JPS61198574A - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JPS61198574A
JPS61198574A JP60038459A JP3845985A JPS61198574A JP S61198574 A JPS61198574 A JP S61198574A JP 60038459 A JP60038459 A JP 60038459A JP 3845985 A JP3845985 A JP 3845985A JP S61198574 A JPS61198574 A JP S61198574A
Authority
JP
Japan
Prior art keywords
lead
anode
antimony
electrolyte
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60038459A
Other languages
Japanese (ja)
Other versions
JPH0548586B2 (en
Inventor
Yoshinari Morimoto
森本 佳成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP60038459A priority Critical patent/JPS61198574A/en
Publication of JPS61198574A publication Critical patent/JPS61198574A/en
Publication of JPH0548586B2 publication Critical patent/JPH0548586B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a lead storage battery which has superior recovering ability after being left discharged by being provided with a negative plate having greater capacity than a positive electrode and making the ratio of theoretical discharge capacity of a positive plate against that of electrolyte to be less than one. CONSTITUTION:The battery is provided with a positive electrode and a negative plate which has greater capacity than the positive electrode, and the ratio of theoretical discharge capacity of the positive plate against that of electrolyte is made less than one. Thus, even if a battery being left discharged, the positive plate comes under every low atmosphere of electrolyte. Hence, since inactive PbSO4 increases dissolving ability and charging current is prevented from decreasing due to passivation during the constant-voltage charging, charging performance can be enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池の性能改善に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improving the performance of lead-acid batteries.

従来の技術 従来、主に使用されている鉛蓄電池用格子の鉛合金は鉛
−アンチモン系(他に、ヒ素、スズなどを含む)、鉛−
カルシウム系(他に、スズ、アルミニウム等を含む)な
どの鉛合金がある。
Conventional technology Conventionally, the lead alloys mainly used in grids for lead-acid batteries are lead-antimony (also containing arsenic, tin, etc.), lead-antimony, etc.
There are lead alloys such as calcium-based (also containing tin, aluminum, etc.).

鉛−アンチモン系鉛合金を用いた場合、アンチモン含有
量が396以上含有させた場合には機械的強度も優れ、
作業性や応力腐食などに対する耐久性もよく、多く使用
されているが、格子中に含まれるアンチモンや、陽極格
子から酸化を受けて溶出したSbS+イオンが陰極でS
b計となり電析したりすることによって生成したアンチ
モンは□陰極の水素過電圧を下げるため、充電時に水の
電気分解を起こし易(、しかも、放置中に陰極板表面で
局部電池反応を起こして自己放電を多くするなどの欠点
があった。
When a lead-antimony based lead alloy is used and the antimony content is 396 or more, the mechanical strength is excellent,
It is widely used because of its good workability and durability against stress corrosion, but the antimony contained in the lattice and the SbS+ ions eluted from the anode lattice through oxidation are Sb at the cathode.
Antimony, which is produced by electrodeposition as a battery, lowers the hydrogen overvoltage at the cathode, making it more likely to cause electrolysis of water during charging (and, moreover, cause a local cell reaction on the surface of the cathode plate when left unused, resulting in self-destruction). There were drawbacks such as increased discharge.

それらの問題を改善するため、機械強度が比較的優れた
鉛−カルシウム系合金が一部に使用されている。しかし
ながら、この種の合金を使用した電池は深い充放電をく
り返すと、陽極において、陽極活物質と格子体の界面に
不動態性の被膜が形成され、電池容量が早期に低下する
という問題や完全放電後、定電圧充電時に充電電流が流
れ難くなり、容量が十分回復されずに電池特性が劣化す
るという欠点があった。
In order to improve these problems, lead-calcium alloys, which have relatively good mechanical strength, are used in some parts. However, when batteries using this type of alloy are repeatedly charged and discharged deeply, a passive film is formed at the interface between the anode active material and the lattice at the anode, causing a problem in which the battery capacity quickly decreases. After complete discharge, charging current becomes difficult to flow during constant voltage charging, and the battery characteristics are deteriorated without sufficient capacity recovery.

とくに、陽極格子合金に実質的にアンチモンを含まない
鉛合金(例えば、鉛−カルシウム、鉛−スズ、鉛−スト
ロンチウム合金など)を用いた場合や使用中の電解液の
減少を抑制するために水の電解電圧を高めるため陰極板
の格子合金に、実質的にアンチモンを含まない前記の如
く鉛合金などを組み合せた場合、陽極格子合金にアンチ
モン含有量が3%以下の鉛−アンチモン系鉛合金を用い
た構成の鉛蓄電池においては、放電放置すると定電圧充
電時の充電電流が流れ難くなるという欠点を有していた
In particular, when a lead alloy that does not substantially contain antimony (e.g., lead-calcium, lead-tin, lead-strontium alloy, etc.) is used in the anode grid alloy, or when water is used to suppress electrolyte loss during use, In order to increase the electrolytic voltage of the cathode plate, when the grid alloy of the cathode plate is combined with a lead alloy as mentioned above which does not contain substantially antimony, the anode grid alloy is combined with a lead-antimony based lead alloy with an antimony content of 3% or less. The lead-acid battery having the structure used had a drawback in that if it was left to discharge, it became difficult for the charging current to flow during constant voltage charging.

発明が解決しようとする問題点 本発明は、上記の点に鑑冬、陽極格子に396以下のア
ンチモンを含有し、陰極格子に実質的にアンチモンを含
まない構成の鉛蓄電池の定電圧充電性を改良する方法を
提供することを目的とする。
Problems to be Solved by the Invention The present invention addresses the above points and improves the constant voltage chargeability of a lead-acid battery having a structure in which the anode lattice contains antimony of 396 or less and the cathode lattice contains substantially no antimony. The purpose is to provide a method for improving.

問題点を解決するための手段 本発明は、陽極と該陽極より大なる容量を有する陰極板
を備え、電解液の理論放電容量に対する陽極板の理論放
電容量の比が1未満であることを特徴とするものである
Means for Solving the Problems The present invention is characterized in that it comprises an anode and a cathode plate having a larger capacity than the anode, and the ratio of the theoretical discharge capacity of the anode plate to the theoretical discharge capacity of the electrolyte is less than 1. That is.

作用 上記特徴を有することにより、放電放置した場合でも、
陽極板は非常に低い電解液雰囲気と亙゛ なり、それによって、不活性4bso4は溶解度を増し
、定電圧充電時の不動態化による充電電流の低下が抑制
され、充電性が高めることができる。
Effect: Due to the above features, even when left undischarged,
The anode plate has a very low electrolyte atmosphere, thereby increasing the solubility of the inert 4bso4, suppressing a decrease in charging current due to passivation during constant voltage charging, and improving charging performance.

実施例 本発明の一実施例を説明する。Example An embodiment of the present invention will be described.

鋳造によって、sb含有量が1.5 %、2.996.
4.3%(他はAs O,3%5、Sn 0.5 %5
、Se O,05%含む)3種の陽極格子と、鋳造によ
って得たPb −0,0696Ca−0,396Sn 
−0,0296AIから成る陰極格子を用いた。各格子
体に所定の活物質ペーストを充填、乾燥して、常法に従
って、隔離体と共に電槽に挿入した後、希硫酸を注入し
て初充電し、電解液比重は1.280に調整した。
By casting, the sb content is 1.5%, 2.996.
4.3% (others are As O, 3%5, Sn 0.5%5
, Se O, 05%) and Pb-0,0696Ca-0,396Sn obtained by casting.
A cathode grid consisting of -0,0296 AI was used. Each grid body was filled with a specified active material paste, dried, and inserted into a battery case together with a separator according to a conventional method. Dilute sulfuric acid was then injected for initial charging, and the electrolyte specific gravity was adjusted to 1.280. .

上記電池作成において、第1青に示す如(、sb含有量
の異なる陽極格子について陽極理論容量を種々変化させ
た活物質量とするようにペーストを充填して試作した。
In the above battery production, as shown in the first blue (1), trial production was carried out by filling the paste so that the anode lattice with different sb content had an amount of active material with various changes in the anode theoretical capacity.

尚、陰極理論容量は、各電池共、陽極容量より大とした
。試作電池では陽極理論容量の1.3倍の容量を有する
ように作成した。
Note that the theoretical capacity of the cathode was larger than the capacity of the anode for each battery. The prototype battery was made to have a capacity 1.3 times the theoretical capacity of the anode.

第1表 [ ] 外し、2週間40℃水槽中で開路で放置した。しかるの
ち、40℃で2.5V/セルの定電圧(制限電流30A
)充電したときの30分目の電流を測定した。
Table 1 [ ] It was removed and left open in a 40°C water tank for two weeks. After that, a constant voltage of 2.5 V/cell (limited current 30 A) was applied at 40°C.
) The current was measured 30 minutes after charging.

第2表はそのときの充電電流をまとめて示したものであ
る。
Table 2 summarizes the charging currents at that time.

第2表 理論放電容量対比で1以上の電池(a系、b系)は陽極
格子合金中のアンチモン含有量が低くなると充電電流が
流れ難くなり、陽極板の不動態化がアンチモン含有量が
低下すると起こり易いことを示している。それに対し、
陽極の理論放電容量を電解液の理論放電容量対比で1未
満の電池(d系、a系)は陽極格子合金中のアンチモン
含有量がいずれの場合でも充電性は良好であった。放電
容量比が1に近い電池(C系)ではSb含有量が低下す
ると充電電流が若干低下する傾向にあるが、10分以後
は30Aを記録した。
Table 2 For batteries with a theoretical discharge capacity of 1 or more (A series, B series), when the antimony content in the anode lattice alloy decreases, the charging current becomes difficult to flow, and the passivation of the anode plate causes the antimony content to decrease. This shows that it is likely to occur. For it,
Batteries (D series, A series) in which the theoretical discharge capacity of the anode was less than 1 compared to the theoretical discharge capacity of the electrolyte had good chargeability regardless of the antimony content in the anode lattice alloy. In batteries (C series) with a discharge capacity ratio close to 1, the charging current tends to decrease slightly as the Sb content decreases, but 30 A was recorded after 10 minutes.

この結果より、陽極格子のアンチモン含有率が3%以下
の場合、不動態被膜を形成させないようにするためには
、電解液の理論放電容量に対する陽極板の理論放電容量
の比を1未満とすることが放電後の充電性の向上に効果
があることがわかった。
From this result, when the antimony content of the anode lattice is 3% or less, in order to prevent the formation of a passive film, the ratio of the theoretical discharge capacity of the anode plate to the theoretical discharge capacity of the electrolyte should be less than 1. It was found that this is effective in improving chargeability after discharging.

本発明の要点は、陽極格子合金中のアンチモン含有率が
3%以下の陽極板から成る電池構成において、陽極板の
理論放電容量が陰極板の理論放電容量以下の場合、陽極
板の理論放電容量を電解液の理論放電容量対比で1未渦
とすることにより放電、あるいは放置によって、陽極板
で生成した電気化学的に不活性な硫酸鉛を溶解せしめる
ような容量比を維持することにより、充電時の充電過電
圧の上昇を抑制でき、充電過電圧を規制する定電圧充電
でも充電が入り易い状態になるためと考えられる。
The gist of the present invention is that in a battery configuration consisting of an anode plate in which the antimony content in the anode lattice alloy is 3% or less, if the theoretical discharge capacity of the anode plate is less than or equal to the theoretical discharge capacity of the cathode plate, the theoretical discharge capacity of the anode plate is The electrolyte can be charged by maintaining a capacity ratio that dissolves the electrochemically inert lead sulfate produced on the anode plate by discharging by setting it to 1 vortex compared to the theoretical discharge capacity of the electrolyte, or by leaving it for a while. It is thought that this is because the increase in charging overvoltage can be suppressed during charging, and charging can easily occur even with constant voltage charging that regulates charging overvoltage.

格子合金中にアンチモン含有量が多い場合には放電後の
放置中に陽極板の自己放電反応によってアンチモンが溶
出し易く、それによって、集電体である格子表面での不
動態性の被膜の生成は起こり難いか、起こったとしても
、電気的に活性な状態に維持されているものと考えられ
るが詳細は不明である。
If the lattice alloy contains a large amount of antimony, antimony is likely to be eluted by the self-discharge reaction of the anode plate during standing after discharge, resulting in the formation of a passive film on the lattice surface, which is the current collector. It is thought that this is unlikely to occur, or even if it does occur, it is maintained in an electrically active state, but the details are unknown.

なお、本実施例では格子体として鋳造格子体を用いたも
のを挙げたが、機械加工などによって得られるエキスバ
ンド格子を用いた場合でも同様な効果が期待できる。
Although this embodiment uses a cast lattice as the lattice, similar effects can be expected even when an expanded lattice obtained by machining or the like is used.

発明の効果 上述のように、本発明によれば、鉛蓄電池の放電放置後
の回復性のよい鉛蓄電池が得られる。
Effects of the Invention As described above, according to the present invention, a lead-acid battery with good recovery properties after being left to discharge can be obtained.

点工業的価値甚だ大なるものである。Its industrial value is enormous.

Claims (3)

【特許請求の範囲】[Claims] (1)陽極と該陽極より大なる容量を有する陰極板を備
え、電解液の理論放電容量に対する陽極板の理論放電容
量の比が1未満であることを特徴とする鉛蓄電池。
(1) A lead-acid battery comprising an anode and a cathode plate having a larger capacity than the anode, the ratio of the theoretical discharge capacity of the anode plate to the theoretical discharge capacity of the electrolyte being less than 1.
(2)陽極板が鉛−アンチモン系鉛合金、陰極板が実質
的にアンチモンを含まない鉛合金から成ることを特徴と
する特許請求の範囲第1項記載の鉛蓄電池。
(2) The lead-acid battery according to claim 1, wherein the anode plate is made of a lead-antimony-based lead alloy, and the cathode plate is made of a lead alloy that does not substantially contain antimony.
(3)陽極格子が3重量パーセント以下のアンチモンを
含んで成る鉛−アンチモン系鉛合金であることを特徴と
する特許請求の範囲第1項記載の鉛蓄電池。
(3) The lead-acid battery according to claim 1, wherein the anode grid is a lead-antimony based lead alloy containing 3 weight percent or less of antimony.
JP60038459A 1985-02-27 1985-02-27 Lead storage battery Granted JPS61198574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038459A JPS61198574A (en) 1985-02-27 1985-02-27 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038459A JPS61198574A (en) 1985-02-27 1985-02-27 Lead storage battery

Publications (2)

Publication Number Publication Date
JPS61198574A true JPS61198574A (en) 1986-09-02
JPH0548586B2 JPH0548586B2 (en) 1993-07-21

Family

ID=12525839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038459A Granted JPS61198574A (en) 1985-02-27 1985-02-27 Lead storage battery

Country Status (1)

Country Link
JP (1) JPS61198574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925110A (en) * 1987-12-28 1990-05-15 Toyota Jidosha Kabushiki Kaisha Fuel injection valve for an internal combustion engine having a pillar opposing a fuel injection hole
US4982716A (en) * 1988-02-19 1991-01-08 Toyota Jidosha Kabushiki Kaisha Fuel injection valve with an air assist adapter for an internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108181A (en) * 1979-02-14 1980-08-19 Yuasa Battery Co Ltd Lead storage battery
JPS5827625A (en) * 1981-08-07 1983-02-18 Nikko Aamuzu Kk Apparatus for mixing fluids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55108181A (en) * 1979-02-14 1980-08-19 Yuasa Battery Co Ltd Lead storage battery
JPS5827625A (en) * 1981-08-07 1983-02-18 Nikko Aamuzu Kk Apparatus for mixing fluids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925110A (en) * 1987-12-28 1990-05-15 Toyota Jidosha Kabushiki Kaisha Fuel injection valve for an internal combustion engine having a pillar opposing a fuel injection hole
US4982716A (en) * 1988-02-19 1991-01-08 Toyota Jidosha Kabushiki Kaisha Fuel injection valve with an air assist adapter for an internal combustion engine

Also Published As

Publication number Publication date
JPH0548586B2 (en) 1993-07-21

Similar Documents

Publication Publication Date Title
US4166155A (en) Maintenance-free battery
JPS63213264A (en) Lead storage battery
JPH10188963A (en) Sealed lead-acid battery
JPS61198574A (en) Lead storage battery
JP3094423B2 (en) Lead storage battery
JP3102000B2 (en) Lead storage battery
JP2596273B2 (en) Anode plate for lead-acid battery
JPH0770321B2 (en) Sealed lead acid battery
JP2553858B2 (en) Lead acid battery
JPH0234758Y2 (en)
JP2553598B2 (en) Sealed lead acid battery
JPH07147160A (en) Lead-acid battery
JP2003178806A (en) Charging control method of lead-acid battery
JPS61128465A (en) Electrode plate for lead-acid battery
JPH01117279A (en) Lead-acid battery
JP2518090B2 (en) Lead acid battery
JPS6113578A (en) Lead storage battery
JPH01117272A (en) Lead-acid battery
JPS5924500B2 (en) lead acid battery
JPH01128357A (en) Lead storage battery
JPH01143147A (en) Lead storage battery
JPS58209063A (en) Manufacture of plate for lead-acid battery
JPS63207057A (en) Lead storage battery
GB2238159A (en) Lead accumulator
JPS6129100B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees