JPH01143147A - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JPH01143147A
JPH01143147A JP62299133A JP29913387A JPH01143147A JP H01143147 A JPH01143147 A JP H01143147A JP 62299133 A JP62299133 A JP 62299133A JP 29913387 A JP29913387 A JP 29913387A JP H01143147 A JPH01143147 A JP H01143147A
Authority
JP
Japan
Prior art keywords
alloy
characteristic
discharge
concentration
storage performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62299133A
Other languages
Japanese (ja)
Inventor
Koichi Nobeyama
弘一 延山
Shinji Saito
慎治 斉藤
Asahiko Miura
三浦 朝比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP62299133A priority Critical patent/JPH01143147A/en
Publication of JPH01143147A publication Critical patent/JPH01143147A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To improve the overdischarge characteristic and life characteristic by using an electrode plate substrate made of a Pb-Ca-Sb-Zn alloy added with Zn to a lead alloy made of Ca and Sb with the specific weight ratio. CONSTITUTION:The Sb concentration is limited within the range not affecting the self discharge, i.e., 0.01<=Sb<=0.1wt.%, Ca is set to below 0.09wt.% with little cycle capacity deterioration and lattice expansion, and a Pb-Ca-Sb alloy containing Zn is used. As a result, compounds such as Sb2Zn3 and Sb3Zn4 are generated between Zn and Sb to hold the conductivity of an electrode plate substrate, the storage performance is made very excellent because the Sb concentration is limited. The overcharge characteristic, capacity recovery rate, overdischarge characteristic, cycle life, and storage performance can be thereby improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自己放電が小さく過放電特性および寿命特性に
優れた鉛蓄電池を提供するための格子板の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a grid plate for providing a lead-acid battery with low self-discharge and excellent over-discharge characteristics and life characteristics.

従来の技術 鉛蓄電池用格子板合金には、pb −sb系合金及びP
b −Ca系合金が使用されている。しかしpb −s
b系合金では自己放電が太き(、Pb−Ca系合金では
耐食性が劣る。
Conventional grid plate alloys for lead-acid batteries include pb-sb alloys and Pb-sb alloys.
b -Ca-based alloy is used. But pb-s
Self-discharge is large in B-based alloys (and corrosion resistance is poor in Pb-Ca-based alloys).

発明が解決しようとする問題点 pb −sb系合金では、sbの水素過電圧が小さいた
め自己放電が大きく、更に充電時の水の分解が多く水の
減少が大きいという欠点がある。−方Pb −Ca系合
金では、深い放電を行うサイクル使用において寿命が著
しく短く、更に長時間の連続放電や放電状態のまま開路
状態で放置した後の充電が困難になり、容量が極端に減
少する欠点などがある。過放電特性の悪化の原因と深い
放電サイクルによる劣化の原因は、これらの合金格子板
と正極活物質との界面に非可逆性のPbSO4やpbの
酸化物(pbo)が生成し、その為に集電体である格子
と活物質との間の抵抗が裔くなり劣化するものと考えら
れる。
Problems to be Solved by the Invention The pb-sb alloy has disadvantages in that the hydrogen overvoltage of sb is small, so self-discharge is large, and water decomposes frequently during charging, resulting in large water loss. -Pb-Ca alloys have a significantly short lifespan when used in deep discharge cycles, and furthermore, they become difficult to charge after long periods of continuous discharge or are left in an open circuit state in a discharged state, resulting in an extremely reduced capacity. There are some drawbacks. The cause of the deterioration of overdischarge characteristics and the cause of deterioration due to deep discharge cycles is that irreversible PbSO4 and Pb oxide (pbo) are generated at the interface between these alloy lattice plates and the positive electrode active material. It is thought that the resistance between the lattice, which is a current collector, and the active material deteriorates, resulting in deterioration.

問題点を解決するための手段 鉛蓄電池用格子板としては、集電性と活物質保持性に優
れていることと、機械的強度が高く、電導性が良好で耐
食性に優れていなければならない、しかも作業性を含め
た価格が低いことが好ましい。従来の合金においては、
性能的に一長一短であった。 sbを含む合金は活物質
との密着性は良いが、自己放電が大きいという欠点があ
る。まず、そこでSb濃度を従来よりも落とし、自己放
電に影響を及ぼさない範囲、0.01≦sb≦0.1w
t%にsb濃度を限定した。またCaは、サイクル容量
劣化と格子の伸びが少ない0 、09w t%未満とし
た。そしてさらにZnを含有させたPb−Ca−5b合
金を使用することによって、自己放電が小さ(過放電特
性および寿命特性を向上させることができる。
Means to Solve the Problems Grid plates for lead-acid batteries must have excellent current collection and active material retention, high mechanical strength, good conductivity, and excellent corrosion resistance. Moreover, it is preferable that the price including workability is low. In conventional alloys,
There were pros and cons in terms of performance. Although alloys containing sb have good adhesion to active materials, they have the disadvantage of large self-discharge. First, the Sb concentration is lowered than before, and within a range that does not affect self-discharge, 0.01≦sb≦0.1w.
The sb concentration was limited to t%. Further, Ca was set to less than 0.09 wt%, which caused less deterioration of cycle capacity and less elongation of the lattice. Further, by using a Pb-Ca-5b alloy containing Zn, self-discharge is small (over-discharge characteristics and life characteristics can be improved).

作用 Pb −Ca合金では格子集電体自身が粒界腐食によっ
て伸び活物質保持が不能となったり、正極格子板にこの
場合を用いた場合には、負極側のストラップに接触して
短絡した゛りする。またpb−sb金合金はsbが陰極
に溶解析出し電池性能を低下させる。そこでZnを含有
させると、過充電特性、サイクル寿命や保存性能に効果
がある。
In the Pb-Ca alloy, the lattice current collector itself may stretch due to intergranular corrosion and become unable to hold the active material, or if this case is used for the positive electrode lattice plate, it may contact the strap on the negative electrode side and short circuit. do. In addition, in the pb-sb gold alloy, sb is dissolved and deposited at the cathode and degrades battery performance. Therefore, the inclusion of Zn has an effect on overcharge characteristics, cycle life, and storage performance.

これは、Znとsbとの間で5bzZn3及び5b3Z
n4なる化合物が生成して種板基体の導電性を保持させ
てでいると考えられる。またsb濃度を0.01≦sb
≦0.1wt%に限定しているため保存性能も、従来の
Pb −Sn合金に比較して、非常に優れたものとなる
This is because 5bzZn3 and 5b3Z between Zn and sb
It is thought that a compound called n4 is generated to maintain the conductivity of the seed plate substrate. Also, the sb concentration is 0.01≦sb
Since the content is limited to ≦0.1 wt%, the storage performance is also very superior compared to conventional Pb-Sn alloys.

実施例 純pbに0.06wt%のCa、 0.05wt%のs
bおよび1.0wt%のZnを含む格子を作製し、ペー
ストを充填して通常の熟成、乾燥を行って正極板とした
Example 0.06wt% Ca, 0.05wt% S in pure PB
A lattice containing 1.0 wt % of Zn and 1.0 wt % of Zn was prepared, filled with paste, and subjected to normal aging and drying to obtain a positive electrode plate.

化成を行った後電池を組み立て4 Ah−4Vの電池を
作製した。なお比較例としてPb−Ca 0.1%金合
金Pb−5b 5.0%金合金も同様の実験を行った。
After chemical formation, the battery was assembled to produce a 4 Ah-4V battery. As a comparative example, a similar experiment was conducted using a Pb-Ca 0.1% gold alloy and a Pb-5b 5.0% gold alloy.

(1)容量回復率 電池を充電後1.7Ωで24時間放電し、1ケ月間25
°C中で放置して放置後4.9V (1,2A制限)の
定電圧充電を24時間行って初期容量との割合を算出し
た。
(1) Capacity recovery rate After charging the battery, discharge it for 24 hours at 1.7Ω, and then
After being left in a room at °C, constant voltage charging at 4.9 V (1.2 A limit) was performed for 24 hours, and the ratio to the initial capacity was calculated.

(2)過充電特性 電池を25°Cに1′いて1.2Aで7日間充電した後
同様な充放電をくり返し、放電容量が初期の60%にな
るまでの充電電気量で過充電特性を評価した。
(2) Overcharge characteristics After charging the battery at 1.2A for 7 days at 25°C, repeat the same charging and discharging, and check the overcharge characteristics with the amount of electricity charged until the discharge capacity becomes 60% of the initial value. evaluated.

(3)サイクル寿命 放電電流800mAで3.4■まで放電し、400mA
で11時間充電をする充放電サイクルを繰り返し放電時
間が初期の60%になるまでのサイクル数を測定した。
(3) Cycle life Discharge to 3.4■ at a discharge current of 800mA, 400mA
A charge/discharge cycle of charging for 11 hours was repeated, and the number of cycles until the discharge time reached 60% of the initial value was measured.

(4)保存性能 電池を充電後45℃気相中に放置して1ケ月後の容量を
測定し、初期容量に対する割合を算出した。
(4) Storage performance After charging, the battery was left in a gas phase at 45°C, and the capacity was measured one month later, and the ratio to the initial capacity was calculated.

以上の試験で得られた結果を第1図乃至第4図に示す。The results obtained in the above tests are shown in FIGS. 1 to 4.

第1図かられかる様に従来のPb −Ca合金と比較し
て過放電後の容量回復率は著しく  。
As can be seen from Figure 1, the capacity recovery rate after overdischarge is significantly higher than that of conventional Pb-Ca alloys.

増加している。またpb −sbと比較しても優れてい
ることがわかる。第2図からZnを添加した合金では過
充電寿命が長くなり従来の合金よりも優れていることが
わかる。また第3図および第4図からもZnを含有した
合金格子板ではサイクル寿命、保存性能の改善に効果が
あることがわかる。第5図はCa4度に対する格子の伸
びを示しているが、Ca1)1度が0.09wt%まで
は、ゆるやかな増加であるが0.09wt%以上になる
と急激に伸びが増加している。従ってCa濃度は0.0
9wt%未満が適当であることがわかった。
It has increased. It can also be seen that it is superior compared to pb-sb. It can be seen from FIG. 2 that the alloy to which Zn is added has a longer overcharge life and is superior to conventional alloys. Furthermore, it can be seen from FIGS. 3 and 4 that the alloy grid plate containing Zn is effective in improving cycle life and storage performance. FIG. 5 shows the elongation of the lattice with respect to Ca 4 degrees, which shows a gradual increase up to 0.09 wt % of Ca 1 degree, but a rapid increase when it exceeds 0.09 wt %. Therefore, the Ca concentration is 0.0
It has been found that less than 9 wt% is suitable.

発明の効果 本発明のPb −Ca −Sb −Zn合金は、Ca、
、Sbの特性を損わず、機械的強度に優れ、活物質との
密着性も良好で、さらにZnを含有させることによって
過放電放置後の容量回復率、過充電特性、サイクル寿命
、保存性能においても改善できるなどの利点を有する等
工業的価値共だ大なるものである。
Effects of the Invention The Pb-Ca-Sb-Zn alloy of the present invention contains Ca,
, does not impair the properties of Sb, has excellent mechanical strength, and has good adhesion to the active material.Furthermore, by incorporating Zn, the capacity recovery rate after overdischarge, overcharge characteristics, cycle life, and storage performance are improved. It also has great industrial value, as it has the advantage of being able to improve the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は過放電放置後の容量回復率に対して、従来のP
b −Ca合金、pb −sb金合金の比較図第2図は
過充電特性を示す過充it電気量対して、従来の合金と
の比較図、第3図および第4図はサイクル寿命、保存性
能に対して、従来の合金との比較図、第5図はPb−C
a系合金中のCa濃度に対する格子板の伸び比を表わし
た曲線□□□である。 第1図 第2図 第3図 一5b−;g几
Figure 1 shows the capacity recovery rate after overdischarging compared to the conventional P
Comparison diagram of b-Ca alloy and pb-sb gold alloy. Figure 2 is a comparison diagram of overcharged electricity showing overcharging characteristics with conventional alloys. Figures 3 and 4 are graphs of cycle life and storage. A comparison diagram with conventional alloys in terms of performance, Figure 5 shows Pb-C
The curve □□□ represents the elongation ratio of the lattice plate to the Ca concentration in the a-based alloy. Figure 1 Figure 2 Figure 3 Figure 15b-;g 几

Claims (1)

【特許請求の範囲】[Claims] 0.09wt%未満のCaおよび0.01〜0.1wt
%Sbからなる鉛合金にZnを添加したPb−Ca−S
b−Zn合金からなる極板基体を用いることを特徴とす
る鉛蓄電池。
Less than 0.09wt% Ca and 0.01-0.1wt
Pb-Ca-S made by adding Zn to a lead alloy consisting of %Sb
A lead-acid battery characterized by using an electrode plate substrate made of a b-Zn alloy.
JP62299133A 1987-11-27 1987-11-27 Lead storage battery Pending JPH01143147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62299133A JPH01143147A (en) 1987-11-27 1987-11-27 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62299133A JPH01143147A (en) 1987-11-27 1987-11-27 Lead storage battery

Publications (1)

Publication Number Publication Date
JPH01143147A true JPH01143147A (en) 1989-06-05

Family

ID=17868549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62299133A Pending JPH01143147A (en) 1987-11-27 1987-11-27 Lead storage battery

Country Status (1)

Country Link
JP (1) JPH01143147A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152132A (en) * 2007-12-21 2009-07-09 Gs Yuasa Corporation Lead-acid storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152132A (en) * 2007-12-21 2009-07-09 Gs Yuasa Corporation Lead-acid storage battery

Similar Documents

Publication Publication Date Title
JPH10188963A (en) Sealed lead-acid battery
JPH01143147A (en) Lead storage battery
JP3094423B2 (en) Lead storage battery
JP2596273B2 (en) Anode plate for lead-acid battery
JPH01117272A (en) Lead-acid battery
JPH0574464A (en) Sealed lead-acid storage battery
Jenkins et al. Antimony in lead—acid cells IV. Review and design considerations
JP2518090B2 (en) Lead acid battery
JP2553598B2 (en) Sealed lead acid battery
JP3102000B2 (en) Lead storage battery
JPH01117279A (en) Lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP2808685B2 (en) Lead storage battery
JPS61198574A (en) Lead storage battery
JP3496241B2 (en) How to charge lead storage batteries
JPH01117273A (en) Lead-acid battery
JPS6048867B2 (en) lead acid battery
JPH0770321B2 (en) Sealed lead acid battery
JPH01128357A (en) Lead storage battery
JPH04206150A (en) Lead acid battery
JPS62126551A (en) Manufacture of cathode plate for lead-acid battery
JPS62188169A (en) Sealed lead-acid battery
JPS6381769A (en) Lead storage battery
JPS6366854A (en) Lead acid battery
JPS63254680A (en) Lead storage battery