using a Pb-Sb-based alloy grid as a positive grid, and more particularly to an active material of an electrode plate corresponding to the amount of Sb in a grid alloy. The purpose of the present invention is to improve and stabilize the life performance of the sealed lead-acid battery by suppressing the elution of Sb by applying the thickness of the porous material.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池は、そのほとんどが正極
にPb-Ca系合金格子を用いており、液式電池で用いられ
ているPb-Sb系合金は用いられることはなかった。
2. Description of the Related Art Most of sealed lead-acid batteries use a Pb-Ca-based alloy lattice for the positive electrode, and Pb-Sb-based alloys used in liquid batteries have never been used.

【0003】Pb-Ca系合金を用いた電池では、正極活物
質の劣化や格子/活物質界面に不働体層が生成するなど
して早期に容量低下をすることがあった。その場合にS
b合金を正極格子に用いると前記の早期劣化は起きにく
くなることは良く知られている。
[0003] In a battery using a Pb-Ca alloy, the capacity may be rapidly reduced due to the deterioration of the positive electrode active material or the formation of a passive layer at the lattice / active material interface. In that case S
It is well known that the use of the b alloy for the positive electrode grid makes the above-mentioned early deterioration less likely to occur.

【0004】[0004]

【発明が解決しようとする課題】しかし、実際にはこれ
までPb-Sb系合金を正極格子に適用するのは困難であっ
た。その理由は、 正極にSb合金を用いると、使用中
にSbが電解液中に溶出する。その溶出したSbは次第
に負極板に析出し、負極板の充電効率の低下を引き起こ
しカ゛ス発生(水分解)が増加するため、 電池の使用中に
電解液の減少が多くなる。液式電池では、補水を行うこ
とによりこの減液による影響をほとんど受けないが、密
閉電池では補水ができないため、Sb格子 を用いると
かえって早期に容量が低下するためである。
However, in practice, it has been difficult to apply a Pb-Sb alloy to a positive electrode lattice. The reason is that when an Sb alloy is used for the positive electrode, Sb elutes into the electrolyte during use. The eluted Sb gradually deposits on the negative electrode plate, causing a reduction in the charging efficiency of the negative electrode plate and increasing the occurrence of gas (water decomposition), so that the amount of the electrolytic solution decreases during use of the battery. This is because the rechargeable battery is hardly affected by the liquid reduction by performing water replenishment, but the sealed battery cannot replenish water. Therefore, the use of the Sb grid causes a rapid decrease in capacity.

【0005】[0005]

【課題を解決するための手段】そこで本発明は、正極格
子に0.7%以上1.7%以下のSbを含むPb-Sb系合金を用い
た密閉形鉛蓄電池であって、正極板の総厚さが格子の総
厚さの110%以上とすることによって、前期の課題を解決
しょうとするものである。
Accordingly, the present invention provides a sealed lead-acid battery using a Pb-Sb-based alloy containing 0.7% or more and 1.7% or less of Sb in a positive electrode grid, wherein the total thickness of the positive electrode plate is reduced. By setting the thickness of the grid to 110% or more, it is intended to solve the problems in the previous term.

【発明の実施の形態】本発明の目的は、密閉形鉛蓄電池
の正極板にPb-Sb系合金格子を適用して正極板の劣化を
抑制して、電池の寿命性能を向上させることにある。
我々は、種々の試験を行なった結果、正極格子合金中の
Sb量および格 子厚さに応じて正極活物質充填厚みを
制御することにより、 Sbが格子から溶出しても正極
活物質に吸着させることによって電解液中へのSbの溶
出および負極板へのSb析出量を低 減しようとするも
のである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An object of the present invention is to apply a Pb-Sb-based alloy lattice to the positive electrode plate of a sealed lead-acid battery to suppress the deterioration of the positive electrode plate and improve the battery life performance. .
We performed various tests and found that by controlling the thickness of the positive electrode active material filling according to the amount of Sb in the positive electrode grid alloy and the grid thickness, even if Sb elutes from the lattice, it is adsorbed on the positive electrode active material. By doing so, it is intended to reduce the elution of Sb into the electrolyte and the amount of Sb deposited on the negative electrode plate.

【0006】以下に実施例を示す。An embodiment will be described below.

【0007】[0007]

【実施例1】Sb量が0.3%(A)、0.7%(B)、1.2%(C)、
1.7%(D)、2.2%(E)のPb-Sb-0.25%As-0.2%Sn合金からな
る厚さ2.0mmの格子に、充填後の極板の総厚 みが元の格
子の厚さの100、110、120、130%になるように各々活物
質を 充填した正極板を作製し、これらの正極板と、1.7
mm厚さの負極板、そして微細ガラス繊維を抄造したマッ
ト状ガラス繊維セハ゜レータとを用いて約6 0Ah(3h
R)−12Vのリテーナ式密閉電池を通常の製法になら
っ て製作した。 なお、従来のPb-0.08%Ca-1%Sn格子を
用いた密閉電池も併せて製作した。
Example 1 Sb content was 0.3% (A), 0.7% (B), 1.2% (C),
1.7% (D), 2.2% (E) Pb-Sb-0.25% As-0.2% Sn alloy 2.0mm thick grid, the total thickness of the filled electrode plate is the original grid thickness 100%, 110%, 120%, and 130% of the positive electrode plates were filled with the active material, respectively.
Using a negative electrode plate having a thickness of 3 mm and a mat-shaped glass fiber separator made of fine glass fibers, about 60 Ah (3 hours)
R) A -12 V retainer-type sealed battery was manufactured according to a normal manufacturing method. A sealed battery using a conventional Pb-0.08% Ca-1% Sn lattice was also manufactured.

【0008】これらの電池はまず30℃で1/3CA放
電容量を測定した後、寿命 試験を200サイクル行った。
寿命試験は50℃で、1/3CA電流で定格の80%を放電し
た後、定電流−定電圧方式(1/5CA/14.4V×8h)で充
電する という一般的な条件で行った。結果を図1、2
に示す。
[0008] These batteries were first measured at 1/3 CA discharge capacity at 30 ° C, and then subjected to a life test of 200 cycles.
The life test was performed under the general conditions of discharging at a temperature of 50 ° C., 80% of the rated current at a 1/3 CA current, and then charging the battery by a constant current-constant voltage method (1/5 CA / 14.4 V × 8 h). The results are shown in FIGS.
Shown in

【0009】1/3CA放電容量は格子合金組成にはよらな
かったが、活物質厚さが増加するにつれてやや多くなっ
た。寿命試験(200サイクル)後の放電容量については、特
に本請求範囲である正極格子中のSb量が0.7%以上
1.7 %以下の場合でかつ、正極板の総厚さが格子の
総厚さの110%以上である正極を用いた電池の放電容量
が、従来のCa合金格子を用いた電池のそ れよりも著
しく優れていた。また、Sb量が0.3%と少なすぎる
もの や、1.7%を越えるものは著しく放電容量が 少
な かった。
Although the 1/3 CA discharge capacity did not depend on the lattice alloy composition, it increased slightly as the thickness of the active material increased. With respect to the discharge capacity after the life test (200 cycles), particularly when the amount of Sb in the positive electrode grid according to the present invention is 0.7% or more and 1.7% or less, and the total thickness of the positive electrode plate is The discharge capacity of the battery using the positive electrode having a total thickness of 110% or more was remarkably superior to that of the battery using the conventional Ca alloy lattice. In addition, those with an Sb content as small as 0.3% or exceeding 1.7% had a remarkably small discharge capacity.

【0010】この原因を調査するため、試験後に電池を
解体して、負極活物質に析出していたSb量を調べたと
ころ、寿命性能が優れていた正極格子中のSb量が0.
7%以上1.7%以下の場合で正極板の総厚さが格子の
総厚さの110%以上の正極板を用いた場合には、負極に
Sbはほとんど検出されなかった。つまり、Sb格子の
電池で長寿命化が達成できたのは、上記のように正極活
物質の厚さと正極格子中のSb量とを最適化することに
より、これまで成しえなかった長寿命化を達成すること
が可能になったのである。
[0010] To investigate the cause, the battery was disassembled after the test and the amount of Sb deposited on the negative electrode active material was examined.
In the case where the total thickness of the positive electrode plate was 7% or more and 1.7% or less and the total thickness of the positive electrode plate was 110% or more of the total thickness of the lattice, almost no Sb was detected in the negative electrode. In other words, the long life can be achieved in the Sb lattice battery because the thickness of the positive electrode active material and the amount of Sb in the positive lattice are optimized as described above, so that the long life which could not be achieved until now is obtained. It has become possible to achieve this.

【0011】また、Sb量が1.7%を越える場合に
は、活物質の充填厚みを増やしても、負極板に析出して
いるSb量が著しく多かった。これは格子から溶出する
Sbの量が多すぎて、少々活物質の充填厚みを厚くして
もSbの吸着が完全にはできないためと思われる。な
お、Sb量が0.3%の格子を用いた場合に早期に容量
低下したのは、Sb量が少なすぎて従来のCa電池と同
様の原因により正極板の容量低下が早かったためと思わ
れる。
When the amount of Sb exceeds 1.7%, the amount of Sb deposited on the negative electrode plate is remarkably large even if the thickness of the filled active material is increased. This is presumably because the amount of Sb eluted from the lattice is too large, and even if the thickness of the active material is slightly increased, Sb cannot be completely absorbed. The reason why the capacity was reduced early when the lattice having the Sb content of 0.3% was used is considered to be that the Sb content was too small and the capacity of the positive electrode plate was reduced quickly due to the same reason as the conventional Ca battery. .

【0012】また、本試験では、密閉形鉛電池の一形態
であるリテーナ式電池で試験を行ったが、ゲル式電池や顆粒
シリカ式電池での試験でもその傾向は同じであった。
In this test, a test was conducted with a retainer battery, which is a form of a sealed lead battery. However, the same tendency was observed with a gel battery and a granular silica battery.

【0013】[0013]

【発明の効果】以上述べたように、本発明は正極にPb-S
b系合金格子を用いた密閉形鉛蓄電池において、Sb量
(Sb%)が0.7〜1.7%であって、正極板の総厚
さが格子の総厚さの110%以上となるように活物質を充
填することによって、密閉形鉛畜電池の正極格子にPb-S
b系合金を用いることが可能となり、Pb―Ca系合金格子
の密閉形鉛畜電池の早期容量低下を 解消することが出
来、その工業的価値はきわめて大きい。
As described above, according to the present invention, Pb-S
In a sealed lead-acid battery using a b-based alloy lattice, the amount of Sb (Sb%) is 0.7 to 1.7%, and the total thickness of the positive electrode plate is 110% or more of the total thickness of the lattice. In this way, Pb-S
The use of b-based alloys makes it possible to eliminate the early decline in capacity of sealed lead-acid batteries with a Pb-Ca-based alloy lattice, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】正極活物質充填厚み、格子合金中のSb量と初
期容量との関係を示す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between a positive electrode active material filling thickness, the amount of Sb in a lattice alloy, and an initial capacity.

【図2】正極活物質充填厚み、格子合金中のSb量と寿
命試験後(200サイクル)の放電容量との関係を示す特性図で
ある。
FIG. 2 is a characteristic diagram showing a relationship between a positive electrode active material filling thickness, the amount of Sb in a lattice alloy, and a discharge capacity after a life test (200 cycles).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】正極格子に0.7%以上1.7%以下のSbを含む
Pb-Sb系合金を用いた密閉形鉛蓄電池であって、正極板
の総厚さが格子の総厚さの110%以上であることを特徴と
する密閉形鉛電池。
1. The cathode lattice contains 0.7% or more and 1.7% or less of Sb.
A sealed lead-acid battery using a Pb-Sb-based alloy, wherein the total thickness of the positive electrode plate is at least 110% of the total thickness of the grid.
JP8358330A 1996-12-28 1996-12-28 Sealed lead storage battery Withdrawn JPH10199537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8358330A JPH10199537A (en) 1996-12-28 1996-12-28 Sealed lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8358330A JPH10199537A (en) 1996-12-28 1996-12-28 Sealed lead storage battery

Publications (1)

Publication Number Publication Date
JPH10199537A true JPH10199537A (en) 1998-07-31

Family

ID=18458746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8358330A Withdrawn JPH10199537A (en) 1996-12-28 1996-12-28 Sealed lead storage battery

Country Status (1)

Country Link
JP (1) JPH10199537A (en)

Similar Documents

Publication Publication Date Title
AU4270697A (en) Lead acid cell paste having tin compounds and method of manufacturing and using same
JP3728682B2 (en) Sealed lead acid battery
JP4081698B2 (en) Lead-acid battery charging method
JPH10199537A (en) Sealed lead storage battery
JPH10188964A (en) Sealed lead-acid battery
JPH11126604A (en) Sealed lead-acid battery and manufacture thereof
JPH10199562A (en) Sealed lead-acid battery
JP3546420B2 (en) Activation charging method for sealed lead-acid batteries
JPH10189057A (en) Charging method for lead-acid battery
JP3496241B2 (en) How to charge lead storage batteries
JP2958791B2 (en) Sealed lead-acid battery
JP3582068B2 (en) How to charge lead storage batteries
JPH0770321B2 (en) Sealed lead acid battery
JP2808685B2 (en) Lead storage battery
JPH11354128A (en) Sealed lead-acid battery
JPH10106576A (en) Sealed lead-acid battery
JPH0193058A (en) Lead-acid battery
JPH10106574A (en) Sealed lead-acid battery
JPH08298133A (en) Sealed lead acid battery
JPH10106573A (en) Sealed lead-acid battery
JPH076760A (en) Sintered cathode plate for alkaline storage battery and manufacture thereof
JPH10302787A (en) Lead-acid battery
JPH10199535A (en) Sealed lead storage battery
JPH08293306A (en) Lead-acid battery
JPH10106572A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060130

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060309