JPH11191409A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH11191409A
JPH11191409A JP9359605A JP35960597A JPH11191409A JP H11191409 A JPH11191409 A JP H11191409A JP 9359605 A JP9359605 A JP 9359605A JP 35960597 A JP35960597 A JP 35960597A JP H11191409 A JPH11191409 A JP H11191409A
Authority
JP
Japan
Prior art keywords
trickle
negative electrode
electrode plate
surface area
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9359605A
Other languages
Japanese (ja)
Inventor
Sadao Fukuda
貞夫 福田
Masayuki Ide
雅之 井出
Takuro Nakayama
琢朗 中山
Toshihiro Inoue
利弘 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9359605A priority Critical patent/JPH11191409A/en
Publication of JPH11191409A publication Critical patent/JPH11191409A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To keep high rate discharge characteristic equal to or more than the conventional battery and at the same time improve the trickle lifetime. SOLUTION: By limiting the surface area per 20 hour rate capacity of a negative electrode plate to be 24-30 cm<2> /Ah, the trickle lifetime is improved, even if the conventional positive electrode grid alloy is used, and high rate discharge capacity is kept in the same level as the conventional battery. By limiting the surface area of the negative electrode, an oxygen gas absorbing reaction velocity is suppressed, and the amount of lead sulfate in the negative electrode produced by the oxygen gas absorbing reaction is reduced. Reduction current based on the reduction of lead sulfate in trickle charge is decreased, and trickle current can be made to decrease. As a result, the trickle lifetime is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通信機器およびU
PS等の非常用バックアップ電源等の用途に利用される
密閉形鉛蓄電池に関するものである。
The present invention relates to a communication device and a communication device.
The present invention relates to a sealed lead-acid battery used for an emergency backup power source such as a PS.

【0002】[0002]

【従来の技術】従来の密閉形鉛蓄電池の寿命の要因はい
くつかあるが、その主な要因は正極板の劣化、特に正極
格子の腐食による活物質の保持力の低下および導電性の
低下によるものである。これは密閉形鉛蓄電池に限ら
ず、全ての鉛蓄電池では避けられない現象である。現在
まで耐食性格子合金等の検討がされてきたが、まだ十分
ではない。よって、特に市場から、さらなる長寿命化が
要望されているが、従来の技術では長寿命化は困難であ
った。
2. Description of the Related Art There are several factors for the life of a conventional sealed lead-acid battery. The main factors are deterioration of a positive electrode plate, in particular, a reduction in active material holding power and a decrease in conductivity due to corrosion of a positive electrode grid. Things. This is a phenomenon that cannot be avoided in all lead-acid batteries, not limited to sealed lead-acid batteries. Until now, studies on corrosion-resistant lattice alloys and the like have been made, but are not yet sufficient. Therefore, the market demands a further increase in the service life, but it has been difficult to increase the service life using the conventional technology.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記課題を解
決するもので、放電容量は従来電池と同等以上を維持し
つつ、トリクル寿命を改善することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to improve the trickle life while maintaining a discharge capacity equal to or higher than that of a conventional battery.

【0004】[0004]

【課題を解決するための手段】前記の課題を解決するた
めに本発明は、正極板,負極板,電解液含浸材を兼ねた
セパレータ,希硫酸電解液および合成樹脂製電槽からな
り、フリーの電解液がほとんど存在しない程度に電解液
量を制限した密閉形鉛蓄電池において、20時間率放電
容量当たりの負極板の表面積を24〜30cm2/Ah
としたものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention comprises a positive electrode plate, a negative electrode plate, a separator serving also as an electrolyte impregnating material, a dilute sulfuric acid electrolyte and a synthetic resin battery case. In a sealed lead-acid battery in which the amount of the electrolyte is limited to the extent that almost no electrolyte is present, the surface area of the negative electrode plate per 20 hour rate discharge capacity is 24 to 30 cm 2 / Ah
It is what it was.

【0005】[0005]

【発明の実施の形態】密閉形鉛蓄電池は鋳造法により製
造した格子を従来より使用していた。この鋳造格子は溶
融した鉛合金を金型に注入し凝固させたもので、一般的
には障子の格子に類似している。従って、極板群を圧縮
した状態で電槽に挿入した密閉形鉛蓄電池において、特
に長時間連続充電されるトリクル用途の場合、充電時に
正極板の格子は腐食を受け、これにより正極板が上下お
よび左右に伸びる傾向があり、条件によっては電槽破損
を起こすことがあった。トリクル充電中には正極板は常
に酸化を受けている。この時の充電電流の一部は自己放
電分の充電に使用され、またその一部は電解液中の水の
電気分解に使用され、さらにその他の一部は正極格子の
酸化(腐食)に使用されている。したがって、正極格子
は充電中、常に酸化による腐食を受けるため、腐食時の
体積膨張によりこの格子が伸びて寿命となったり、場合
によっては電槽破損を起こしていた。このトリクル電流
は基本的には自己放電分を充電するのみに使用されれば
最も好ましいが、現状の技術では実現が困難である。密
閉形鉛蓄電池の自己放電量は25℃で約0.15%/日
程度であり、この分を充電するためには(0.15%/
100%)/24h=0.00008CAの電流で充電
する必要がある。例えば定格容量7.2Ahの電池では
0.58mAの電流となる。これに対して現行の密閉形
鉛蓄電池のトリクル電流は36mA程度であり、これは
0.005CAに相当し自己放電を補うのに必要な電流
よりはるかに大きい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A sealed lead-acid battery has conventionally used a grid manufactured by a casting method. This casting grid is obtained by injecting a molten lead alloy into a mold and solidifying it, and is generally similar to a shoji grid. Therefore, in a sealed lead-acid battery in which the electrode group is compressed and inserted into a battery case, particularly in the case of trickle use in which charging is performed continuously for a long time, the grid of the positive electrode plate is corroded during charging, thereby causing the positive electrode plate to move up and down. And tended to expand left and right, and depending on the conditions, the battery case could be damaged. During trickle charging, the positive electrode plate is constantly oxidized. Part of the charging current at this time is used for self-discharge charging, part of it is used for electrolysis of water in the electrolyte, and another part is used for oxidation (corrosion) of the positive electrode grid. Have been. Therefore, the positive grid is always corroded by oxidation during charging, and the grid expands due to volume expansion at the time of the corrosion, and its life is extended, and in some cases, the battery case is damaged. This trickle current is most preferably basically used only for charging the self-discharged component, but it is difficult to realize with the current technology. The amount of self-discharge of a sealed lead-acid battery is about 0.15% / day at 25 ° C.
(100%) / 24h = 0.00008 CA. For example, a battery with a rated capacity of 7.2 Ah has a current of 0.58 mA. In contrast, the trickle current of the current sealed lead-acid battery is about 36 mA, which is equivalent to 0.005 CA, which is much larger than the current required to supplement self-discharge.

【0006】上記の背景より、本発明は放電容量を従来
の電池と同等以上に確保しつつ、トリクル電流を可能な
限り低くし、正極格子の腐食を抑制することによりトリ
クル寿命を改善しようとするものである。トリクル電流
は自己放電の大きさあるいは電解液の濃度や電解液中の
不純物等によって影響されるとともに、電池の構成条件
によっても影響される。それは、密閉形鉛蓄電池独特の
現象である充電中に正極板から発生した酸素ガスを負極
で吸収させる反応の速度によっても影響される。負極板
が酸素ガスを吸収すると金属鉛が硫酸鉛になり、負極活
物質の電位は貴な方向に移動する。負極の電位が貴にな
れば、定電圧充電している密閉形鉛蓄電池は充電器と電
池との電圧差が大きくなり、充電電流が大きくなる。す
なわち、トリクル電流は大きくなることになる。この酸
素ガス吸収速度は負極活物質の表面積,電解液の分布状
態,酸素ガスの電池内の移動速度に影響される。電解液
分布は電池の放電反応あるいは寿命に影響し、酸素ガス
の移動速度は電池内の電解液量およびセパレータの物性
に関係し、これらは密閉形鉛蓄電池の基本構成であるた
めその仕様を大きく変化できない。従って、酸素ガス吸
収速度を下げるためには負極活物質の表面積を下げるこ
とによって可能となる。この負極表面積を大きくする
と、酸素ガス吸収速度が大となるため負極板の電位は貴
になりトリクル充電電流が大となる。負極表面積を小さ
くすると、逆にその電位は貴になり難くなりトリクル電
流が小となる。従って、トリクル電流を極力小さくする
ことは電池の負極表面積、言い換えると放電容量当たり
の負極表面積を小さくすることにより可能となる。これ
により、正極格子の腐食が抑制され、トリクル寿命を改
善できる。
In view of the above background, the present invention seeks to improve the trickle life by keeping the discharge capacity as high as that of a conventional battery, reducing the trickle current as much as possible, and suppressing the corrosion of the positive electrode grid. Things. The trickle current is affected by the magnitude of the self-discharge, the concentration of the electrolyte, impurities in the electrolyte, and the like, and also by the configuration conditions of the battery. It is also affected by the rate of the reaction that causes the negative electrode to absorb oxygen gas generated from the positive electrode plate during charging, which is a phenomenon unique to sealed lead-acid batteries. When the negative electrode plate absorbs oxygen gas, the metal lead becomes lead sulfate, and the potential of the negative electrode active material moves in a noble direction. If the potential of the negative electrode becomes noble, the voltage difference between the charger and the battery in a sealed lead-acid battery charged at a constant voltage increases, and the charging current increases. That is, the trickle current increases. The oxygen gas absorption rate is affected by the surface area of the negative electrode active material, the state of distribution of the electrolytic solution, and the moving speed of oxygen gas in the battery. The distribution of the electrolyte affects the discharge reaction or life of the battery, and the movement speed of the oxygen gas is related to the amount of the electrolyte in the battery and the physical properties of the separator. I can't change. Therefore, the oxygen gas absorption rate can be reduced by reducing the surface area of the negative electrode active material. Increasing the surface area of the negative electrode increases the oxygen gas absorption rate, so that the potential of the negative electrode plate becomes noble and the trickle charge current increases. On the other hand, when the surface area of the negative electrode is reduced, the potential is hardly noble, and the trickle current is reduced. Therefore, the trickle current can be reduced as much as possible by reducing the negative electrode surface area of the battery, in other words, the negative electrode surface area per discharge capacity. Thereby, corrosion of the positive electrode grid is suppressed, and the trickle life can be improved.

【0007】ただし、電池の放電容量は、特に大電流放
電時には負極の活物質量よりも負極表面積に依存するの
で、この表面積を小さくし過ぎると大電流放電時の放電
容量が低下することになる。従って、ある値以上の表面
積が必要になる。
However, since the discharge capacity of the battery depends more on the negative electrode surface area than on the negative electrode active material amount, especially at the time of large current discharge, if the surface area is made too small, the discharge capacity at the time of large current discharge will decrease. . Therefore, a surface area above a certain value is required.

【0008】以上の理由より本発明は、トリクル寿命と
放電容量の両立を計るための構成を規定するもので、多
くの試験結果から密閉形鉛蓄電池の20時間率放電時の
放電容量1Ah当たりの表面積(極板の厚さ分を除いた
表裏の表面積)が24〜30cm2 を有する負極板とし
たものである。
For the above reasons, the present invention specifies a configuration for achieving both the trickle life and the discharge capacity. Based on the results of many tests, the present invention pertains to a sealed lead-acid battery having a discharge capacity per 1 Ah at a 20-hour rate discharge. The negative electrode plate had a surface area (surface area of the front and back surfaces excluding the thickness of the electrode plate) of 24 to 30 cm 2 .

【0009】[0009]

【実施例】以下、本発明の一実施例について説明する。
寸法は縦65mm,幅41.5mm,厚さ3.0mmの
正極板で密閉形鉛蓄電池にした場合の1枚当たりの20
時間率放電容量は2.0Ahの正極板を使用し、負極板
は縦65mmで幅を44.0,41.5,38.5,3
3.3,28.2,23.1および17.9mmとした
格子を使用して、この格子に幅41.5mmに充填した
と同量のペーストを充填した。これの極板をガラス繊維
のマットからなるリテーナを介して正極板5枚,負極板
6枚の電池を構成した。この電池の20時間率の放電容
量は約10Ahである。なお、従来電池の構成は幅4
1.5mmである。
An embodiment of the present invention will be described below.
The dimensions are 20 mm per sheet when a sealed lead-acid battery is made of a positive electrode plate 65 mm long, 41.5 mm wide and 3.0 mm thick.
The time rate discharge capacity uses a positive electrode plate of 2.0 Ah, and the negative electrode plate has a length of 65 mm and a width of 44.0, 41.5, 38.5, 3.
Using grids of 3.3, 28.2, 23.1 and 17.9 mm, the grid was filled with the same amount of paste as was filled to a width of 41.5 mm. A battery having five positive electrode plates and six negative electrode plates was formed from the electrode plates via a retainer made of a glass fiber mat. The discharge capacity at a 20 hour rate of this battery is about 10 Ah. The conventional battery has a width of 4
1.5 mm.

【0010】これらの電池を通常の方法で作製し、20
時間率放電容量,3CAの放電容量を測定した。また、
40℃の雰囲気の中で、1セル当たり2.28Vの定電
圧でトリクル充電し、充電3ヶ月後の充電電流値とトリ
クル寿命を測定した。なお、電池は3ヶ月毎に3CAの
電流で放電し、その放電時間が初期放電時間の1/2に
なった時点で寿命とした。放電容量測定結果の一例を表
1に示す。
[0010] These batteries are manufactured by a usual method, and
The time rate discharge capacity and the discharge capacity at 3 CA were measured. Also,
Trickle charging was performed at a constant voltage of 2.28 V per cell in an atmosphere of 40 ° C., and a charging current value and a trickle life after three months of charging were measured. The battery was discharged at a current of 3 CA every three months, and the life was determined when the discharge time became 1/2 of the initial discharge time. Table 1 shows an example of the discharge capacity measurement results.

【0011】[0011]

【表1】 [Table 1]

【0012】図1にトリクル電流値,トリクル寿命およ
び3CA放電時の放電容量と負極板表面積/20時間率
容量との関係を示す。
FIG. 1 shows the relationship between the trickle current value, the trickle life, the discharge capacity during 3CA discharge, and the negative electrode plate surface area / 20 hour rate capacity.

【0013】これらの結果から(負極板表面積/20時
間率容量)の影響について、以下に従来構成の電池Bと
比較して示す。
From these results, the influence of (negative electrode plate surface area / 20 hour rate capacity) is shown below in comparison with Battery B of the conventional configuration.

【0014】まず、3CA放電時の放電容量はその数値
が24cm2/Ah未満で低下する。トリクル充電電流
はその数値が30cm2/Ahを越えると急激に上昇す
る。それに伴いトリクル寿命は急激に低下する傾向があ
る。
First, the discharge capacity at the time of 3CA discharge decreases when its value is less than 24 cm 2 / Ah. The trickle charge current sharply increases when its value exceeds 30 cm 2 / Ah. Along with this, the trickle life tends to sharply decrease.

【0015】以上をまとめると、初期放電容量、特に3
CA程度の大電流放電時の放電容量をほぼ従来構成電池
と同等とし、トリクル寿命を改善するには20時間率放
電容量当たりの表面積(極板の厚さを含まず、極板の表
裏の総面積)を24〜30cm2/Ahにした負極板を
使用することにより達成できる。
In summary, the initial discharge capacity, especially 3
In order to make the discharge capacity at the time of large current discharge of about CA almost the same as that of the conventional battery and to improve the trickle life, the surface area per 20 hour rate discharge capacity (excluding the thickness of the electrode plate, The area can be attained by using a negative electrode plate having an area of 24 to 30 cm 2 / Ah.

【0016】これは、トリクル電流の一部をなす負極板
上での酸素吸収反応により生成した硫酸鉛の還元電流
を、酸素吸収反応速度を制限して低下させることにより
トリクル電流が低下したもので、このトリクル電流を下
げる効果により正極格子での腐食が抑制され、結果とし
て、トリクル寿命を改善することができたと考えられ
る。
This is because the trickle current is reduced by reducing the reduction current of lead sulfate generated by the oxygen absorption reaction on the negative electrode plate, which forms part of the trickle current, by limiting the oxygen absorption reaction rate. It is considered that the effect of lowering the trickle current suppressed corrosion in the positive electrode grid, thereby improving the trickle life.

【0017】[0017]

【発明の効果】以上の結果から、正極板,負極板,電解
液含浸材を兼ねたセパレータ,希硫酸電解液および合成
樹脂製電槽からなり、極板群を圧縮状態で電槽に挿入
し、電解液量を制限した密閉形鉛蓄電池において、電池
の20時間率放電容量当たり24〜30cm2/Ahの
見かけ表面積の負極板を使用することにより、高率放電
容量を従来構成電池と同等とした上で、さらにトリクル
充電時のトリクル電流を抑制し、この結果トリクル寿命
を大幅に改善したもので、この工業的価値は極めて大き
い。
According to the above results, the positive electrode plate, the negative electrode plate, the separator also serving as the electrolyte impregnating material, the dilute sulfuric acid electrolytic solution and the synthetic resin container were inserted into the container in a compressed state. By using a negative electrode plate having an apparent surface area of 24 to 30 cm 2 / Ah per 20 hour rate discharge capacity of a sealed lead-acid battery with a limited amount of electrolyte, the high rate discharge capacity is equivalent to that of a conventional battery. After that, the trickle current during trickle charge is further suppressed, and as a result, the trickle life is greatly improved, and this industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における密閉形鉛蓄電池の2
0時間率容量当たりの負極表面積と3CA放電容量、ト
リクル充電時におけるトリクル充電電流およびトリクル
寿命との関係を示す図
FIG. 1 shows a sealed lead-acid battery 2 according to an embodiment of the present invention.
The figure which shows the relationship between the negative electrode surface area per 0 hour rate capacity, 3CA discharge capacity, trickle charge current at trickle charge, and trickle life.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 利弘 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshihiro Inoue 1006 Kazuma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極板,負極板,電解液含浸材を兼ねた
セパレータ,希硫酸電解液および合成樹脂製電槽からな
り、フリーの電解液がほとんど存在しない程度に電解液
量を制限した密閉形鉛蓄電池において、20時間率放電
容量当たりの負極板の表面積を24〜30cm2/Ah
としたことを特徴とする密閉形鉛蓄電池。
1. A hermetic seal comprising a positive electrode plate, a negative electrode plate, a separator also serving as an electrolyte impregnating material, a dilute sulfuric acid electrolyte and a synthetic resin battery case, wherein the amount of the electrolyte is limited to such an extent that free electrolyte hardly exists. In the lead-acid battery, the surface area of the negative electrode plate per 20 hour rate discharge capacity is 24 to 30 cm 2 / Ah
A sealed lead-acid battery characterized by the following.
JP9359605A 1997-12-26 1997-12-26 Sealed lead-acid battery Pending JPH11191409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9359605A JPH11191409A (en) 1997-12-26 1997-12-26 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9359605A JPH11191409A (en) 1997-12-26 1997-12-26 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH11191409A true JPH11191409A (en) 1999-07-13

Family

ID=18465360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9359605A Pending JPH11191409A (en) 1997-12-26 1997-12-26 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH11191409A (en)

Similar Documents

Publication Publication Date Title
JP5061451B2 (en) Anode current collector for lead acid battery
JP4798972B2 (en) Control valve type lead-acid battery for standby
JP2002175798A (en) Sealed lead-acid battery
JPH10188963A (en) Sealed lead-acid battery
JP4081698B2 (en) Lead-acid battery charging method
JPH11191409A (en) Sealed lead-acid battery
JPH08339819A (en) Sealed lead-acid battery
JPH0750616B2 (en) Lead acid battery
JP3858300B2 (en) Lead acid battery
JP3185300B2 (en) Sealed lead-acid battery
JP2003178806A (en) Charging control method of lead-acid battery
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JPH0770321B2 (en) Sealed lead acid battery
JPH10199562A (en) Sealed lead-acid battery
JPH11354128A (en) Sealed lead-acid battery
JP4356298B2 (en) Control valve type lead acid battery
JPH03147262A (en) Collector for lead-acid battery
JP2004327157A (en) Storage battery
JP4802903B2 (en) Lead acid battery
JP2003229181A (en) Charge control system of lead storage battery
JP2004071224A (en) Storage battery
JPS61198574A (en) Lead storage battery
JPH0654661B2 (en) Sealed lead acid battery
JPS6322428B2 (en)
Bialacki et al. The Electrochemical Cycling of Pasted Sb and Ca/Sn Lead Electrodes (Positives)