JPH0654661B2 - Sealed lead acid battery - Google Patents
Sealed lead acid batteryInfo
- Publication number
- JPH0654661B2 JPH0654661B2 JP63272637A JP27263788A JPH0654661B2 JP H0654661 B2 JPH0654661 B2 JP H0654661B2 JP 63272637 A JP63272637 A JP 63272637A JP 27263788 A JP27263788 A JP 27263788A JP H0654661 B2 JPH0654661 B2 JP H0654661B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- electrode plate
- charging
- acid battery
- lead sulfate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は密閉形鉛蓄電池に関し、特に急速充電時におけ
るサイクル寿命特性の改良に関するものである。TECHNICAL FIELD The present invention relates to a sealed lead acid battery, and more particularly to improvement of cycle life characteristics during rapid charging.
[従来の技術] 密閉形鉛蓄電池では、電解液が、リテーナと称されるガ
ラス繊維の不織布あるいは織布中と極板の活物質中とに
吸収されて保持されている。また陰極ガス方式であるた
め、正極板から発生した酸素ガスは、負極板に吸収され
て水に戻る。このようにして酸素ガスが鉛蓄電池外へ逸
出しない酸素サイクルによる密閉化が保たれている。従
って、密閉形鉛蓄電池を使用する場合の方向性は自由で
あり横倒しの状態で使用することもできる。しかも補水
を必要としないという利点を有している。このような利
点を有している密閉形鉛蓄電池は、掃除の際に使用され
るハンドクリーナーや電動工具等のポータブル機器の電
源のようにサイクル充電が行われるサイクルサービス用
途や、あるいは停電時における機器等のバックアップ用
電源のようにフロート充電が行われるフロートサービス
用途に広く用いられている。[Prior Art] In a sealed lead acid battery, an electrolytic solution is absorbed and retained in a non-woven fabric or woven fabric of glass fibers called a retainer and an active material of an electrode plate. Further, since it is a cathode gas system, oxygen gas generated from the positive electrode plate is absorbed by the negative electrode plate and returns to water. In this way, the airtightness is maintained by the oxygen cycle in which oxygen gas does not escape to the outside of the lead storage battery. Therefore, when the sealed lead-acid battery is used, the orientation is free and it can be used in a state of being laid sideways. Moreover, it has an advantage that no replenishing water is required. Sealed lead-acid batteries that have such advantages are used for cycle service such as power supply for portable cleaners such as hand cleaners and electric tools used for cleaning, for cycle service applications, or during power outages. It is widely used for float service applications where float charging is performed, such as a backup power source for equipment.
[発明が解決しようとする課題] この種の密閉形鉛蓄電池における上記サイクルサービス
用途での充電は、通常、定電圧充電あるいは準定電圧充
電により4時間前後で完了している。しかしながら、最
近では、この種の電池でも60分乃至90分程度で急速
充電できることが要求されるようになってきた。急速充
電をする場合には、短時間に多くの電気量を鉛蓄電池に
供給しなければならず、通常の充電方法に比べて充電電
流値を大きくする必要がある。しかしながら充電電流値
を大きくすると、これに伴って、極板の充電過電圧が大
きくなるために、通常の充電方法に比べて水の電気分解
が起り易くなる。そして充電時における正極板からの酸
素ガスの発生速度に比べて、負極板での酸素吸収反応速
度は遅れ、負極板の充電過電圧が大きくなって、水素ガ
スが発生するようになる。この水素ガスの発生は、放電
量に対して、85%乃至90%充電した時点で急激に起
り、以後水素ガスを発生しながら充電が行われるため、
充電効率が悪くなる。このような負極板からの水素ガス
の発生は、効率的な充電を妨げるほか、極板中の電解液
を押し出すため、負極板中の電解液の含液量が少なくな
って、放電で生成した硫酸鉛や酸素吸収反応により生成
した硫酸鉛の充電が困難になる。そのため、充放電を繰
り返すうちに、充電されない硫酸鉛の量が増えて、容量
の低下が生じる問題があった。[Problems to be Solved by the Invention] Charging of this type of sealed lead-acid battery for the above cycle service use is normally completed in about 4 hours by constant voltage charging or quasi-constant voltage charging. However, recently, it has been required that even this type of battery can be rapidly charged in about 60 to 90 minutes. When performing rapid charging, it is necessary to supply a large amount of electricity to the lead storage battery in a short time, and it is necessary to increase the charging current value as compared with the normal charging method. However, when the charging current value is increased, the charging overvoltage of the electrode plate is increased accordingly, so that electrolysis of water is more likely to occur as compared with the normal charging method. Then, the oxygen absorption reaction rate on the negative electrode plate is delayed as compared with the oxygen gas generation rate from the positive electrode plate during charging, the charging overvoltage of the negative electrode plate is increased, and hydrogen gas is generated. The generation of this hydrogen gas rapidly occurs at the time of charging 85% to 90% of the amount of discharge, and thereafter, charging is performed while generating hydrogen gas,
Charging efficiency becomes poor. The generation of hydrogen gas from the negative electrode plate prevents efficient charging and pushes out the electrolytic solution in the electrode plate, so that the content of the electrolytic solution in the negative electrode plate becomes small and the hydrogen gas is generated by discharge. It becomes difficult to charge the lead sulfate or the lead sulfate generated by the oxygen absorption reaction. Therefore, there is a problem that the amount of lead sulfate that is not charged increases and the capacity decreases as the charging and discharging are repeated.
本発明の目的は、急速充電を行った場合にサイクル寿命
特性を向上させることができる密閉形鉛蓄電池を提供す
ることにある。An object of the present invention is to provide a sealed lead-acid battery that can improve cycle life characteristics when it is charged rapidly.
[課題を解決するための手段] 本発明は上記の問題点を解決するために、結晶性硫酸鉛
を負極活物質層の表面部よりも内部に存在させた負極板
を用いる。[Means for Solving the Problems] In order to solve the above problems, the present invention uses a negative electrode plate in which crystalline lead sulfate is present inside the surface portion of the negative electrode active material layer.
負極活物質層を2層に分けて製造し、集電体に近い側の
内部層に結晶性硫酸鉛を含有させるようにすると、簡単
に且つ制御可能に結晶性硫酸鉛を負極活物質層の表面部
よりも内部に存在させることができる。When the negative electrode active material layer is manufactured by dividing into two layers, and the crystalline lead sulfate is contained in the inner layer on the side close to the current collector, the crystalline lead sulfate can be easily and controllably added to the negative electrode active material layer. It can be present inside rather than on the surface.
[作用] 密閉形鉛蓄電池の急速充電時において負極板の充電効率
を悪くする原因は、上述した水素ガスの発生にある。こ
れを抑制するためには、充電時における負極板の充電過
電圧を低く抑えて、充電を入り易くすればよい。負極板
の充電過電圧を低く抑える方法としては、負極板中に硫
酸鉛を残しておく方法がある。しかしながら、硫酸鉛を
負極板の活物質中に残しておいても、充電を繰り返して
行くうちに、硫酸鉛は鉛に還元されてしまうため、効果
が持続しない。そこで本発明においては、難還元性であ
る結晶性硫酸鉛を負極板の活物質の内部に存在させるこ
とにした。[Operation] The cause of deteriorating the charging efficiency of the negative electrode plate at the time of rapid charging of the sealed lead-acid battery is the above-described generation of hydrogen gas. In order to suppress this, the charging overvoltage of the negative electrode plate at the time of charging may be suppressed to be low to facilitate charging. As a method of suppressing the charge overvoltage of the negative electrode plate, there is a method of leaving lead sulfate in the negative electrode plate. However, even if lead sulfate is left in the active material of the negative electrode plate, lead sulfate is reduced to lead during repeated charging, and the effect does not continue. Therefore, in the present invention, it has been decided to make the crystalline lead sulfate, which is difficult to reduce, exist inside the active material of the negative electrode plate.
結晶性硫酸鉛を、負極板の活物質層の表面部に存在させ
ると、負極板の反応面積が小さくなるため、充電時の過
電圧が上昇して、水素ガスの発生を抑えることができな
くなる。また放電反応は、負極板の表面から起るため、
結晶性硫酸鉛を表面部に存在させると放電容量を低下さ
せる原因にもなる。そこで、上述した結晶性硫酸鉛を負
極活物質層の表面部よりも内部に存在させることにし
た。このようにすると、密閉形鉛蓄電池の放電容量は、
溶解液中の硫酸により支配されるため、負極板の放電容
量を低下させることがない。また結晶性硫酸鉛は難還元
性であるため、長期間に亘って充電時における過電圧を
低く抑えることができ、負極板からの水素ガスの発生を
抑制することができる。When crystalline lead sulfate is allowed to exist on the surface portion of the active material layer of the negative electrode plate, the reaction area of the negative electrode plate becomes small, so that the overvoltage during charging rises and hydrogen gas generation cannot be suppressed. Also, since the discharge reaction occurs from the surface of the negative electrode plate,
The presence of crystalline lead sulfate on the surface also causes a decrease in discharge capacity. Therefore, the above-mentioned crystalline lead sulfate is allowed to exist inside the surface portion of the negative electrode active material layer. By doing this, the discharge capacity of the sealed lead-acid battery is
Since it is dominated by sulfuric acid in the solution, it does not reduce the discharge capacity of the negative electrode plate. Further, since crystalline lead sulfate is difficult to reduce, overvoltage during charging can be suppressed to be low for a long period of time, and generation of hydrogen gas from the negative electrode plate can be suppressed.
[実施例] 以下、本発明の実施例を詳細に説明する。[Examples] Examples of the present invention will be described in detail below.
本発明の一実施例で用いる負極板を製造する場合には、
先ず、酸化鉛、硫酸バリウム、有機添加剤および難還元
性の結晶性硫酸鉛を水および希硫酸で練り合せてペース
ト状としたものをPb−Ca系合金格子体に所定量充填
して内部層を形成する。このときの充填量は、負極板と
して最終的な充填量の半分の量を充填しておく。次に、
酸化鉛、硫酸バリウム、有機添加剤を水および希硫酸で
練り合せてペースト状としたものを、先に充填した内部
層の上に充填して表面層を形成する。このようにして格
子基体に2種類のペーストを充填することにより、負極
活物質層の内部に難還元性である結晶性硫酸鉛を含んだ
負極板を製造する。When manufacturing the negative electrode plate used in one embodiment of the present invention,
First, lead oxide, barium sulfate, an organic additive, and hard-to-reduce crystalline lead sulfate were kneaded with water and dilute sulfuric acid to form a paste, which was filled in a predetermined amount in a Pb-Ca alloy lattice to form an inner layer. To form. The filling amount at this time is half the final filling amount as the negative electrode plate. next,
Lead oxide, barium sulfate, and an organic additive are kneaded with water and dilute sulfuric acid to form a paste, which is filled onto the previously filled inner layer to form a surface layer. In this way, by filling the lattice base with two kinds of pastes, a negative electrode plate containing crystalline lead sulfate that is difficult to reduce inside the negative electrode active material layer is manufactured.
そしてこの負極板を常法の製造工程によって化成して試
験用負極板とした。なお試験に用いた試験用負極板の内
部層の結晶性硫酸鉛の添加量は重量比で20wt%であっ
た。急速充放電サイクル寿命試験のために、この負極板
と正極板との間にガラス細繊維からなるマット状セパレ
ータ(リテーナ)を配置して極板群を作り、極板群を電
槽に収納して12V,3Ah(20時間率)の密閉形鉛
蓄電池を作成した。なお比較のために、結晶性硫酸鉛を
入れない従来の負極板を用いた12V,3Ah(20時
間率)の密閉形鉛蓄電池を用意した。Then, this negative electrode plate was formed into a test negative electrode plate by a conventional manufacturing process. The amount of crystalline lead sulfate added to the inner layer of the test negative electrode plate used in the test was 20 wt% by weight. For a rapid charge / discharge cycle life test, a matte separator (retainer) made of glass fiber is placed between the negative electrode plate and the positive electrode plate to form a plate group, and the plate group is stored in a battery case. 12 V, 3 Ah (20 hours rate) sealed lead acid battery was prepared. For comparison, a 12 V, 3 Ah (20 hour rate) sealed lead-acid battery using a conventional negative electrode plate containing no crystalline lead sulfate was prepared.
このようにして製造した本発明の一実施例の密閉形鉛蓄
電池Aと従来の密閉形鉛蓄電池Bとを用いて、急速充放
電サイクル寿命試験を行った。試験条件は、6A(2C
A)の定電流で 1.6V/セルまで放電した後、制限電圧
2.7V/セル及び制限電流3A(1CA)の定電圧充電
で、放電量に対し充電量が 105%になるまで充電するサ
イクルを1サイクルとして、この充電サイクルを所定回
数繰り返した。この比較試験結果を第1図に示す。第1
図から明らかなように、本発明の密閉形鉛蓄電池Aは、
従来の密閉形鉛枚蓄電池Bに比べて、寿命判定の基準と
なる放電容量比が50%以下になるまでのサイクル数が
200回も以上多くなる。したがって、この点から見て
本発明によれば電池の寿命性能が向上していることが判
る。A rapid charge / discharge cycle life test was performed using the sealed lead-acid battery A of the example of the present invention and the conventional sealed lead-acid battery B thus manufactured. The test conditions are 6A (2C
After discharging to 1.6 V / cell with the constant current of A), limit voltage
A constant voltage charge of 2.7 V / cell and a limiting current of 3 A (1 CA) was performed as a cycle of charging until the charge amount reached 105% of the discharge amount, and this charge cycle was repeated a predetermined number of times. The results of this comparative test are shown in FIG. First
As is clear from the figure, the sealed lead-acid battery A of the present invention is
Compared with the conventional sealed lead-acid storage battery B, the number of cycles until the discharge capacity ratio, which is a criterion for life determination, becomes 50% or less increases by 200 times or more. Therefore, it can be seen from this point that according to the present invention, the life performance of the battery is improved.
また急速充電時における充電特性を第2図に示す。第2
図から判るように、本発明の密閉形鉛蓄電池Aは、従来
の密閉形鉛蓄電池Bに比べて、制限電圧に達するまでの
時間が長くなっている。このことは、負極板の充電過電
圧が上昇し難いことを示しているもので、負極板からの
水素ガスの発生が抑えられていることを意味する。した
がって、これが寿命性能に影響を及ぼしているものと考
えられる。このように、本発明の密閉形鉛蓄電池によれ
ば、急速充放電サイクル寿命を向上せしめることができ
ることが確認された。Further, FIG. 2 shows the charging characteristics at the time of rapid charging. Second
As can be seen from the figure, the sealed lead-acid battery A of the present invention takes a longer time to reach the limit voltage than the conventional sealed lead-acid battery B. This means that the charge overvoltage of the negative electrode plate is unlikely to rise, and means that the generation of hydrogen gas from the negative electrode plate is suppressed. Therefore, it is considered that this affects the life performance. Thus, it was confirmed that the sealed lead-acid battery of the present invention can improve the rapid charge / discharge cycle life.
なお試験によると、結晶性硫酸鉛の含有量の最適な範囲
は、20wt%〜40wt%であることが判った。According to the test, it was found that the optimum range of the content of crystalline lead sulfate was 20 wt% to 40 wt%.
上記実施例においては、負極活物質層を内部層と表面層
の2層構造で製造することにより、負極活物質層の表面
部よりも内部に結晶性硫酸鉛を存在させるようにしてい
るが、結晶性硫酸鉛を含まないペーストを最初に所定の
位置まで格子体内に充填し、次に結晶性硫酸鉛を含むペ
ーストを充填するか又は結晶性硫酸鉛の粒子を散布し、
その上に結晶性硫酸鉛を含まないペーストを再度充填し
て結晶性硫酸鉛を内部に含む活物質層を作ることもでき
る。いずれにしても、結晶性硫酸鉛を負極活物質層の内
部に存在させる方法は任意である。In the above examples, the negative electrode active material layer is manufactured to have a two-layer structure of an inner layer and a surface layer so that the crystalline lead sulfate is present more inside than the surface portion of the negative electrode active material layer. The crystalline lead sulfate-free paste is first filled into the lattice to a predetermined position, and then the crystalline lead sulfate-containing paste is filled or the crystalline lead sulfate particles are dispersed.
A paste containing no crystalline lead sulfate may be refilled thereon to form an active material layer containing crystalline lead sulfate therein. In any case, the method of allowing the crystalline lead sulfate to exist inside the negative electrode active material layer is arbitrary.
[発明の効果] 以上のように、本発明によれば、負極板の負極活物質層
の表面部よりも内部に難還元性である結晶性硫酸鉛を存
在させたので、密閉形鉛蓄電池の放電容量に影響を与え
ずに、長期間に亘って充電時における充電過電圧を低く
抑えることができ、その結果負極板からの水素ガスの発
生を抑えて、充電効率を高め、しかも急速充放電サイク
ル寿命を大幅に延ばすことができる。[Effects of the Invention] As described above, according to the present invention, the crystalline lead sulfate, which is difficult to reduce, is allowed to exist inside the surface of the negative electrode active material layer of the negative electrode plate. The charge overvoltage during charging can be kept low for a long period of time without affecting the discharge capacity. As a result, the generation of hydrogen gas from the negative electrode plate can be suppressed, the charging efficiency can be improved, and the rapid charge / discharge cycle can be achieved. The life can be greatly extended.
また負極活物質層を結晶性硫酸鉛を含む内部層と結晶性
硫酸鉛を含まない表面層との2層構造にすると、負極活
物質層の内部に確実に且つ制御可能に結晶性硫酸鉛を存
在させることができる。When the negative electrode active material layer has a two-layer structure including an inner layer containing crystalline lead sulfate and a surface layer not containing crystalline lead sulfate, the negative electrode active material layer can be reliably and controllably loaded with crystalline lead sulfate. Can be present.
第1図の本発明の実施例の密閉形鉛蓄電池と従来の密閉
形鉛蓄電池との急速充放電サイクル寿命試験結果を示す
線図、第2図は本発明の実施例の密閉形鉛蓄電池と従来
の密閉形鉛蓄電池との急速充電時における充電特性を示
す線図である。FIG. 1 is a diagram showing the results of rapid charge / discharge cycle life test of the sealed lead acid battery of the embodiment of the present invention and the conventional sealed lead acid battery, and FIG. 2 is the sealed lead acid battery of the embodiment of the present invention. It is a diagram which shows the charging characteristic at the time of rapid charging with the conventional sealed lead acid battery.
フロントページの続き (56)参考文献 特開 昭58−123657(JP,A) 特開 昭58−169870(JP,A) 特開 昭62−150658(JP,A)Continuation of the front page (56) References JP-A-58-123657 (JP, A) JP-A-58-169870 (JP, A) JP-A-62-150658 (JP, A)
Claims (2)
表面部よりも内部に存在させた負極板を用いることを特
徴とする密閉形鉛蓄電池。1. A sealed lead-acid battery using a negative electrode plate in which a refractory crystalline lead sulfate is present inside the negative electrode active material layer rather than on the surface thereof.
含む内部層と前記結晶性硫酸鉛を含まない表面層とから
なる請求項1に記載の密閉形鉛蓄電池。2. The sealed lead acid battery according to claim 1, wherein the negative electrode active material layer includes an inner layer containing the crystalline lead sulfate and a surface layer containing no crystalline lead sulfate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63272637A JPH0654661B2 (en) | 1988-10-28 | 1988-10-28 | Sealed lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63272637A JPH0654661B2 (en) | 1988-10-28 | 1988-10-28 | Sealed lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02119054A JPH02119054A (en) | 1990-05-07 |
JPH0654661B2 true JPH0654661B2 (en) | 1994-07-20 |
Family
ID=17516699
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63272637A Expired - Lifetime JPH0654661B2 (en) | 1988-10-28 | 1988-10-28 | Sealed lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0654661B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0810590B2 (en) * | 1989-07-31 | 1996-01-31 | 新神戸電機株式会社 | Method for manufacturing sealed lead acid battery and electrode plate for sealed lead acid battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58123657A (en) * | 1982-01-20 | 1983-07-22 | Japan Storage Battery Co Ltd | Charged lead storage battery containing liquid |
JPS58169870A (en) * | 1982-03-31 | 1983-10-06 | Furukawa Battery Co Ltd:The | Manufacture of plate for lead storage battery |
JPS62150658A (en) * | 1985-12-24 | 1987-07-04 | Matsushita Electric Ind Co Ltd | Lead storage battery |
-
1988
- 1988-10-28 JP JP63272637A patent/JPH0654661B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02119054A (en) | 1990-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008130516A (en) | Liquid lead-acid storage battery | |
JP2003051334A (en) | Sealed lead-acid battery | |
JPH10188963A (en) | Sealed lead-acid battery | |
JP2004327299A (en) | Sealed lead-acid storage battery | |
JP4081698B2 (en) | Lead-acid battery charging method | |
JPH11329476A (en) | Sealed lead-acid battery | |
JPH0654661B2 (en) | Sealed lead acid battery | |
JP4515046B2 (en) | Lead acid battery conversion method | |
JP4411860B2 (en) | Storage battery | |
JP4854157B2 (en) | Chemical conversion method for positive electrode plate and lead acid battery | |
JP4560849B2 (en) | Control valve type lead storage battery manufacturing method | |
JP3648761B2 (en) | How to charge sealed lead-acid batteries | |
JPH0850896A (en) | Manufacture of lead-acid battery | |
JP4742424B2 (en) | Control valve type lead acid battery | |
JP2762730B2 (en) | Nickel-cadmium storage battery | |
JP2518090B2 (en) | Lead acid battery | |
JP2553598B2 (en) | Sealed lead acid battery | |
JP2964555B2 (en) | Battery storage method for lead-acid batteries | |
JP2000058105A (en) | Lead-acid battery | |
JPH079807B2 (en) | Zinc electrode for alkaline storage battery | |
JPH09219214A (en) | Alkaline storage battery | |
JPS61198574A (en) | Lead storage battery | |
JPS63146358A (en) | Enclosed lead storage battery | |
JPH0589873A (en) | Negative electrode plate for lead-acid storage battery | |
JPS62188169A (en) | Sealed lead-acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080720 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080720 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090720 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090720 Year of fee payment: 15 |