JPH01117273A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JPH01117273A
JPH01117273A JP62276952A JP27695287A JPH01117273A JP H01117273 A JPH01117273 A JP H01117273A JP 62276952 A JP62276952 A JP 62276952A JP 27695287 A JP27695287 A JP 27695287A JP H01117273 A JPH01117273 A JP H01117273A
Authority
JP
Japan
Prior art keywords
discharge
electrolyte
alkaline
metal ions
exist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62276952A
Other languages
Japanese (ja)
Inventor
Koichi Nobeyama
弘一 延山
Shinji Saito
慎治 斉藤
Asahiko Miura
三浦 朝比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP62276952A priority Critical patent/JPH01117273A/en
Publication of JPH01117273A publication Critical patent/JPH01117273A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PURPOSE:To improve corrosion resistance, storage performance, and cycle life by using an electrode plate base body made of a lead alloy containing specific weight ratio of Ca, Pb, and Zn and causing alkaline or alkaline earth metal ions exist in the electrolyte. CONSTITUTION:Using an electrode plate base body made of a Pb-Ca-Sb-Zn alloy made by adding Zn to an alloy made by adding less than 0.09wt.% of Ca and 0.01-0.1wt.% of Sb to Pb, alkaline or alkaline earth metal ions are caused to exist in the electrolyte. If the Sb concentration is specified, effect on self-discharge is reduced and improves the adhesivity to active substances. If the Ca concentration range is specified, the mechanical strength is increased while the deterioration in cycle capacity is reduced. Zn on the other hand reduces the self-discharge and improves overdischarge characteristic and life characteristic. If alkaline metallic ions are caused to exist in the electrolyte, additional or synergistic effect is improved. This improves corrosion resistance, storage performance, overcharge-overdischarge characteristic, and cycle life.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in lead-acid batteries.

従来の技術 従来鉛蓄電池は、長期間放置されたり、過放電状態で放
置されたりすると、充電不可能な状態になり早期に寿命
となることが多い、そこで格子合金のSbを減らして自
己放電を減少させたり、Sbを含まないPb −Ca合
金を使用して、自己放電を減少させている。また充電性
をよくするために電解液中にリン酸やアルカリイオンを
入れていた。
Conventional technology If conventional lead-acid batteries are left unused for long periods of time or left in an over-discharged state, they often become unrechargeable and reach the end of their lifespan prematurely. Sb-free Pb--Ca alloys have been used to reduce self-discharge. Phosphoric acid and alkali ions were also added to the electrolyte to improve charging performance.

発明が解決しようとする問題点 pb −Sb系合金では、Sbの水素過電圧が小さいた
め自己放電が大きく、更に充電時の水の分屏が多(水の
減少が大きいという欠点がある。−方、Pb −Ca系
合金では、深い放電を行うサイクル使用において寿命が
著しく短く、更に長時間の連続放電や放電状態のまま開
路状態で放置した後の充電が困難になり、容量が極端に
減少する欠点などがある。またCafi度が増加すると
格子集電体自身が粒界腐食によって伸びるという現象が
著しくなり、活物質保持が不能となったり、短絡の原因
となる。
Problems to be Solved by the Invention In the pb-Sb alloy, self-discharge is large due to the small hydrogen overvoltage of Sb, and there is also a drawback that water is divided into large portions during charging (water loss is large). , Pb-Ca alloys have a significantly short lifespan when used in deep discharge cycles, and furthermore, it becomes difficult to charge them after long periods of continuous discharge or after being left in an open circuit state in a discharged state, resulting in an extremely reduced capacity. In addition, as the Cafi degree increases, the phenomenon that the lattice current collector itself stretches due to intergranular corrosion becomes significant, making it impossible to retain the active material or causing a short circuit.

一方、過放電されると電解液である硫酸濃度が著しく低
下して、電解液の伝導度が低くなるためやはり充電不能
となり、電解液の伝導性維持が問題の一つとなる。
On the other hand, if the battery is over-discharged, the concentration of sulfuric acid, which is the electrolytic solution, decreases significantly and the conductivity of the electrolytic solution decreases, making it impossible to charge the battery, and maintaining the conductivity of the electrolytic solution becomes a problem.

問題点を解決するだめの手段 鉛蓄電池用格子基体の主たる役割は、活物質の保持と集
電機能にあり、機械的強度が高く、伝導性が良好である
という性質を維持するために耐食性も良好でなければな
らない。Sbを含む合金は、活物質との密着性が良いと
いう長所があり、Sb濃変を、自己放電に影響を及ぼさ
ない範囲0.O1≦Sb≦0.1wt%に限定した。ま
たCaは機械的強度の点で優れているので、サイクル容
量劣化と格子の伸びが少ない0.09wt%未満に限定
した。さらにZnを含有させたPb −Ca −Sb 
−Zn合金を使用することによって、自己放電が小さく
過放電特性および寿命特性を向上させることができる。
The main role of the lattice substrate for lead-acid batteries is to hold the active material and collect current.In order to maintain the properties of high mechanical strength and good conductivity, the grid substrate for lead-acid batteries also has corrosion resistance. Must be in good condition. Alloys containing Sb have the advantage of good adhesion to the active material, and the change in Sb concentration can be kept within a range of 0.00000000 without affecting self-discharge. It was limited to O1≦Sb≦0.1wt%. Further, since Ca is excellent in terms of mechanical strength, it is limited to less than 0.09 wt%, which causes less deterioration of cycle capacity and less elongation of the lattice. Pb-Ca-Sb further containing Zn
- By using the Zn alloy, self-discharge is small and over-discharge characteristics and life characteristics can be improved.

一方、電解液にはアルカリ金属イオンまたはアルカリ土
類金属イオン(アルカリ土類金属の水和物イオンを含む
)が存在し、合金の効果と存在イオンの効果の増成また
は相乗性により、自己放電や過放電放置特性を実用上十
分に満足し得るものとなる。
On the other hand, the electrolyte contains alkali metal ions or alkaline earth metal ions (including alkaline earth metal hydrate ions), and self-discharge occurs due to the effect of the alloy and the synergistic effect of the existing ions. The over-discharge characteristics and over-discharge characteristics are sufficiently satisfactory for practical purposes.

作用 自己放電性能、長期保存性能、過放電放置特性の向上が
図れる。
It is possible to improve self-discharge performance, long-term storage performance, and over-discharge storage characteristics.

実施例 Pb −Ca −Sb系合金にZnを添加することによ
って過充電特性、サイクル寿命、保存性能および過放゛
電特性に効果がある。これはZnとSbとの間で5bt
Zns及び5bsZnaなる化合物が生成して保存性能
や耐食性に関しても従来の合金に比較して、非常に優れ
たものとなる。
Example Adding Zn to the Pb-Ca-Sb alloy has effects on overcharge characteristics, cycle life, storage performance, and overdischarge characteristics. This is 5bt between Zn and Sb.
Compounds Zns and 5bsZna are produced, and the storage performance and corrosion resistance are also very superior compared to conventional alloys.

一方、電解液中の添加物については、過放電後Hす・→
H,01S04ト→PbSO4となるため、充電電流の
担い手としてSO4”−塩のカチオンが必要である。な
かでも電池の他の性質(寿命、容量)への影響を考慮し
て選択しなければならない、その中でアルカリ金属イオ
ンまたはアルカリ土類金属イオン(水和物イオンも含む
)が伝導度として良好であったため、これを選択した。
On the other hand, regarding additives in the electrolyte, H after overdischarge →
Since H,01S04 becomes PbSO4, an SO4”-salt cation is required as a carrier of the charging current.The selection must be made taking into consideration the effect on other properties of the battery (life, capacity). Among them, alkali metal ions or alkaline earth metal ions (including hydrate ions) were selected because they had good conductivity.

本発明の一実施例について説明する。An embodiment of the present invention will be described.

純pbに0.06wt%のCa、、0.05wt%のS
bおよび0.5−t%のZnを含む格子基体を作製し、
ペーストを充填して通常の熟成、乾燥を行って正極板と
した。化成を行った後蓄電池を組み立て4Ah−4Vの
電池を製造した。なお比較例としてPb−CaO01%
合金でも同様の実験を行った。
0.06wt% Ca, 0.05wt% S in pure PB
A lattice substrate containing b and 0.5-t% Zn was prepared,
A positive electrode plate was obtained by filling the paste with conventional aging and drying. After chemical formation, a storage battery was assembled to produce a 4Ah-4V battery. As a comparative example, Pb-CaO01%
Similar experiments were conducted with alloys.

電解液にはNatSO!’F’Y;’sOa  ” 7
HzOをそれぞれ所定濃度(0,1+++ol/l)に
調整し、単独あるいはその混合溶液を電池に注液した。
NatSO for electrolyte! 'F'Y;'sOa'' 7
HzO was adjusted to a predetermined concentration (0, 1 +++ ol/l), and a single solution or a mixed solution thereof was injected into the battery.

このようにして作製した鉛蓄電池を用いて次の特性を評
価した。
The following characteristics were evaluated using the lead-acid battery thus produced.

1 容量回復率 当該電池を充電後1.7Ωで24時間放電し、1A月間
25°C中で放置して放置後4.9 V (1,2A制
限)の定電圧充電を24時間行って初期容量との割合を
算出した。
1 Capacity recovery rate After charging the battery, discharge it at 1.7 Ω for 24 hours, leave it at 25°C for 1 A month, and then charge it at a constant voltage of 4.9 V (limited to 1,2 A) for 24 hours to recover the initial value. The ratio with the capacity was calculated.

2 過充電特性 当該電池を25℃において1.2Aで7日間充電した後
同様な充放電をくり返し放電容量が初期の60%になる
までの充電電気量で過充電特性を評価した。
2. Overcharge characteristics After charging the battery at 1.2 A at 25° C. for 7 days, the same charging and discharging process was repeated, and overcharge characteristics were evaluated based on the amount of electricity charged until the discharge capacity reached 60% of the initial value.

3 サイクル寿命 放電電流800mAで3.4vまで放電し、400mA
で11時間充電をする充放電サイクルを繰り返し放電時
間が初期の60%になるまでのサイクル数を測定した。
3 Cycle life Discharge to 3.4V at a discharge current of 800mA, 400mA
A charge/discharge cycle of charging for 11 hours was repeated, and the number of cycles until the discharge time reached 60% of the initial value was measured.

4 保存性能 当該電池を充電後45°C気相中に放置して3A月後の
容量を測定し、初期容量に対する割合を算出した。
4. Storage performance After charging, the battery was left in a gas phase at 45°C, and the capacity was measured after 3 A months, and the ratio to the initial capacity was calculated.

以上の試験で得られた結果を第1表に示す。The results obtained in the above tests are shown in Table 1.

第1表は、Pb −Ca −Sb −Zn合金格子とP
b −Ca合金格子における電池性能を、更に電解液中
の添加剤の有無あるいは違いを含めて検討した結果を示
したものである。
Table 1 shows the Pb-Ca-Sb-Zn alloy lattice and Pb-Ca-Sb-Zn alloy lattice.
This figure shows the results of examining the battery performance in the b-Ca alloy lattice, including the presence or absence of additives in the electrolytic solution.

第1表かられかるようにPb −Ca合金と比較し・て
過充電特性、保存性能、過放電放置性能及びサイクル寿
命は、いずれも優れていることがわかる。また電解液添
加剤について無添加よりもHa富SOa、MgSO4、
Mg5Oa  ” 7HmOをそれぞれ添加した方が、
すべての性能でより良好な結果を示し、特に過放電放置
性能においては、無添加より遥かに優れており、Pb 
−Ca −Sb −Zn合金格子基体のみの効果と添加
剤の効果とが共存することで加酸または相乗することが
わかった。また図面からCa濃度が0.09wt%以上
になると伸びが急激に増加する。従って、Ca濃度は、
格子基体の伸びが少ない0.09wt%未満に限定した
As can be seen from Table 1, it is found that the overcharge characteristics, storage performance, overdischarge storage performance, and cycle life are all superior compared to the Pb--Ca alloy. Regarding electrolyte additives, Ha-rich SOa, MgSO4,
It is better to add Mg5Oa ”7HmO respectively,
It showed better results in all performances, and in particular, in overdischarge storage performance, it was far superior to no additives, and Pb
It was found that the effect of the -Ca-Sb-Zn alloy lattice substrate alone and the effect of the additive coexist, resulting in oxidation or synergistic effect. Moreover, from the drawing, when the Ca concentration becomes 0.09 wt% or more, the elongation increases rapidly. Therefore, the Ca concentration is
The amount was limited to less than 0.09 wt%, which causes less elongation of the lattice substrate.

発明の効果 びサイクル寿命において改善でき、また電解液にアルカ
リ金属イオン、アルカリ土類金属イオンを添加すること
により、加酸または相乗的に効果がある等工業的価値甚
だ大なるものである。
The effects and cycle life of the invention can be improved, and addition of alkali metal ions and alkaline earth metal ions to the electrolytic solution has an acidic or synergistic effect, which has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はPb −Ca系合金中のCa濃度に対する格子基
体の伸び比を示す曲線図である。
The drawing is a curve diagram showing the elongation ratio of the lattice substrate to the Ca concentration in the Pb-Ca alloy.

Claims (1)

【特許請求の範囲】[Claims] 0.09wt%未満のCaおよび0.01〜0.1wt
%のSbからなる鉛合金にZnを添加したPb−Ca−
Sb−Zn合金からなる極板基体を用い電解液中にアル
カリ金属イオンまたはアルカリ土類金属イオンが存在す
ることを特徴とする鉛蓄電池。
Less than 0.09wt% Ca and 0.01-0.1wt
Pb-Ca- with Zn added to a lead alloy consisting of % Sb
1. A lead-acid battery characterized in that an electrode plate substrate made of an Sb-Zn alloy is used and alkali metal ions or alkaline earth metal ions are present in the electrolyte.
JP62276952A 1987-10-30 1987-10-30 Lead-acid battery Pending JPH01117273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62276952A JPH01117273A (en) 1987-10-30 1987-10-30 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62276952A JPH01117273A (en) 1987-10-30 1987-10-30 Lead-acid battery

Publications (1)

Publication Number Publication Date
JPH01117273A true JPH01117273A (en) 1989-05-10

Family

ID=17576700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62276952A Pending JPH01117273A (en) 1987-10-30 1987-10-30 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPH01117273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152132A (en) * 2007-12-21 2009-07-09 Gs Yuasa Corporation Lead-acid storage battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009152132A (en) * 2007-12-21 2009-07-09 Gs Yuasa Corporation Lead-acid storage battery

Similar Documents

Publication Publication Date Title
US5424145A (en) High capacity rechargeable cell having manganese dioxide electrode
US4247610A (en) Aqueous electrolyte for secondary electrochemical cells
GB2077029A (en) Lead-acid storage batteries and lead oxide compositions for use therein
JPH01117273A (en) Lead-acid battery
US2994626A (en) Low loss battery
JPH01117279A (en) Lead-acid battery
JP2523585B2 (en) Sealed lead acid battery
JP2000012027A (en) Nonaqueous electrolyte secondary battery
JPH1140186A (en) Lead-acid battery
JPH04196059A (en) Lead-acid battery
JP2808685B2 (en) Lead storage battery
JP4742424B2 (en) Control valve type lead acid battery
JPS6266569A (en) Cathode plate for alkaline storage battery
JPS63158749A (en) Zinc electrode for alkaline storage battery
JP2553858B2 (en) Lead acid battery
JPH01143147A (en) Lead storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JP3582068B2 (en) How to charge lead storage batteries
JP4556250B2 (en) Lead acid battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPS61198574A (en) Lead storage battery
JPH01117272A (en) Lead-acid battery
JPH09219214A (en) Alkaline storage battery
JPS6322428B2 (en)
JPH073793B2 (en) Alkaline zinc storage battery