JP4854157B2 - Chemical conversion method for positive electrode plate and lead acid battery - Google Patents

Chemical conversion method for positive electrode plate and lead acid battery Download PDF

Info

Publication number
JP4854157B2
JP4854157B2 JP2001304041A JP2001304041A JP4854157B2 JP 4854157 B2 JP4854157 B2 JP 4854157B2 JP 2001304041 A JP2001304041 A JP 2001304041A JP 2001304041 A JP2001304041 A JP 2001304041A JP 4854157 B2 JP4854157 B2 JP 4854157B2
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
formation
energizing
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001304041A
Other languages
Japanese (ja)
Other versions
JP2003109585A (en
JP2003109585A5 (en
Inventor
博正 野口
徹 萬ヶ原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2001304041A priority Critical patent/JP4854157B2/en
Publication of JP2003109585A publication Critical patent/JP2003109585A/en
Publication of JP2003109585A5 publication Critical patent/JP2003109585A5/ja
Application granted granted Critical
Publication of JP4854157B2 publication Critical patent/JP4854157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、アンチモンフリー鉛合金を基板に用いる鉛蓄電池正極板および鉛蓄電池の化成方法に関するものである。
【0002】
【従来の技術】
格子基板合金として実質的にアンチモン(Sb)を含まない正極板は、メンテナンス・フリー特性が優れており、液式鉛蓄電池だけでなくシール形鉛蓄電池にも広く用いられている。この種類の正極板は、基板と活物質との結合が弱く、両者の界面に間隙を生じたり、硫酸鉛などの絶縁物質の層が形成されたりする現象、いわゆるバリヤーの生成によって、早期に容量が低下する例がしばしば発生する問題があった。
【0003】
格子基板と活物質との界面には、該基板へペースト活物質を充填した後の乾燥や熟成、またタンク化成(化成槽内化成)においては、化成後に行う正極板の水洗や乾燥の工程で、炭酸ガスとの反応で塩基性炭酸鉛を生じる。これは希硫酸と反応すると、微細で相互に結合しない硫酸鉛の粉末層に変化する。さらに、化成開始直後の通電時には、化成電流効率が悪くて、正極板の格子表面では、水の電気分解反応による激しい酸素ガス発生があり、格子と活物質とが剥がれて界面に間隙を生じる。
【0004】
この問題を改良するために、基板表面にアンチモン(Sb)やすず(Sn)またはこれらの酸化物を存在させる処理の提案がある。しかし、その効果は限定的であり、処理のためにコストが高くなった。また化成通電の直後に、短時間だけ通電を逆にして、正極板の基板表面を海綿状鉛にする提案もあるが、このとき負極板は酸素ガスを発生する貴な電位となって、有機添加剤の分解による有機酸が正極板特に基板を腐食させる欠点があった。
【0005】
【発明が解決しようとする課題】
本発明は、正極板に種々な処理を施したり、有害物質を発生させたりすることなく、化成中の簡単な通電処理によって、格子と活物質との界面に生成しやすい絶縁層や間隙からなるバリヤー層を無くすことを課題としてる。
【0006】
【課題を解決するための手段】
本発明は、未化成の正極板を、理論化成電気量の100%以下、好ましくは3〜30%の電気量だけ充電方向に通電したのち、正極板と負極板との間の端子電圧が0.0V〜−1.5Vの範囲内となるあるときまで放電方向に通電したあと、再度、充電方向に通電して化成を完了させること、また未化成極板を用いて組立てた蓄電池では、希硫酸を注入してから、充電方向に理論化成電気の100%以下、好ましくは3〜30%の電気量だけ充電方向に通電したのち、セル当たりの端子電圧が0.0V〜−1.5Vの範囲内となるあるときまで放電方向に通電したあと、再度、充電方向に通電して化成を完了させることを特徴としており、前者はタンク化成、後者は電槽化成と呼ばれるものである。
【0007】
【作用】
鉛蓄電池においては、化成初期および中期の電流効率が、正極板と負極板とで著しく異なっている。負極板の電流効率は約95%である。正極板のそれは通電直後では20%以下であり、通電を続けるとともに高くなって約50%になる。したがって、正極板の理論化成電気量の100%以下で化成を中断して、放電方向に通電すなわち放電すると、正極板の放電容量は負極板のそれの約50%以下である。
【0008】
この化成途中の放電における、正極板と負極板との電位変化を図1に示す。実線は通電電気量即ち充電電気量を正極板の理論化成電気量の100%相当分を通電した後に放電した場合、破線は30%通電後放電したときのものである。
【0009】
正極板の電位は早期に卑となるが、負極板ではより長い間、安定した電位で推移したのち、貴に変化する。正極板の電位が卑なときは、化成で充電された活物質(PbO2)が放電してしまって硫酸鉛(PbSO4)になっており、さらに鉛(Pb)に還元していることを示している。したがって、正極板の基板と活物質との界面に生成した、微細で結合力が弱いPbSO4粒子は、海綿状Pbに還元される。これは基板材料と同じであり、Pb粒子間の結合は良好であるから、基板と活物質との結合は良好になることを意味する。尚、基板と活物質との界面に間隙がある場合には、この化成途中の放電によって、PbO2は溶解・析出によってPbSO4となり、さらに溶解・析出によって海綿状Pbとなるから、間隙を埋めて界面の導電性を改良する。
【0010】
負極板では放電を続けると、ついにはPbO2となるとともに酸素ガスを発生する。このとき、負極活物質ペースト中に添加したリグニン質の有機エキスパンダーを酸化・分解して、有機酸を生じるので好ましくない。
【0011】
化成途中の放電方向への通電で、正極板の電位が負極よりも0.0V以上卑にならなければ、PbSO4のPbへの還元は生じない。また負極板の電位が、PbSO4とPbの電位になっている正極板の電位よりも+1.5V以下の貴な値であれば、PbO2は生成せず酸素ガスも発生しないので、端子電圧を−1.5V以下に保てば充分に安全である。したがって正極と負極間の端子電圧は0.0V〜−1.5Vの範囲内のどの点をとっても、正極板の格子と活物質との界面は良好となるとともに有機酸の発生は無くて安全である。
【0012】
化成開始後の通電電気量は、正極板の理論化成電気量の3%未満では、負極板の化成が不足して、放電方向に通電したときに短時間で電位が貴となってしまう。尚、この通電電気量が100%を超えて多いと、化成電気量が全体としてみて多くなり、エネルギー損失となるだけでなく、正極板の放電容量が多くなって負極板との差が小さくなるので好ましくない。
【0013】
【実施例】
鉛−カルシウム−すず−アルミニウム合金を格子基板に用いた、未化成の正極板および負極板を使用して、常法に従って鉛蓄電池を組立てた。活物質量は、正極板では、理論化成電気量が110アンペア・アワー(Ah)、負極板では、125Ahとなるようにそれぞれペースト活物質量を設定した。この鉛蓄電池に適量の希硫酸を注入し、25℃雰囲気中で、5.5Aで正極板の理論化成電気量の30%および100%となる時間、すなわち6hおよび20hだけ充電方向に定電流で通電した。その後、電流の方向を逆にして、放電方向に5.5Aで通電したときの、正および負極板の電位変化を測定した結果を図1に示す。端子電位は、正極板の電位から負極板の電位を差引いた値である。30%充電方向に通電したあとの放電方向の通電における、正および負極板の電位変化を破線で、100%の場合を実線でそれぞれ示す。また、前者の場合に、端子電圧が−1.0Vとなったときに放電を止めて、充電方向に5.5Aで41h通電した化成中のセル端子電圧の変化を図2に実線で示す。図2には、5.5Aで40h充電方向に通電する、従来の条件での化成における端子電圧を破線で示してある。
【0014】
図1から、化成途中の正極板の充電容量は小さくて、早期に海綿状Pbを生成する卑な電位に達することが判る。同時に負極板においては、長時間にわたってほぼ一定の放電電位を示したのち貴になること、また端子電圧では負の小さな値で安定する矢印AおよびA’で示す時間があることが判る。この矢印で示した部分は、正極板の基板と活物質との界面に存在するPbSO4は海綿状Pbに還元するとともに、もし間隙があればそれを埋める。
【0015】
図2で、破線で示した従来法による化成では、通電直後に端子電圧が高くなっており、正極板から激しい酸素ガス発生が認められた。実線で示した本発明による化成では、放電方向に通電した後での充電方向への通電では、このような端子電圧の異常な上昇は無く、充電すなわち化成は円滑に進行した。
【0016】
さらに、図1および図2に示したものと同様な未化成の単セル蓄電池を用いて、条件を変えて化成した後、JISD5301の浅い充放電寿命試験を行った。放電方向の通電を行うまでの充電方向の通電電気量は、正極板の理論化成電気量の3および30%とし、放電方向の通電は、端子電圧が0、−0.5、−1.5および−2.0Vとなるまでとした。寿命試験の結果を表1に示す。
【0017】
【表1】

Figure 0004854157
【0018】
本発明による鉛蓄電池は、いずれも寿命性能の向上が認められ、とくに逆通電終了時の端子電圧を−0.5Vまたは−1.5にしたものは優れていた。
【0019】
以上に電槽化成の場合だけを述べたが、多数の未化成の正および負極板を化成槽に入れて同時に化成するタンク化成の場合にも、同様の通電操作で蓄電池の寿命性能を改良することができた。
【0020】
【発明の効果】
本発明は、アンチモンフリー鉛合金を基板に用いる正極板及び鉛蓄電池について、化成の途中で適切な条件で放電方向に通電するという簡単な操作によって、寿命性能の改良を可能にしたものである。
【図面の簡単な説明】
【図1】正極板および負極板の電位変化を示す特性図。
【図2】本発明による方法で電槽化成したときの、端子電圧の変化を示す特性図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-acid battery positive plate using an antimony-free lead alloy as a substrate and a method for forming a lead-acid battery.
[0002]
[Prior art]
A positive electrode plate substantially free of antimony (Sb) as a lattice substrate alloy has excellent maintenance-free characteristics, and is widely used not only for liquid lead-acid batteries but also for sealed lead-acid batteries. This type of positive electrode plate has an early capacity due to a phenomenon in which the bond between the substrate and the active material is weak, a gap is formed at the interface between them, or a layer of an insulating material such as lead sulfate is formed, so-called barrier formation. There has been a problem in which there are often cases in which the decrease is caused.
[0003]
In the interface between the lattice substrate and the active material, drying and aging after filling the substrate with the paste active material, and in tank formation (chemical conversion tank formation), the positive electrode plate is washed with water and dried after the formation. The reaction with carbon dioxide produces basic lead carbonate. When this reacts with dilute sulfuric acid, it turns into a fine powder layer of lead sulfate that is not bonded to each other. Furthermore, when current is applied immediately after the start of conversion, the formation current efficiency is poor, and on the lattice surface of the positive electrode plate, there is intense oxygen gas generation due to water electrolysis reaction, and the lattice and the active material are peeled off, creating a gap at the interface.
[0004]
In order to improve this problem, there has been proposed a treatment in which antimony (Sb) or tin (Sn) or an oxide thereof is present on the substrate surface. However, the effect was limited and the cost for processing increased. There is also a suggestion that the energization is reversed for a short time immediately after the chemical conversion energization so that the substrate surface of the positive electrode plate is spongy lead. At this time, the negative electrode plate becomes a noble potential for generating oxygen gas, and organic The organic acid due to the decomposition of the additive has a drawback of corroding the positive electrode plate, particularly the substrate.
[0005]
[Problems to be solved by the invention]
The present invention comprises an insulating layer and a gap that are likely to be generated at the interface between a lattice and an active material by a simple energization process during chemical conversion without subjecting the positive electrode plate to various treatments or generation of harmful substances. The challenge is to eliminate the barrier layer.
[0006]
[Means for Solving the Problems]
In the present invention, after the unformed positive electrode plate is energized in the charging direction by an amount of electricity of 100% or less, preferably 3 to 30% of the theoretical chemical electricity, the terminal voltage between the positive electrode plate and the negative electrode plate is zero. In a storage battery that is energized in the discharging direction until it falls within a range of 0.0 V to -1.5 V and then energized in the charging direction again to complete the formation. After injecting sulfuric acid, the terminal voltage per cell is 0.0 V to -1.5 V after energizing in the charging direction by 100% or less of the theoretical chemical electricity in the charging direction, preferably 3 to 30%. It is characterized by energizing in the discharging direction until a certain time is within the range, and then energizing again in the charging direction to complete the formation, the former being called tank formation and the latter being called battery case formation.
[0007]
[Action]
In the lead storage battery, the current efficiency in the early stage of formation and the middle stage is remarkably different between the positive electrode plate and the negative electrode plate. The current efficiency of the negative electrode plate is about 95%. That of the positive electrode plate is 20% or less immediately after energization, and increases to about 50% with continued energization. Therefore, when the formation is interrupted at 100% or less of the theoretical chemical electricity of the positive electrode plate, and the current is passed in the discharge direction, that is, the discharge capacity of the positive electrode plate is about 50% or less of that of the negative electrode plate.
[0008]
FIG. 1 shows the potential change between the positive electrode plate and the negative electrode plate during the discharge during the formation. The solid line indicates the amount of electricity that is energized, that is, the amount of charged electricity is discharged after energizing the amount equivalent to 100% of the theoretically formed electricity amount of the positive electrode plate, and the broken line is when 30% is energized and discharged.
[0009]
Although the potential of the positive electrode plate becomes early, the negative electrode plate changes to a noble state after changing at a stable potential for a longer time. When the potential of the positive electrode plate is low, the active material (PbO2) charged by chemical conversion is discharged to lead sulfate (PbSO4) and further reduced to lead (Pb). Yes. Therefore, the fine and weak PbSO4 particles generated at the interface between the positive electrode substrate and the active material are reduced to spongy Pb. This is the same as the substrate material, and the bond between the Pb particles is good, which means that the bond between the substrate and the active material is good. If there is a gap at the interface between the substrate and the active material, PbO2 becomes PbSO4 by dissolution / precipitation due to the discharge during the formation, and further becomes spongy Pb by dissolution / precipitation. Improve the conductivity of
[0010]
If the discharge is continued in the negative electrode plate, it finally becomes PbO2 and oxygen gas is generated. At this time, the lignin organic expander added to the negative electrode active material paste is oxidized and decomposed to produce an organic acid, which is not preferable.
[0011]
If the potential of the positive electrode plate is not more than 0.0 V lower than that of the negative electrode due to energization in the discharge direction during the formation, reduction of PbSO4 to Pb does not occur. Further, if the potential of the negative electrode plate is a noble value of +1.5 V or less than the potential of the positive electrode plate which is the potential of PbSO4 and Pb, PbO2 is not generated and oxygen gas is not generated. If it is kept at 1.5V or less, it is safe enough. Therefore, the terminal voltage between the positive electrode and the negative electrode can be any point within the range of 0.0 V to -1.5 V, and the interface between the lattice of the positive electrode plate and the active material is good and there is no generation of organic acid, which is safe. is there.
[0012]
If the amount of electricity supplied after the start of formation is less than 3% of the theoretical amount of formation electricity of the positive electrode plate, the formation of the negative electrode plate is insufficient, and the electric potential becomes noble in a short time when energized in the discharge direction. If the amount of energized electricity exceeds 100%, the amount of chemical conversion electricity increases as a whole, which not only results in energy loss, but also increases the discharge capacity of the positive electrode plate and reduces the difference from the negative electrode plate. Therefore, it is not preferable.
[0013]
【Example】
A lead-acid battery was assembled according to a conventional method using an unformed positive electrode plate and negative electrode plate using a lead-calcium-tin-aluminum alloy as a lattice substrate. The amount of the active material was set so that the theoretical chemical electricity amount was 110 ampere hours (Ah) for the positive electrode plate and 125 Ah for the negative electrode plate. An appropriate amount of dilute sulfuric acid is injected into this lead storage battery, and at a constant current in the charging direction for 25 hours at a time of 30% and 100% of the theoretical amount of electricity generated by the positive electrode at 5.5A, that is, 6h and 20h. Energized. Thereafter, the results of measuring the potential change of the positive and negative plates when the current direction is reversed and the current is supplied at 5.5 A in the discharge direction are shown in FIG. The terminal potential is a value obtained by subtracting the potential of the negative electrode plate from the potential of the positive electrode plate. In the energization in the discharge direction after energization in the 30% charge direction, the potential change of the positive and negative electrode plates is indicated by a broken line, and the case of 100% is indicated by a solid line. Further, in the former case, the change in the cell terminal voltage during the formation in which the discharge is stopped when the terminal voltage becomes −1.0 V and the current is supplied for 41 h at 5.5 A in the charging direction is shown by a solid line in FIG. In FIG. 2, the terminal voltage in the chemical conversion under the conventional conditions in which current is supplied in the charging direction at 5.5 A for 40 hours is indicated by a broken line.
[0014]
From FIG. 1, it can be seen that the charge capacity of the positive electrode plate in the middle of formation is small and reaches a base potential that generates spongy Pb at an early stage. At the same time, it can be seen that the negative electrode plate becomes noble after exhibiting a substantially constant discharge potential over a long period of time, and the terminal voltage has time indicated by arrows A and A ′ which are stabilized at a small negative value. In the portion indicated by the arrow, PbSO4 present at the interface between the substrate of the positive electrode plate and the active material is reduced to spongy Pb, and if there is a gap, it is filled.
[0015]
In the chemical conversion by the conventional method shown by the broken line in FIG. 2, the terminal voltage was increased immediately after energization, and intense oxygen gas generation was observed from the positive electrode plate. In the chemical conversion according to the present invention indicated by the solid line, there was no such abnormal increase in terminal voltage in the energization in the charge direction after the energization in the discharge direction, and charging, that is, the formation proceeded smoothly.
[0016]
Furthermore, using a non-formed single cell storage battery similar to that shown in FIG. 1 and FIG. 2 for formation under different conditions, a shallow charge / discharge life test of JIS D5301 was performed. The energization amount of electricity in the charging direction until energization in the discharge direction is 3 and 30% of the theoretically formed electricity amount of the positive electrode plate, and the terminal voltage is 0, −0.5, −1.5 for energization in the discharge direction. And -2.0V. Table 1 shows the results of the life test.
[0017]
[Table 1]
Figure 0004854157
[0018]
The lead storage batteries according to the present invention were all improved in life performance, and those with terminal voltages at the end of reverse energization of −0.5 V or −1.5 were particularly excellent.
[0019]
Although only the case of battery formation has been described above, in the case of tank formation in which a large number of unformed positive and negative electrode plates are placed in the formation tank and formed simultaneously, the life performance of the storage battery is improved by the same energization operation. I was able to.
[0020]
【The invention's effect】
The present invention makes it possible to improve the life performance of a positive electrode plate and a lead storage battery using an antimony-free lead alloy as a substrate by a simple operation of energizing in the discharge direction under appropriate conditions during the formation.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing potential changes of a positive electrode plate and a negative electrode plate.
FIG. 2 is a characteristic diagram showing a change in terminal voltage when a battery case is formed by the method according to the present invention.

Claims (2)

アンチモンフリーの鉛合金を基板に用いた未化成の正極板を、理論化成電気量の100%以下だけ充電方向に通電したのち、正極板と負極板との間の電圧が、0.0V〜−1.5Vの範囲内となるときまで放電方向に通電したあと、再度充電方向に通電して化成を完了させることを特徴とする正極板の化成方法。After an unformed positive electrode plate using an antimony-free lead alloy as a substrate is energized in the charging direction by 100% or less of the theoretical chemical electricity, the voltage between the positive electrode plate and the negative electrode plate is 0.0 V to − A method for forming a positive electrode plate, comprising energizing in the discharging direction until the voltage falls within a range of 1.5 V, and then energizing again in the charging direction to complete the formation. アンチモンフリーの鉛合金を基板に用いた未化成の正極板をセパレータを介して負極板と積層し、これを電槽内に収納した後に該電槽内に希硫酸電解液を注入し、該正極板の理論化成電気量の100%以下だけ充電方向に通電したのち、端子電圧が、0.0V〜−1.5V/セルの範囲内となるときまで放電方向に通電したあと再度、充電方向に通電して化成を完了させることを特徴とする鉛蓄電池の化成方法。An unformed positive electrode plate using an antimony-free lead alloy as a substrate is laminated with a negative electrode plate through a separator, and after storing this in a battery case, a dilute sulfuric acid electrolyte is injected into the battery case. After energizing in the charging direction for 100% or less of the theoretical chemical electricity of the plate, energizing in the discharging direction until the terminal voltage falls within the range of 0.0 V to -1.5 V / cell, and then again in the charging direction. A method for forming a lead-acid battery, comprising energizing to complete the formation.
JP2001304041A 2001-09-28 2001-09-28 Chemical conversion method for positive electrode plate and lead acid battery Expired - Lifetime JP4854157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001304041A JP4854157B2 (en) 2001-09-28 2001-09-28 Chemical conversion method for positive electrode plate and lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001304041A JP4854157B2 (en) 2001-09-28 2001-09-28 Chemical conversion method for positive electrode plate and lead acid battery

Publications (3)

Publication Number Publication Date
JP2003109585A JP2003109585A (en) 2003-04-11
JP2003109585A5 JP2003109585A5 (en) 2008-05-15
JP4854157B2 true JP4854157B2 (en) 2012-01-18

Family

ID=19124026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304041A Expired - Lifetime JP4854157B2 (en) 2001-09-28 2001-09-28 Chemical conversion method for positive electrode plate and lead acid battery

Country Status (1)

Country Link
JP (1) JP4854157B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347516B (en) * 2011-10-26 2013-07-17 浙江天能电池江苏新能源有限公司 Inner forming process of tubular lead-acid storage battery
CN110808428B (en) * 2019-12-13 2022-04-29 天能电池(芜湖)有限公司 Charging process for completing storage battery within 3 days

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145277A (en) * 1981-03-03 1982-09-08 Matsushita Electric Ind Co Ltd Operating method of lead storage battery
JPS58129759A (en) * 1982-01-28 1983-08-02 Shin Kobe Electric Mach Co Ltd Manufacture of positive plate in lead storage battery
JPS62103970A (en) * 1985-10-30 1987-05-14 Shin Kobe Electric Mach Co Ltd Manufacture of lead storage battery
JPS63114059A (en) * 1986-10-30 1988-05-18 Shin Kobe Electric Mach Co Ltd Initiai-charging method for lead acid battery
JPH0193056A (en) * 1987-10-02 1989-04-12 Shin Kobe Electric Mach Co Ltd Manufacture of plate for lead-acid battery
JPH0311553A (en) * 1989-06-07 1991-01-18 Matsushita Electric Ind Co Ltd Manufacture of lead battery
JP3505972B2 (en) * 1997-08-28 2004-03-15 松下電器産業株式会社 Lead-acid battery and method of manufacturing lead-acid battery

Also Published As

Publication number Publication date
JP2003109585A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
JP2008243487A (en) Lead acid battery
US11870096B2 (en) Absorbent glass mat battery
JP2008243606A (en) Lead acid storage battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
JP5116331B2 (en) Lead acid battery
JP4178442B2 (en) Control valve type lead acid battery manufacturing method
JP4515046B2 (en) Lead acid battery conversion method
JP2011049135A (en) Lead-acid battery jar formation method
JP4411860B2 (en) Storage battery
JP2001250589A (en) Charging method of sealed lead storage battery
JPH0542114B2 (en)
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JPH0679493B2 (en) Lead-acid battery function recovery agent and lead-acid battery function recovery method
JP3498560B2 (en) Lead storage battery
JP3458594B2 (en) Current collector for lead-acid battery, method of manufacturing the same, and electrode plate using the same
JP3475650B2 (en) Manufacturing method of current collector for lead-acid battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP4742424B2 (en) Control valve type lead acid battery
JP2762730B2 (en) Nickel-cadmium storage battery
JP2002198041A (en) Manufacturing method of positive pole plate for lead acid battery
JP3838298B2 (en) Charging method of sealed lead-acid battery using antimony alloy lattice
JPH0654661B2 (en) Sealed lead acid battery
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JPH05159797A (en) Sealed lead-acid battery
JP2008034286A (en) Closed lead battery

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150