JP3475650B2 - Manufacturing method of current collector for lead-acid battery - Google Patents

Manufacturing method of current collector for lead-acid battery

Info

Publication number
JP3475650B2
JP3475650B2 JP09649996A JP9649996A JP3475650B2 JP 3475650 B2 JP3475650 B2 JP 3475650B2 JP 09649996 A JP09649996 A JP 09649996A JP 9649996 A JP9649996 A JP 9649996A JP 3475650 B2 JP3475650 B2 JP 3475650B2
Authority
JP
Japan
Prior art keywords
current collector
lead
sulfuric acid
potential
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09649996A
Other languages
Japanese (ja)
Other versions
JPH09283151A (en
Inventor
勝弘 高橋
剛 畑中
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP09649996A priority Critical patent/JP3475650B2/en
Publication of JPH09283151A publication Critical patent/JPH09283151A/en
Application granted granted Critical
Publication of JP3475650B2 publication Critical patent/JP3475650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池の改良に関
するものであり、とくに集電体の改良によって極板およ
び電池の信頼性を高めようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a lead storage battery, and more particularly to an improvement in current collector to improve reliability of an electrode plate and a battery.

【0002】[0002]

【従来の技術】鉛蓄電池は自動車用やコンピュータバッ
クアップの無停電電源に広く活用されている。これらの
用途では電池は常時過充電状態に保たれ、電源として必
要な時に備えられている。この種の用途の重要課題の一
つに、過充電による劣化阻止があげられる。この過充電
時の劣化現象は活物質の保持を兼ねる集電体の酸化腐食
に関係するもので、集電体の合金の種類で多少異なるが
基本的には避けられない状況にある。
Lead acid batteries are widely used as uninterruptible power sources for automobiles and computer backups. In these applications, batteries are always overcharged and equipped as a power source when needed. One of the important issues in this type of application is prevention of deterioration due to overcharge. This deterioration phenomenon at the time of overcharge is related to the oxidative corrosion of the current collector which also holds the active material, and it is basically unavoidable although it is slightly different depending on the type of alloy of the current collector.

【0003】とくに最近では、高出力高利用率を求めて
従来の格子状やエキスパンドメタルの骨格状集電体にか
わって、活物質との接触面積を増加するために平板状や
開口部の少ない各種立体穿孔体が適用される傾向にあ
る。これに無硫酸のスラリーや鉛粉と溶剤と樹脂を練合
した低粘性の練合物を薄層に形成するいわゆる薄型極板
の構成では、集電体表面が過充電電流を請け負う率が活
物質に比べて増大し過充電特性の劣化が増幅される傾向
にある。
In recent years, in particular, in order to obtain a high output and a high utilization rate, in place of a conventional grid-shaped or expanded metal skeletal current collector, a flat plate-shaped structure or a small number of openings is formed in order to increase a contact area with an active material. Various solid perforated bodies tend to be applied. In the structure of so-called thin electrode plate, in which a sulfuric acid-free slurry or a low-viscosity kneaded product of a lead powder, a solvent, and a resin is formed in a thin layer, the rate at which the current collector surface receives the overcharge current is active. There is a tendency for the deterioration of overcharge characteristics to be amplified as compared to the case of substances.

【0004】この種の問題は集電体の腐食に起因するも
のであって、基本的には表面を耐酸性かつ導電性で、充
放電時も安定な被覆層を形成しこれを維持できれば理想
的な解決となる。しかし、30〜40%濃度の硫酸電解
液中で高い電位にさらされるという苛酷な腐食環境に耐
える適切な導電材料の存在は極めてまれである。
This kind of problem is caused by corrosion of the current collector. Basically, it is ideal if a coating layer that is acid resistant and conductive and that is stable during charge and discharge can be formed and maintained. Solution. However, the existence of a suitable conductive material that withstands the harsh corrosive environment of being exposed to a high potential in a sulfuric acid electrolyte solution having a concentration of 30 to 40% is extremely rare.

【0005】[0005]

【発明が解決しようとする課題】この目的で最近鉛酸バ
リウム系のペロブスカイトを焼成によって合成し、格子
表面に付写する方法が提案されているが、上記の薄型極
板用の複雑な形状の集電体に適用することが困難であ
る。さらに、簡易な方法で複雑な形状の耐食性集電体を
作製するために、鉛あるいは鉛合金製の集電体基材を電
解酸化して二酸化鉛を表面に形成した後にバリウム塩の
溶液やスラリーに浸潤し、これを例えば200℃以上で
熱処理するという方法が開示されてはいる。しかし、集
電体基材のクリープ温度が一般に100℃前後であるた
め、上記のような熱処理により集電体基材が軟化し、と
くに薄型集電体の場合には極板強度が弱くなり、製造工
程中の取扱いが困難であり、電池性能にも悪影響を及ぼ
すという問題があった。
For this purpose, a method has recently been proposed in which barium lead perovskite-based perovskite is synthesized by firing and transferred onto the surface of the lattice. It is difficult to apply to the current collector. Furthermore, in order to produce a corrosion-resistant current collector having a complicated shape by a simple method, a lead or lead alloy current collector base material is electrolytically oxidized to form lead dioxide on the surface, and then a barium salt solution or slurry is formed. A method of infiltrating into the above and heat treating it at 200 ° C. or higher is disclosed. However, since the creep temperature of the current collector substrate is generally around 100 ° C., the current collector substrate is softened by the heat treatment as described above, and the electrode plate strength becomes weak particularly in the case of a thin current collector, There is a problem that handling during the manufacturing process is difficult and battery performance is adversely affected.

【0006】本発明の課題は上記の従来技術の問題点を
解決し、多様な集電体形状に対応することができ、基体
強度を弱めることなく、耐酸性や導電性に優れた保護被
覆層を表面に形成した集電体を簡易な方法で提供するこ
とにあり、これにより過充電時の極板劣化を抑制し、サ
イクル寿命特性などの諸特性に優れた電池を得ることを
目的とする。
The object of the present invention is to solve the above-mentioned problems of the prior art, to cope with various current collector shapes, and to protect the base material without weakening the strength of the base material and having an excellent acid resistance and conductivity. The purpose of the present invention is to provide a current collector having a surface formed with a simple method, thereby suppressing deterioration of the electrode plate during overcharge and obtaining a battery having excellent characteristics such as cycle life characteristics. .

【0007】[0007]

【課題を解決するための手段】本発明は上記目的を達成
するために、鉛または鉛合金からなる集電体基材をバリ
ウム(Ba)ト、ストロンチウム(Sr)、ビスマス
(Bi)、錫(Sn)、チタン(Ti)、ゲルマニウム
(Ge)、セレン(Se)から選ばれた少なくとも一つ
以上の金属のイオンを含む希硫酸中において、二酸化鉛
の電位以上の電位で電解酸化する工程を備えることを特
徴とするものである。この電解酸化法により、集電体基
材が複雑な形状であっても、基材表面の全面にわたって
耐酸性と導電性を備えた保護被覆層を被覆することがで
き、さらに熱処理を施す必要がないため集電体の機械的
強度も確保できる。
In order to achieve the above object, the present invention provides a current collector substrate made of lead or lead alloy with barium (Ba), strontium (Sr), bismuth (Bi), tin ( Sn), titanium (Ti), germanium (Ge), selenium (Se), in a dilute sulfuric acid containing ions of at least one or more metals, electrolytic oxidation at a potential higher than that of lead dioxide is provided. It is characterized by that. By this electrolytic oxidation method, even if the current collector base material has a complicated shape, it is possible to cover the entire surface of the base material with a protective coating layer having acid resistance and conductivity, and further heat treatment is required. Since it does not exist, the mechanical strength of the current collector can be secured.

【0008】[0008]

【発明の実施の形態】本発明は上記の金属イオンを添加
した希硫酸中で鉛または鉛合金を二酸化鉛が生成される
ような高い電位で酸化すると無添加の場合の二酸化鉛と
は異なる特殊な金属酸化物の保護層が形成されるという
現象の発見に基づいて成されたものである。このような
金属酸化物層は希硫酸を含まない上記化合物の水溶液の
中では形成されず、また希硫酸の存在下でも二酸化鉛の
自然電極電位よりも低い電位では形成されない。この特
殊な金属酸化物の化学的構造はX線回析によっては二酸
化鉛とは容易に類別出来ない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is different from lead dioxide in the case of no addition when lead or lead alloy is oxidized at a high potential such that lead dioxide is produced in dilute sulfuric acid containing the above metal ions. It was made based on the discovery of the phenomenon that a protective layer of various metal oxides is formed. Such a metal oxide layer is not formed in an aqueous solution of the above compound containing no dilute sulfuric acid, and is not formed at a potential lower than the natural electrode potential of lead dioxide even in the presence of dilute sulfuric acid. The chemical structure of this special metal oxide cannot be easily classified from lead dioxide by X-ray diffraction.

【0009】しかし、この方法で得られた酸化物層は金
属イオンを添加していない希硫酸中で得られた電解酸化
物層よりも緻密であり、これを希硫酸中で自然放置によ
って自己放電させるか、微小な電流でゆっくり放電させ
るかの方法で、二酸化鉛の自然電位から二酸化鉛の通常
の放電電位を経由してさらに電位を低下させると、集電
体基材の鉛または鉛合金の電位に至るまでの間でいくつ
かの安定電位を示す成分が存在することが判明した。こ
れらのことから鉛酸バリウムのようなペロブスカイトや
二酸化鉛との混合酸化物のような化合物が二酸化鉛の結
晶成長の過程で形成されている可能性があると考えられ
る。
However, the oxide layer obtained by this method is denser than the electrolytic oxide layer obtained in dilute sulfuric acid to which metal ions are not added, and it is self-discharged by allowing it to stand naturally in dilute sulfuric acid. Or a slow discharge with a small electric current, and further lowering the potential from the natural potential of lead dioxide via the normal discharge potential of lead dioxide, lead or lead alloy of the current collector base material It was found that some components exhibiting stable potential exist before reaching the potential. From these facts, it is considered that a compound such as a perovskite such as barium leadate or a mixed oxide with lead dioxide may be formed during the process of crystal growth of lead dioxide.

【0010】すべての種類の金属イオンが結晶の中に取
り込まれるのではなく、例えば、アルカリ金属やアルカ
リ土類のベリリウムやマグネシウムのように酸化物が溶
解性の高いものを単独で添加してもほとんど効果はない
が、他の有効な添加物ととも添加すれば、両者の成分と
共存して結晶の緻密性に影響を与える可能性がある。
Not all kinds of metal ions are incorporated into the crystal, but even if a highly soluble oxide such as alkali metal or alkaline earth beryllium or magnesium is added alone. It has almost no effect, but if it is added together with other effective additives, it may coexist with both components and affect the denseness of crystals.

【0011】何れにしても、上記酸化物層は希硫酸中で
存在し得る耐酸化性に優れた物質であり、しかも二酸化
鉛の基本的な結晶構造を持つので導電性も高い物質であ
り、耐酸化性も強い。さらにこの酸化物は二酸化鉛の放
電電位よりも低い電位にあり、通常の充放電では常に酸
化方向に分極されていることになり、安定な層を維持す
ることになる。結果として本発明は耐過充電特性にすぐ
れた集電体および極板を提供することになる。さらに付
記すれば、電解酸化を行ったのちに、空気など、酸素を
含む雰囲気中に暴露すると過充電による寿命劣化を防止
する一層の効果がある。その理由は明らかにされていな
いが、酸素が表面酸化物の安定化に寄与するものと考え
られる。
In any case, the above oxide layer is a substance that can exist in dilute sulfuric acid and has excellent oxidation resistance. Further, since it has a basic crystal structure of lead dioxide, it is also a highly conductive substance. Strong oxidation resistance. Furthermore, this oxide is at a potential lower than the discharge potential of lead dioxide, and it is always polarized in the oxidizing direction during normal charge and discharge, so that a stable layer is maintained. As a result, the present invention provides a current collector and an electrode plate having excellent overcharge resistance. In addition, if electrolytic oxidation is performed and then exposed to an atmosphere containing oxygen, such as air, there is a further effect of preventing life deterioration due to overcharge. Although the reason has not been clarified, it is considered that oxygen contributes to the stabilization of the surface oxide.

【0012】以下、本発明の集電体の製造プロセスと集
電体および極板の構成上の特徴を述べる。図1は本発明
のプロセスの特徴を説明するフロー図である。工程Iは
電解酸化工程であり、洗浄など必要な前処理を行った集
電体基体が電解槽に供給される。電解液はBa,Sr,
Bi,Sn,Ti,Ge,Seから選ばれた少なくとも
一つ以上の金属イオンを含む希硫酸である。酸化電流は
任意に選択できるが、例えば集電体基体の露出表面積に
対して100mA/cm2程度の電流密度で10分から
30分程度の通電を行うことにより、酸素ガスの発生を
伴いながら、集電体基体の表面に酸化物層が形成され
る。工程IIは酸素への暴露工程であり、電解酸化後、速
やかに酸素を含む雰囲気中、例えば空気中に暴露する。
ついで工程IIIは活物質材料の充填工程である。引き続
き、熟成や乾燥など必要な工程を経て未化成板を作製
し、化成充電工程を経て極板が構成されるに至る。尚、
電解酸化後の暴露工程IIは要求する耐酸化性のレベルに
よっては省略できるが、工程I、IIを併用する方が好ま
しい。また、工程Iと工程IIをくり返した後、工程III
に移す方法が集電体の耐酸化性を高めるために一層有効
である。
The manufacturing process of the current collector of the present invention and the structural features of the current collector and the electrode plate will be described below. FIG. 1 is a flow diagram illustrating the features of the process of the present invention. Step I is an electrolytic oxidation step, in which the current collector substrate that has undergone necessary pretreatment such as cleaning is supplied to the electrolytic cell. The electrolyte is Ba, Sr,
It is a dilute sulfuric acid containing at least one metal ion selected from Bi, Sn, Ti, Ge, and Se. The oxidation current can be arbitrarily selected. For example, by applying an electric current for about 10 to 30 minutes at a current density of about 100 mA / cm 2 with respect to the exposed surface area of the current collector substrate, the current is collected while generating oxygen gas. An oxide layer is formed on the surface of the electric substrate. Step II is an oxygen exposure step, and after electrolytic oxidation, it is immediately exposed to an atmosphere containing oxygen, for example, air.
Next, step III is a step of filling the active material. Subsequently, an unformed plate is manufactured through necessary steps such as aging and drying, and an electrode plate is formed through a chemical charging step. still,
The exposure step II after electrolytic oxidation can be omitted depending on the required oxidation resistance level, but it is preferable to use the steps I and II together. Also, after repeating step I and step II, step III
Is more effective for increasing the oxidation resistance of the current collector.

【0013】ついで、図2は本発明の集電体およびこれ
を用いた極板の構造を示すための、極板の部分断面図で
ある。1は集電体基材で鉛または鉛合金からなり、その
集電体の形状、構造は任意である。2は本発明によって
形成された酸化物層、3はその上に充填された活物質材
料を化成充電した活物質層である。このように本発明の
酸化物層は二酸化鉛より高い電位で酸化された酸化物で
あるので、これ以上酸化されることはなく、これによっ
て被覆されるかぎり、過充電による酸化から集電体は保
護される。
Next, FIG. 2 is a partial sectional view of the current collector of the present invention and a structure of the electrode plate using the current collector. Reference numeral 1 denotes a collector base material made of lead or a lead alloy, and the shape and structure of the collector are arbitrary. Reference numeral 2 is an oxide layer formed according to the present invention, and 3 is an active material layer obtained by forming and charging the active material material charged thereon. Thus, since the oxide layer of the present invention is an oxide that is oxidized at a higher potential than lead dioxide, it is not further oxidized, and as long as it is covered by this, the current collector is prevented from oxidation due to overcharge. Be protected.

【0014】[0014]

【実施例】さらに本発明の具体的な実施方法と効果を明
らかにするために、実施例により説明する。集電体基材
として開口率10%の鉛−カルシウム−錫系合金の立体
穿孔体を用い、本発明に基づき36%の希硫酸中に、各
種金属イオンの化合物を添加した溶液のなかで100m
A/cm2で20分間の電解酸化を行った。金属イオン
の添加は各金属の硫酸塩を希硫酸に対して5g/l投入
した。多くの硫酸塩は難溶性であるので飽和溶液となっ
た。電解後、30分間以内に空気中にさらした。これら
で得られた集電体に、結着剤としてポリフッ化ビニリデ
ンを有機溶剤に溶解して鉛粉と練合した無硫酸練合物を
充填して未化成板をつくった。次いでこの未化成板を希
硫酸中で化成して得られた正極板とし、これらを別途に
常法により作製した負極板と組み合わせて理論充填量1
0Ahの実施例の電池を構成した。
EXAMPLES In order to further clarify the concrete method of implementing the present invention and its effects, the examples will be described. A solid perforated body of lead-calcium-tin alloy having an aperture ratio of 10% was used as a current collector base material, and 100 m of a solution prepared by adding various metal ion compounds to 36% of dilute sulfuric acid according to the present invention.
Electrolytic oxidation was performed at A / cm 2 for 20 minutes. The metal ions were added by adding 5 g / l of sulfate of each metal to dilute sulfuric acid. Many sulfates are sparingly soluble, resulting in a saturated solution. After electrolysis, it was exposed to air within 30 minutes. The collector thus obtained was filled with a sulfuric acid-free kneaded product prepared by dissolving polyvinylidene fluoride as a binder in an organic solvent and kneading it with lead powder to prepare an unformed plate. Next, this unformed plate is used as a positive electrode plate obtained by chemical conversion in dilute sulfuric acid, and these are separately combined with a negative electrode plate prepared by a conventional method to obtain a theoretical filling amount of 1
A 0 Ah example battery was constructed.

【0015】また、比較例として異種イオンを添加して
いない希硫酸中で上記と同様の方法で集電体基材を電解
酸化して集電体を作製し、これを用いた正極板と電池を
実施例と同様の方法で構成した。
In addition, as a comparative example, a current collector was prepared by electrolytically oxidizing a current collector base material in dilute sulfuric acid to which different kinds of ions were not added in the same manner as above, and a positive electrode plate and a battery using the current collector were prepared. Was constructed in the same manner as in the example.

【0016】これらの電池を60℃の温度で充放電サイ
クル試験を行い、0.2C(A)の定電流、セルあたり
2.25V準定電圧方式で過充電を行い、1週間ごとに
放電容量を測定して、初期の放電容量の50%を維持で
きなくなった時点を寿命サイクルとした。
These batteries were subjected to a charge / discharge cycle test at a temperature of 60 ° C., overcharged with a constant current of 0.2 C (A) and a quasi-constant voltage system of 2.25 V per cell, and the discharge capacity was changed every one week. Was measured, and the point at which 50% of the initial discharge capacity could not be maintained was defined as the life cycle.

【0017】図3は集電体の作製に際して希硫酸中に添
加されている金属イオンと電池の寿命サイクルの関係を
示したものである。AはBa,Sn,Bi,Ti,Sr
のイオンが1種類のみ含まれるものであり、BはBa−
Bi,Ba−Sn,Ba−Ti,Bi−Snの2種類が
含まれるものであり、CはBaとLi,Na,Kの少な
くとも1種類、SnとLi,Na,Kの少なくとも1種
類、BaとBe,Mgの少なくとも1種類が含まれるも
のである。この結果、Ba,Sn,Bi,Ti,Srの
イオンを少なくとも1種含む溶液中で電解酸化した集電
体を用いた電池は、いずれも比較例の電池(R)に比べ
て寿命サイクルのレベルが高く、正極の耐過充電性が優
れていることが実証された。また、上記の有効な金属イ
オンを単独で添加した場合よりも、複数の金属イオンを
複合して添加した場合のほうがより効果が高かった。ま
た、アルカリ金属やアルカリ土類金属のうち原子番号の
小さいLi,Na,Kなどの金属のイオンを単独で添加
した場合は効果が少ないが、上記の有効な金属イオンと
共に添加すると効果が助長された。これらのことから、
ここに示された有効な添加イオン(Ba,Sn,Bi,
Ti,Srのイオン)以外に、単独での添加効果は薄い
金属イオンを有効な添加イオンと共存させて本発明に適
用することも有効であることが分かった。
FIG. 3 shows the relationship between the metal ions added to dilute sulfuric acid during the production of the current collector and the life cycle of the battery. A is Ba, Sn, Bi, Ti, Sr
B is Ba-
Bi, Ba-Sn, Ba-Ti, and Bi-Sn are included, and C is Ba and at least one of Li, Na, and K, Sn and at least one of Li, Na, and K, and Ba. And Be, and at least one of Mg is contained. As a result, the battery using the current collector electrolytically oxidized in the solution containing at least one of Ba, Sn, Bi, Ti, and Sr ions has a life cycle level higher than that of the battery (R) of the comparative example. It was proved that the positive electrode was excellent in overcharge resistance. Further, the effect was higher when a plurality of metal ions were added in combination than when the above-mentioned effective metal ions were added alone. In addition, when an ion of a metal such as Li, Na, K having a small atomic number among alkali metals and alkaline earth metals is added alone, the effect is small, but when added together with the above effective metal ions, the effect is promoted. It was from these things,
The effective added ions (Ba, Sn, Bi,
In addition to Ti and Sr ions), it was found that the addition effect by itself is also effective when the present invention is applied to the present invention by allowing thin metal ions to coexist with effective addition ions.

【0018】図4はBaイオンを添加した場合につい
て、活物質材料を充填する時期の違いによる電池の寿命
サイクルへの影響を比較した結果である。電解酸化(工
程I)の後、活物質を充填した場合(S1)よりも、工
程Iを経て大気中に暴露(工程II)した後に充填した場
合(S2)に、より優れた寿命サイクルが得られた。な
お工程I、IIを複数回繰り返した後に活物質材料を充填
した場合(S3)はS2よりもさらに優れた寿命サイク
ルが得られ、本発明の効果が一層高まることが分かっ
た。尚、鉛合金の生地から一旦表面が酸化された後で、
酸化層を一旦放電し、表面を硫酸鉛として、その硫酸鉛
を酸化し酸化物層を形成する場合も基本的に本発明と同
様の効果が得られる。
FIG. 4 shows the results of comparing the effects on the life cycle of the battery due to the difference in the timing of filling the active material when Ba ions were added. A better life cycle is obtained when the active material is filled after exposure to the atmosphere (step II) through step I (S2) than when the active material is filled after electrolytic oxidation (step I) (S1). Was given. It has been found that when the active material material is filled after repeating the steps I and II a plurality of times (S3), a life cycle more excellent than that of S2 is obtained, and the effect of the present invention is further enhanced. In addition, after the surface is once oxidized from the lead alloy cloth,
Even when the oxide layer is once discharged to form lead sulfate on the surface and the lead sulfate is oxidized to form an oxide layer, basically the same effect as that of the present invention can be obtained.

【0019】[0019]

【発明の効果】本発明は鉛以外の特定の金属イオンを添
加した希硫酸中で電解酸化する工程を経由して耐酸化性
の高い保護層を形成した集電体を構成することにより、
極板の正極の耐過充電性を高め、これを用いた鉛蓄電池
の寿命サイクルを大きく向上させるものである。
EFFECTS OF THE INVENTION The present invention comprises a current collector having a protective layer with high oxidation resistance formed through a process of electrolytic oxidation in dilute sulfuric acid containing a specific metal ion other than lead.
It is intended to improve the overcharge resistance of the positive electrode of the electrode plate and greatly improve the life cycle of the lead storage battery using the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプロセスの特徴を説明するフロー図1 is a flow diagram illustrating the features of the process of the present invention.

【図2】本発明の構造を説明する集電体および極板の断
面図
FIG. 2 is a sectional view of a current collector and an electrode plate for explaining the structure of the present invention.

【図3】添加成分と寿命サイクルの関係を示す図FIG. 3 is a diagram showing the relationship between additive components and life cycle.

【図4】充填工程のタイミングと寿命サイクルの関係を
示す図
FIG. 4 is a diagram showing the relationship between the timing of the filling process and the life cycle.

【符号の説明】[Explanation of symbols]

1 集電体基材 2 電解酸化層 3 二酸化鉛活物質層 1 Current collector base material 2 Electrolytic oxidation layer 3 Lead dioxide active material layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−83616(JP,A) 特開 昭60−77358(JP,A) 特開 昭53−19531(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/68 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-8-83616 (JP, A) JP-A-60-77358 (JP, A) JP-A-53-19531 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/68

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鉛または鉛合金からなる集電体基材をバ
リウム、ストロンチウム、ビスマス、すず、ゲルマニウ
ム、セレンから選ばれた少なくとも一つ以上の金属イオ
ンを含む希硫酸中において二酸化鉛の電位以上の電位で
電解酸化する工程を備えることを特徴とする鉛蓄電池用
集電体の製造法。
1. A current collector base material made of lead or a lead alloy in a dilute sulfuric acid containing at least one metal ion selected from barium, strontium, bismuth, tin, germanium, and selenium and having a potential of lead dioxide or more. A method of manufacturing a current collector for a lead storage battery, comprising a step of electrolytically oxidizing at a potential of 1.
【請求項2】 電解酸化する工程に次いで、集電体基材
を酸素を含む雰囲気中に暴露する工程を備えることを特
徴とする請求項1記載の鉛蓄電池用集電体の製造法。
2. The method for producing a current collector for a lead storage battery according to claim 1, further comprising the step of exposing the current collector base material to an atmosphere containing oxygen after the step of electrolytic oxidation.
JP09649996A 1996-04-18 1996-04-18 Manufacturing method of current collector for lead-acid battery Expired - Fee Related JP3475650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09649996A JP3475650B2 (en) 1996-04-18 1996-04-18 Manufacturing method of current collector for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09649996A JP3475650B2 (en) 1996-04-18 1996-04-18 Manufacturing method of current collector for lead-acid battery

Publications (2)

Publication Number Publication Date
JPH09283151A JPH09283151A (en) 1997-10-31
JP3475650B2 true JP3475650B2 (en) 2003-12-08

Family

ID=14166800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09649996A Expired - Fee Related JP3475650B2 (en) 1996-04-18 1996-04-18 Manufacturing method of current collector for lead-acid battery

Country Status (1)

Country Link
JP (1) JP3475650B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5303837B2 (en) * 2005-08-08 2013-10-02 株式会社Gsユアサ Positive electrode current collector for lead acid battery and method for producing the same

Also Published As

Publication number Publication date
JPH09283151A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JP4444373B2 (en) Lead-acid battery paste having a tin compound and its production and use
JP3475650B2 (en) Manufacturing method of current collector for lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JP3458594B2 (en) Current collector for lead-acid battery, method of manufacturing the same, and electrode plate using the same
JPH0275156A (en) Cd-containing powder and negative electrode material for alkaline storage battery
JP4854157B2 (en) Chemical conversion method for positive electrode plate and lead acid battery
Chelali et al. Electrochemical behavior of α-and β-PbO2. Part I: proton diffusion from “all solid-state” protonic electrolyte
JP2006324258A (en) Lithium secondary battery and its manufacturing method
JPH0837001A (en) Positive electrode plate for lead-acid battery and manufacture of the electrode plate
JP2762730B2 (en) Nickel-cadmium storage battery
JP2553624B2 (en) Paste type cadmium negative electrode
JP2553858B2 (en) Lead acid battery
JPH0410181B2 (en)
JP2518090B2 (en) Lead acid battery
JP3108144B2 (en) Method for producing nickel positive electrode plate for alkaline storage battery
JP2008034286A (en) Closed lead battery
JPH0589873A (en) Negative electrode plate for lead-acid storage battery
JP2002343413A (en) Seal type lead-acid battery
JP2004327157A (en) Storage battery
JP2000173643A (en) Lead-acid battery
JPS61198574A (en) Lead storage battery
JPH10134810A (en) Manufacture of lead-acid battery
JPH0654661B2 (en) Sealed lead acid battery
JPH08241718A (en) Lead-acid battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees