JPH10199562A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH10199562A
JPH10199562A JP9014601A JP1460197A JPH10199562A JP H10199562 A JPH10199562 A JP H10199562A JP 9014601 A JP9014601 A JP 9014601A JP 1460197 A JP1460197 A JP 1460197A JP H10199562 A JPH10199562 A JP H10199562A
Authority
JP
Japan
Prior art keywords
tin
separator
amount
positive electrode
sealed lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9014601A
Other languages
Japanese (ja)
Inventor
Masaaki Shiomi
塩見  正昭
Tadashi Shiroya
直史 代谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9014601A priority Critical patent/JPH10199562A/en
Priority to CNB971217416A priority patent/CN1161857C/en
Priority to DE69736735T priority patent/DE69736735T2/en
Priority to EP97122546A priority patent/EP0849816B1/en
Priority to US08/995,135 priority patent/US6225005B1/en
Publication of JPH10199562A publication Critical patent/JPH10199562A/en
Priority to US09/729,172 priority patent/US6495288B2/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide longer service life by optimizing the amount of silica in a separator. SOLUTION: This sealed lead-acid battery is of retainer type which uses a positive pole grid of Pb-Ca alloy, whereas metallic tin or tin compound is added to a positive pole active substance by 0.5% and over, 5% and under in terms of metallic tin per positive pole active substance weight, and a separator whose main ingredient is fine glass fiber including silica powder of 30% and over, 80% and under is used as an electrolyte holder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は正極格子にPb−C
a系合金格子を用いた密閉形鉛蓄電池に関するもので、
その初期性能及び寿命性能の向上、特に正極活物質への
スズ、あるいはスズ化合物の添加による寿命性能向上を
図る際の弊害を抑える具体的な方策として、セパレータ
にシリカ粉体を添加するとともに該シリカ量を30%以
上80%以下に適正化することにより、従来以上の長寿
命化を達成することを目的とするものである。
[0001] The present invention relates to a Pb-C
a sealed lead-acid battery using an a-based alloy lattice,
As a specific measure to improve the initial performance and the life performance, and particularly to suppress the adverse effect when the life performance is improved by adding tin or a tin compound to the positive electrode active material, a silica powder is added to the separator and the silica is added. By adjusting the amount to 30% or more and 80% or less, it is intended to achieve a longer life than the conventional one.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池には、現在最も広く使わ
れている、微細ガラスマットセパレータを正、負極板に
当接したリテーナ式電池がある。
2. Description of the Related Art A sealed type lead-acid battery is currently most widely used, and there is a retainer type battery in which a fine glass mat separator is in contact with positive and negative plates.

【0003】この密閉形電池は、正極にPb−Ca系合
金格子を用いることが多いが、この場合、サイクル寿命
が従来の正極にSb合金格子を用いた液式電池のそれに
比べるとかなり短いことが知られている。また、密閉形
鉛電池は上記寿命性能の安定化を図るために活物質の利
用率を低く抑えているため、初期から液式電池に比べて
エネルギー密度がかなり低く、EV用途などへの展開を
図る上で大きな問題になっている。
[0003] In this sealed battery, a Pb-Ca based alloy lattice is often used for the positive electrode. In this case, the cycle life is considerably shorter than that of a conventional liquid battery using an Sb alloy lattice for the positive electrode. It has been known. In addition, the sealed lead-acid battery has a low active material utilization rate in order to stabilize the above-mentioned life performance. Therefore, the energy density is considerably lower than that of the liquid battery from the beginning, and it is expected to be applied to EV applications. It is a big problem in planning.

【0004】[0004]

【発明が解決しようとする課題】Pb−Ca系合金を用
いる密閉形鉛電池のエネルギー密度を向上させるために
古くから多くの対策が行われている。たとえば、特開昭
54−49538には、正極活物質に硫酸スズや二酸化
スズを添加することにより、初期性能を向上させる方策
が提案されている。しかしこの方法が未だに実用化して
いないのは、我々が研究した結果、スズが正極から溶出
・負極板に析出し、負極の充電効率を低下させ、寿命性
能が低下してしまうためであることがわかった。
Many measures have been taken for a long time to improve the energy density of a sealed lead battery using a Pb-Ca alloy. For example, Japanese Patent Application Laid-Open No. 54-49538 proposes a method for improving initial performance by adding tin sulfate or tin dioxide to a positive electrode active material. However, this method has not yet been put to practical use because, as a result of our research, tin elutes from the positive electrode and precipitates on the negative electrode plate, lowering the charging efficiency of the negative electrode and reducing the life performance. all right.

【0005】[0005]

【課題を解決するための手段】本発明密閉形鉛蓄電池
は、Pb−Ca系合金の正極格子を用いたリテーナ式密
閉形鉛蓄電池であって、正極活物質に金属スズあるいは
スズ化合物を正極活物質重量当たり金属スズ換算で0.
5%以上5%以下添加するとともに、30%以上80%
以下のシリカ粉体を含んだ微細ガラス繊維を主体とする
セパレータを電解液保持体として用いる。また、セパレ
ータ中のシリカ粉体の比表面積が50〜500m2 /g
であることを特徴とする。
SUMMARY OF THE INVENTION The sealed lead-acid battery of the present invention is a sealed lead-acid battery of the retainer type using a positive electrode grid of a Pb-Ca alloy, wherein a metal tin or tin compound is used as a positive electrode active material. 0.1 in metal tin equivalent per substance weight.
5% or more and 5% or less, and 30% or more and 80%
A separator mainly composed of fine glass fibers containing the following silica powder is used as an electrolyte holder. Further, the specific surface area of the silica powder in the separator is 50 to 500 m 2 / g.
It is characterized by being.

【0006】[0006]

【発明の実施の形態】本発明による密閉形鉛蓄電池は、
Pb−Ca系合金の正極格子を用い、正極活物質に金属
スズあるいはスズ化合物を正極活物質重量当たり金属ス
ズ換算で0.5%〜5%添加するとともに、30%〜8
0%のシリカ粉体を含んだ微細ガラス繊維を主体とする
セパレータを電解液保持体として用いる。また、セパレ
ータ中のシリカ粉体の比表面積が50〜500m2 /g
の範囲のものを用いる。このようにすることにより、初
期のエネルギー密度だけでなく寿命性能を著しく向上す
ることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A sealed lead-acid battery according to the present invention
Using a positive electrode lattice of a Pb-Ca alloy, metal tin or a tin compound is added to the positive electrode active material in an amount of 0.5% to 5% in terms of metal tin per weight of the positive electrode active material, and 30% to 8%.
A separator mainly composed of fine glass fibers containing 0% silica powder is used as an electrolyte holder. Further, the specific surface area of the silica powder in the separator is 50 to 500 m 2 / g.
Use the one in the range. By doing so, not only the initial energy density but also the life performance can be significantly improved.

【0007】種々の検討の結果、我々は、正極活物質か
ら溶出したスズは、セパレータ中のシリカ粉体に吸着さ
れやすいことを発見した。シリカは比表面積が広いため
電解液中に溶出したスズがシリカ粉体に吸着されやす
く、その結果スズが負極板に析出するのを防いだものと
思われる。
As a result of various studies, we have found that tin eluted from the positive electrode active material is easily adsorbed on silica powder in the separator. It is considered that since silica has a large specific surface area, tin eluted in the electrolytic solution is easily adsorbed to the silica powder, and as a result, tin is prevented from depositing on the negative electrode plate.

【0008】以下の実施例にその結果の一例を示す。The following example shows an example of the result.

【0009】[0009]

【実施例】Pb−0.08%Ca−1.0%Sn合金か
らなる正極格子に、ペースト練膏時に硫酸スズ粉末を既
化活物質重量当り金属スズ換算で0.1%(B)、0.
5%(C)、1%(D)、2%(E)、5%(F)、7
%(G)添加してなるペーストを充填した2.2mm厚
さの正極板を製作した。これらの正極板11枚と1..
7mm厚さのペースト式負極板12枚と比表面積が20
0m2 /gのシリカ粉体を15%(b)、30%
(c)、50%(d)、80%(e)、90%(f)含
んだ微細ガラスマットセパレータとから、約60Ah
(3hR)−12Vのリテーナ式密閉電池を通常の製法
にならって製作した。
EXAMPLE A tin sulfate powder was added to a positive electrode grid made of a Pb-0.08% Ca-1.0% Sn alloy at the time of paste pulverization in an amount of 0.1% (B) in terms of metal tin per weight of a converted active material. 0.
5% (C), 1% (D), 2% (E), 5% (F), 7
% (G) to produce a 2.2 mm thick positive electrode plate filled with a paste. These 11 positive plates and 1. .
12 paste-type negative electrode plates with a thickness of 7 mm and a specific surface area of 20
15% (b), 30% of 0 m 2 / g silica powder
(C), 50% (d), 80% (e), 90% (f) from the fine glass mat separator containing about 60Ah
A (3 hR) -12 V retainer-type sealed battery was manufactured according to a normal manufacturing method.

【0010】なお、硫酸スズを添加していない従来の標
準極板を用いた電池(A)、硫酸スズを添加しているが
セパレータにシリカを含んでいない従来のセパレータ
(a)を用いた電池も併せて製作した。これらの電池は
常法に従って所定の注液・充電を行ない、以下の試験に
供した。
A battery using a conventional standard electrode plate to which tin sulfate is not added (A), and a battery using a conventional separator (a) to which tin sulfate is added but containing no silica as a separator. Was also produced. These batteries were subjected to predetermined injection and charging according to a conventional method, and subjected to the following tests.

【0011】まず、30℃で1/3CA放電容量を測定
した。試験結果を図1に示す。図からわかるように、硫
酸スズの添加量が5%までは、硫酸スズを0.5%以上
添加すると、容量が大きく向上していることがわかる。
なお、セパレータのシリカ量を多くすると、セパレータ
の多孔度が低下するためやや放電容量が低下したが、実
用上はほとんど問題ない程度である。
First, 1/3 CA discharge capacity was measured at 30 ° C. The test results are shown in FIG. As can be seen from the figure, when the amount of tin sulfate added is up to 5%, the capacity is greatly improved by adding 0.5% or more of tin sulfate.
In addition, when the amount of silica in the separator is increased, the porosity of the separator is reduced, so that the discharge capacity is slightly reduced.

【0012】つぎに、これらの電池を寿命試験に供し
た。寿命試験は40℃で、1/3CA電流で定格の80
%を放電した後、定電流で放電量の110%を充電する
という一般的な条件で行った。試験結果を図2に示す。
Next, these batteries were subjected to a life test. Life test at 40 ° C, rated at 80 at 1/3 CA current
%, And then charged under a general condition of charging 110% of the discharge amount at a constant current. The test results are shown in FIG.

【0013】硫酸スズを0.5%以上5%以下添加し、
セパレータ中のシリカ量を30%以上80%以下にした
電池では、従来の硫酸スズを添加しない電池に比べ著し
く寿命性能が優れていた。一方、正極に硫酸スズを0.
1%だけ添加した極板を用いた電池の寿命性能は、無添
加の電池と大差なかった。また、硫酸スズ添加量によら
ずセパレータ中のシリカ量を90%にしたものは早期に
容量低下した。おそらくこの場合は、シリカを多くしす
ぎたためにセパレータにしみこんだ電解液の移動が遅く
なりすぎて電池性能に悪影響を及ぼしたものと思われ
る。
[0013] Tin sulfate is added in an amount of 0.5% or more and 5% or less,
The battery in which the amount of silica in the separator was 30% or more and 80% or less had remarkably superior life performance as compared with a conventional battery in which tin sulfate was not added. On the other hand, tin sulfate was added to the positive electrode at 0.1.
The life performance of the battery using the electrode plate to which only 1% was added was not much different from the battery to which no electrode was added. In the case where the amount of silica in the separator was 90% regardless of the amount of tin sulfate added, the capacity was reduced at an early stage. Possibly, in this case, the amount of silica was too large, so that the movement of the electrolyte impregnated into the separator was too slow, which adversely affected the battery performance.

【0014】正極活物質中の硫酸スズ量が7%と最も多
い場合にはセパレータ中のシリカ量によらず早期に容量
が低下した。寿命試験後に解体し負極板に析出していた
スズ量を調べると、硫酸スズが7%の場合にはセパレー
タ中のシリカ量によらず負極板中にスズが多量に析出し
ていた。またスズ量が5%以下の場合でもセパレータ中
のシリカ量が30%未満の場合には多量のスズが析出し
ていた。
When the amount of tin sulfate in the positive electrode active material was as high as 7%, the capacity was reduced promptly regardless of the amount of silica in the separator. When the amount of tin deposited on the negative electrode plate after disassembly after the life test was examined, a large amount of tin was deposited on the negative electrode plate regardless of the amount of silica in the separator when the amount of tin sulfate was 7%. Even when the amount of tin was 5% or less, a large amount of tin was precipitated when the amount of silica in the separator was less than 30%.

【0015】以上のことから、正極活物質にスズを0.
5%〜5%添加して、かつシリカ粉体を30%〜80%
添加したセパレータを用いることにより、リテーナ式密
閉形鉛蓄電池のエネルギー密度が向上するだけでなく長
寿命化が達成できることがわかった。
[0015] From the above, tin is added to the positive electrode active material in an amount of 0.1.
5% to 5% added, and 30% to 80% silica powder
It has been found that by using the added separator, not only the energy density of the sealed lead storage battery of the retainer type can be improved, but also a long life can be achieved.

【0016】なお、本実施例ではスズとして硫酸スズを
用いたが、酸化スズを用いてもまた、金属スズを用いて
も結果に差はほとんどなかった。また、セパレータの主
成分は0.5〜5ミクロンの微細なガラス繊維である
が、これまでの試験結果から本試験の結果はセパレータ
の繊維径にはよらないこともわかっている。
In this embodiment, tin sulfate was used as tin. However, there was almost no difference between tin oxide and tin metal. Although the main component of the separator is fine glass fiber of 0.5 to 5 microns, it has been found from the test results so far that the result of this test does not depend on the fiber diameter of the separator.

【0017】また、本試験では200m2 /gのシリカ
粉体を用いたが、試験の結果、50m2 /g〜500m
2 /gの比表面積のシリカを用いた場合にその効果が大
きかった。500m2 /gを越える比表面積のシリカ粉
体を用いると、電解液の移動がよくないせいか、容量低
下が大きくなる傾向が見られた。
In this test, silica powder of 200 m 2 / g was used. As a result of the test, 50 m 2 / g to 500 m 2 / g was used.
The effect was significant when silica having a specific surface area of 2 / g was used. When a silica powder having a specific surface area of more than 500 m 2 / g was used, there was a tendency that a decrease in the capacity became large probably because the movement of the electrolytic solution was not good.

【0018】[0018]

【発明の効果】本発明は正極格子にPb−Ca系合金格
子を用いた密閉形鉛蓄電池において正極活物質に0.5
%〜5%のスズあるいはスズ化合物を添加すると同時
に、50m2 /g〜500m2 /gのシリカ粉体を30
%以上80%以下添加することにより初期のエネルギー
密度だけでなく寿命性能向上が著しく向上しており、リ
テーナ式密閉形鉛蓄電池の実用化という見地から、その
工業的価値はきわめて大きい。
According to the present invention, a sealed lead-acid battery using a Pb-Ca alloy grid as the positive grid has a positive electrode active material of 0.5%.
% To 5% at the same time the addition of tin or tin compounds, silica powder 50m 2 / g~500m 2 / g 30
% To 80%, not only the initial energy density but also the life performance is remarkably improved, and the industrial value of the retainer-type sealed lead-acid battery is extremely large from the viewpoint of practical use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スズ添加量およびセパレータ中のシリカ量と初
期容量との関係を示す特性図
FIG. 1 is a characteristic diagram showing the relationship between the amount of tin added, the amount of silica in a separator, and the initial capacity.

【図2】スズ添加量およびセパレータ中のシリカ量と寿
命性能との関係を示す特性図
FIG. 2 is a characteristic diagram showing the relationship between the amount of tin added, the amount of silica in a separator, and the life performance.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Pb−Ca系合金の正極格子を用いたリ
テーナ式密閉形鉛蓄電池であって、正極活物質に金属ス
ズあるいはスズ化合物を正極活物質重量当たり金属スズ
換算で0.5%以上5%以下添加するとともに、30%
以上80%以下のシリカ粉体を含んだ微細ガラス繊維を
主体とするセパレータを電解液保持体として用いたこと
を特徴とするリテーナ式密閉形鉛蓄電池。
1. A closed lead-acid battery using a positive electrode grid of a Pb—Ca alloy, comprising metal tin or a tin compound as a positive electrode active material in an amount of 0.5% or more in terms of metal tin per weight of the positive electrode active material. Add 5% or less and 30%
A sealed sealed lead-acid storage battery characterized in that a separator mainly composed of fine glass fibers containing not less than 80% of silica powder is used as an electrolyte holder.
【請求項2】 セパレータ中のシリカ粉体の比表面積が
50〜500m2 /gであることを特徴とする請求項1
に記載のリテーナ式密閉形鉛蓄電池。
2. The silica powder in the separator has a specific surface area of 50 to 500 m 2 / g.
The sealed lead storage battery of the retainer type described in 1.
JP9014601A 1996-12-19 1997-01-10 Sealed lead-acid battery Pending JPH10199562A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9014601A JPH10199562A (en) 1997-01-10 1997-01-10 Sealed lead-acid battery
CNB971217416A CN1161857C (en) 1996-12-19 1997-12-19 Lead-acid battery and producing method thereof
DE69736735T DE69736735T2 (en) 1996-12-19 1997-12-19 Lead-acid battery and manufacturing process
EP97122546A EP0849816B1 (en) 1996-12-19 1997-12-19 Lead-acid battery and producing method thereof
US08/995,135 US6225005B1 (en) 1996-12-19 1997-12-19 Lead-acid battery and producing method thereof
US09/729,172 US6495288B2 (en) 1996-12-19 2000-12-05 Lead-acid battery having tin in positive active material and silica in separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9014601A JPH10199562A (en) 1997-01-10 1997-01-10 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH10199562A true JPH10199562A (en) 1998-07-31

Family

ID=11865721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9014601A Pending JPH10199562A (en) 1996-12-19 1997-01-10 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH10199562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007104416A1 (en) * 2006-03-15 2007-09-20 P.C. Di Pompeo Catelli Process for producing battery electrodes, electrodes produced by this process, and batteries containing such electrodes
JP2013048082A (en) * 2011-07-25 2013-03-07 Gs Yuasa Corp Lead acid battery
JPWO2016139855A1 (en) * 2015-03-05 2017-08-10 日立化成株式会社 Lead acid battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007104416A1 (en) * 2006-03-15 2007-09-20 P.C. Di Pompeo Catelli Process for producing battery electrodes, electrodes produced by this process, and batteries containing such electrodes
JP2009529773A (en) * 2006-03-15 2009-08-20 ピ.チ.ディ ポンペオ カテッリ Battery electrode manufacturing method, electrode manufactured by this method, and battery having such an electrode
JP2013048082A (en) * 2011-07-25 2013-03-07 Gs Yuasa Corp Lead acid battery
JPWO2016139855A1 (en) * 2015-03-05 2017-08-10 日立化成株式会社 Lead acid battery

Similar Documents

Publication Publication Date Title
JP4492024B2 (en) Lead acid battery
JP3728682B2 (en) Sealed lead acid battery
JPH11121028A (en) Sealed lead-acid battery
JPH10199562A (en) Sealed lead-acid battery
JPS5935359A (en) Zinc electrode
JPS5894770A (en) Leakage-less closed type lead battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JP3047463B2 (en) Lead storage battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JPS6164078A (en) Alkaline zinc storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH11354128A (en) Sealed lead-acid battery
JP2958791B2 (en) Sealed lead-acid battery
JPH10188964A (en) Sealed lead-acid battery
JPH04206150A (en) Lead acid battery
JPS60140661A (en) Negative electrode plate for nickel cadmium storage battery
JPH0193058A (en) Lead-acid battery
JPH10199537A (en) Sealed lead storage battery
JPH10106576A (en) Sealed lead-acid battery
JPH0627295B2 (en) Lead acid battery
JPS6235453A (en) Alkaline-zinc storage battery
JPH10275619A (en) Paste type cadmium electrode
JPH10106573A (en) Sealed lead-acid battery
JPH11191409A (en) Sealed lead-acid battery
JPH0654661B2 (en) Sealed lead acid battery