JPS6266569A - Cathode plate for alkaline storage battery - Google Patents

Cathode plate for alkaline storage battery

Info

Publication number
JPS6266569A
JPS6266569A JP60207370A JP20737085A JPS6266569A JP S6266569 A JPS6266569 A JP S6266569A JP 60207370 A JP60207370 A JP 60207370A JP 20737085 A JP20737085 A JP 20737085A JP S6266569 A JPS6266569 A JP S6266569A
Authority
JP
Japan
Prior art keywords
nickel
hydroxide
plate
electrode plate
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60207370A
Other languages
Japanese (ja)
Other versions
JPH0437544B2 (en
Inventor
Hironori Honda
本田 浩則
Shinsuke Nakahori
中堀 真介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60207370A priority Critical patent/JPS6266569A/en
Publication of JPS6266569A publication Critical patent/JPS6266569A/en
Publication of JPH0437544B2 publication Critical patent/JPH0437544B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To retard the formation of gamma-nickel oxyhydroxide in charging to prevent decrease in the strength of electrode plate by containing calcium hydroxide on the surface of a plate containing nickel hydroxide as active material. CONSTITUTION:A sintered nickel hydroxide plate containing nickel hydroxide as active material is immersed in a calcium nitrate solution, then immersed in hot sodium hydroxide solution to contain calcium hydroxide on the surface of the plate. By using this cathode plate, an alkaline storage battery such as nickel-cadmium battery is formed. By adding cadmium hydroxide to only the surface of the plate, the formation of gamma-nickel oxyhydroxide in charging is retarded. Decrease in the strength of the plate caused by swelling and coming-off is prevented and capacity variation in charge-discharge cycling is reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明はアルカリ蓄電池用陽極板に関し、詳しくは、
ニッケル・カドミウム蓄電池の如きアルカリ蓄電池に用
いられる陽極板に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an anode plate for an alkaline storage battery.
The present invention relates to anode plates used in alkaline storage batteries such as nickel-cadmium storage batteries.

〈従来の技術〉 ニッケル・カドミウム蓄電池等のアルカリ蓄電池の陽極
板としては、水酸化ニッケルを活物質として含んでなる
所謂水酸化ニッケル極板が用いられており、焼結式ある
いは非焼結式の各種製法によって、例えば焼結式水酸化
ニッケル極板の場合は、多孔性ニッケル焼結体等ででき
た焼結基板の微孔中に一連の含浸操作によって硝酸ニッ
ケルを保持させ、保持させた硝酸ニッケルをアルカリ置
換等の方法によって活物質である水酸化ニッケルに置換
して作られる。
<Prior art> As the anode plate of an alkaline storage battery such as a nickel-cadmium storage battery, a so-called nickel hydroxide electrode plate containing nickel hydroxide as an active material is used. Depending on various manufacturing methods, for example, in the case of a sintered nickel hydroxide electrode plate, nickel nitrate is retained in the micropores of a sintered substrate made of a porous nickel sintered body through a series of impregnation operations, and the retained nitric acid It is made by replacing nickel with the active material nickel hydroxide using a method such as alkali replacement.

〈発明が解決しようとする問題点〉 ところで、水酸化ニッケル極板に活物質として含有され
る水酸化ニッケルは、通常、充電によって、安定な充電
生成物であるβ型オキシ水酸化ニッケルとなるが、過充
電ないし高電流密度での充電状態においては、β型オキ
シ水酸化ニッケルの他に、生成及び存在が不安定なγ型
オキシ水酸化ニッケルも生成するようになる。
<Problems to be Solved by the Invention> By the way, nickel hydroxide contained as an active material in a nickel hydroxide electrode plate normally becomes β-type nickel oxyhydroxide, which is a stable charging product, by charging. In overcharging or charging at a high current density, in addition to β-type nickel oxyhydroxide, γ-type nickel oxyhydroxide, which is unstable in production and existence, also comes to be produced.

このようなγ型オキシ水酸化ニッケルは、充電時に膨潤
し易く、また充放電サイクルにおける膨張・収縮の繰返
しによって極板から剥がれ易くなり、これが極板のサイ
クル特性並びに寿命を劣化させる1つの要因となってい
る。また、γ型オキシ水酸化ニッケルはβ型オキシ水酸
化ニッケルに比較して容εが大であるが、充放電の繰返
しによって次第にβ型オキシ水酸化ニッケルに変化して
いくことから、水酸化ニッケル極板の25サイクル程度
までの初期容暢が次第に低下していくという不都合があ
る。特に、焼結基板を用いて構成される焼結式水酸化ニ
ッケル極板においては、サイクルの繰返しによって基板
が腐蝕して活物質化し、この活物質化により容量増大を
招くことから、初期サイクルにおいては容量が次第に低
下していき、更にサイクルが進むと逆に容量が増大する
結果、サイクルにおける容量が不安定となり、カドミウ
ム陰極等の対極とのバランスをとることが極めて困難と
なるといった問題がある。
Such γ-type nickel oxyhydroxide tends to swell during charging, and also tends to peel off from the electrode plate due to repeated expansion and contraction during charging and discharging cycles, which is one of the factors that deteriorates the cycle characteristics and life of the electrode plate. It has become. In addition, although γ-type nickel oxyhydroxide has a larger capacity ε than β-type nickel oxyhydroxide, it gradually changes to β-type nickel oxyhydroxide through repeated charging and discharging. There is a disadvantage that the initial fluency gradually decreases until about 25 cycles of the electrode plate. In particular, in a sintered nickel hydroxide electrode plate constructed using a sintered substrate, repeated cycles corrode the substrate and turn it into an active material, and this turning into an active material leads to an increase in capacity. The problem is that the capacity gradually decreases, and as the cycle progresses, the capacity increases, making the capacity unstable during the cycle and making it extremely difficult to balance it with a counter electrode such as a cadmium cathode. .

〈問題点を解決するための手段〉 本発明者は、上記問題点を解決すべく検討した結果、次
の手段を用いた場合には、充電時におけるγ型水酸化ニ
ッケルの生成が極めて低く抑制できて所期の目的を達成
できることを知得し、本発明を完成した。
<Means for Solving the Problems> As a result of studies to solve the above problems, the present inventor found that when the following means is used, the generation of γ-type nickel hydroxide during charging can be suppressed to an extremely low level. The present invention was completed based on the knowledge that it was possible to achieve the intended purpose.

即ち、この発明のアルカリ蓄電池用陽極板は、水酸化ニ
ッケルを活物質として含んでなる極板であって、極板表
面に水酸化カルシウムを含有させたことを要旨とするも
のである。
That is, the anode plate for an alkaline storage battery of the present invention is an electrode plate containing nickel hydroxide as an active material, and the gist thereof is that the surface of the electrode plate contains calcium hydroxide.

尚、水酸化ニッケル極板中に水酸化カルシウムを単に添
加し含有させることは、例えば特公昭53−19086
号公報により従来より知られている。しかしながら、本
発明者の研究によれば、水酸化カルシウムを単に極板中
に含有させただけでは充電時のγ型水酸化ニッケルの抑
制効果は殆んど期待できず、本発明の如き極板表面に含
有させる構成とすることによって始めて著しい効果が発
揮されることがわかっている。
It should be noted that simply adding calcium hydroxide to a nickel hydroxide electrode plate is disclosed in Japanese Patent Publication No. 53-19086, for example.
This is known from the publication No. However, according to the research conducted by the present inventors, it has been found that by simply incorporating calcium hydroxide into the electrode plate, almost no effect of suppressing γ-type nickel hydroxide during charging can be expected; It has been found that significant effects can only be exhibited by incorporating it on the surface.

〈作 用〉 上記手段を用いることにより、充電時におけるγ型オキ
シ水酸化ニッケルの生成を可及的に小さく抑えることが
できる結果、充放電の繰返しにおける極板の膨潤や剥が
れ等の脆弱化が防止できる。また、充電時に生じるγ型
オキシ水酸化ニッケルが少ないことから初期サイクルで
の容量低下が極めて小さいと共に、極板の膨潤並びに剥
がれが殆んどないこと等により焼結基板の腐蝕の度合も
少なくなって初期サイクル以降の容量増加も著しく少な
い。
<Function> By using the above means, the generation of γ-type nickel oxyhydroxide during charging can be suppressed to the lowest possible level, and as a result, embrittlement such as swelling and peeling of the electrode plate due to repeated charging and discharging can be prevented. It can be prevented. In addition, since there is less γ-type nickel oxyhydroxide produced during charging, the capacity drop in the initial cycle is extremely small, and the degree of corrosion of the sintered substrate is also reduced because there is almost no swelling or peeling of the electrode plate. Therefore, the increase in capacity after the initial cycle is also extremely small.

〈実施例〉 公知の方法によって作製した焼結基板を温度80℃の比
重1.75の硝酸ニッケル水溶液中に浸漬し、その後2
5%苛性ンーダ溶液中に浸漬して活物質化するという一
連の含浸操作を5回繰返して焼結式水酸化ニッケル極板
を作製した。
<Example> A sintered substrate prepared by a known method was immersed in a nickel nitrate aqueous solution with a specific gravity of 1.75 at a temperature of 80°C, and then
A sintered nickel hydroxide electrode plate was prepared by repeating a series of impregnation operations five times in which the electrode plate was immersed in a 5% caustic powder solution to form an active material.

この極板を、比@1.3の硝酸カルシウム溶液中に浸漬
し、次いで温度80’Cの25%苛性ソーダ中に浸漬し
て極板表面に水酸化カルシウムを含有させ、本発明に係
る水酸化ニッケル極板を得た。この極板と、公知のカド
ミウム極板とを組合せ、純粋の苛性ソーダを電解液とし
て用いて公称容量約1400mAHのニッケル・カドミ
ウム蓄電池(本発明品A)を作った。
This electrode plate was immersed in a calcium nitrate solution with a ratio of 1.3, and then immersed in 25% caustic soda at a temperature of 80'C to contain calcium hydroxide on the electrode plate surface. A nickel electrode plate was obtained. This electrode plate was combined with a known cadmium electrode plate, and a nickel-cadmium storage battery (product A of the present invention) having a nominal capacity of about 1400 mAH was made using pure caustic soda as an electrolyte.

また、比較用として、硝酸カルシウムを1.5重量%添
加した以外は同様の硝酸ニッケル水溶液を用いて同様な
一連の活物質含浸操作を行なうことで、水酸化カルシウ
ムを極板中に含有させた水酸化ニッケル極板を作り、同
様なカドミウム極板と組合せてニッケル・カドミウム蓄
電池(比較量B)を作った。更に、上記の如き極板表面
あるいは極板中への水酸化カルシウム添加を行なわない
水酸化ニッケル極板に同様なカドミウム極板を組合せた
ニッケル・カドミウム蓄電池(従来品C)を作った。
In addition, for comparison, calcium hydroxide was incorporated into the electrode plate by performing the same series of active material impregnation operations using the same nickel nitrate aqueous solution except that 1.5% by weight of calcium nitrate was added. A nickel hydroxide plate was made and combined with a similar cadmium plate to make a nickel-cadmium storage battery (comparative quantity B). Furthermore, a nickel-cadmium storage battery (conventional product C) was made in which a similar cadmium electrode plate was combined with a nickel hydroxide electrode plate without addition of calcium hydroxide to the surface or inside of the electrode plate as described above.

尚、本発明品A、比較量Bの各々の水酸化ニッケル極板
への水酸化カルシウムの全添加量は同じになるようにし
た。
Incidentally, the total amount of calcium hydroxide added to each of the nickel hydroxide electrode plates of the invention product A and the comparison amount B was made to be the same.

以上の3つのニッケル・カドミウム蓄電池について、夫
々充放電サイクルを行なった時の放電容量のサイクル変
化を調べた。結果は第2図に示す通りであり、本発明品
Aは全シイクルを通じて容量変化が極めて少なく、且つ
サイクル寿命も長いのに対し、比較量B並びに従来品C
はサイクルにおける容量変動が大きく、サイクル寿命も
短いことがわかる。これは、本発明品Aに用いた水酸化
ニッケル極板におけるγ型オキシ水酸化ニッケルの生成
量が極く少なく、またサイクルにおける極板脆弱化が低
く抑えられたためと思われる。
Regarding the three nickel-cadmium storage batteries mentioned above, cycle changes in discharge capacity were investigated when each charge/discharge cycle was performed. The results are shown in Figure 2. Inventive product A shows extremely little change in capacity throughout the cycle and has a long cycle life, whereas comparative product B and conventional product C
It can be seen that the capacity fluctuation during the cycle is large and the cycle life is short. This is thought to be because the amount of γ-type nickel oxyhydroxide produced in the nickel hydroxide electrode plate used in product A of the present invention was extremely small, and the weakening of the electrode plate during the cycle was suppressed to a low level.

ところで、これら3つの蓄電池に用いた各々の水酸化ニ
ッケル極板におけるγ型オキシ水酸化ニッケルの生成量
を調べるべく、これら3つの極板中の活物質のX線回折
を行なった。結果を第1図(A)〜(C)に示す。尚、
第1図(A)は本発明品Aに用いた水酸化ニッケル極板
のX線回折図、第1図CB)、 (C)は夫々比較量B
、従来品Cに用いた水酸化ニッケル極板のX線回折図で
おる。これらの図より、本発明に係る極板はγ型オキシ
水酸化ニッケル(γ−NiOOH)の生成量が著しく少
なく、その分β型オキシ水酸化ニッケル(β−NiOO
I−1)の生成量が大きくなっていることがわかる。ま
た、第1図(八)、 (B)の対比により明らかなよう
に、極板への水酸化カルシウム添加量が同じでおるにも
拘らずγ型オキシ水酸化ニッケル生成抑制効果に差がで
きるのは、水酸化カルシウムの添加位置によりこの抑制
効果に著しい差が生じ、詳細な理由は明らかではないが
、極板表面に添加することにより始めて確実且つ顕著な
抑制効果が得られる。
Incidentally, in order to investigate the amount of γ-type nickel oxyhydroxide produced in each of the nickel hydroxide electrode plates used in these three storage batteries, X-ray diffraction was performed on the active materials in these three electrode plates. The results are shown in FIGS. 1(A) to (C). still,
Figure 1 (A) is the X-ray diffraction diagram of the nickel hydroxide electrode plate used in the invention product A, Figure 1 CB), and (C) are the comparative amounts B, respectively.
, is an X-ray diffraction diagram of the nickel hydroxide electrode plate used in Conventional Product C. From these figures, the electrode plate according to the present invention has a significantly smaller amount of γ-type nickel oxyhydroxide (γ-NiOOH) produced, and a corresponding amount of β-type nickel oxyhydroxide (β-NiOOH).
It can be seen that the amount of I-1) produced is large. Furthermore, as is clear from the comparison between Figure 1 (8) and (B), there is a difference in the effect of suppressing the formation of γ-type nickel oxyhydroxide even though the amount of calcium hydroxide added to the electrode plate remains the same. This is because the suppressing effect varies significantly depending on the position where calcium hydroxide is added, and although the detailed reason is not clear, a reliable and significant suppressing effect can only be obtained by adding calcium hydroxide to the surface of the electrode plate.

〈発明の効果〉 以上のように構成されるこの発明のアルカリ蓄電池用陽
極板によれば、極板表面への水酸化カルシウム添加によ
り、充放電にあける極板の脆弱化が防止されると共に、
充放電サイクルにおける容量変化を可及的に小さくでき
、蓄電池のサイクル特性向上に寄与するといった効果を
奏する。
<Effects of the Invention> According to the anode plate for an alkaline storage battery of the present invention configured as described above, the addition of calcium hydroxide to the surface of the plate prevents the plate from weakening during charging and discharging, and
This has the effect of minimizing the change in capacity during charge/discharge cycles and contributing to improving the cycle characteristics of the storage battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(C)は本発明に係る極板等における極
板中の活物質のX線回折図、第2図は本発明に係る極板
あるいは従来の極板等を用いてなるニッケル・カドミウ
ム蓄電池のサイクル特性を示したグラフでおる。
Figures 1 (A) to (C) are X-ray diffraction diagrams of the active material in the electrode plate according to the present invention, and Figure 2 is the X-ray diffraction diagram of the active material in the electrode plate according to the present invention or the conventional electrode plate. This is a graph showing the cycle characteristics of a nickel-cadmium storage battery.

Claims (1)

【特許請求の範囲】[Claims] 1、水酸化ニッケルを活物質として含んでなる極板であ
つて、極板表面に水酸化カルシウムを含有させたことを
特徴とするアルカリ蓄電池用陽極板。
1. An anode plate for an alkaline storage battery, which is an electrode plate containing nickel hydroxide as an active material, and is characterized by containing calcium hydroxide on the surface of the electrode plate.
JP60207370A 1985-09-19 1985-09-19 Cathode plate for alkaline storage battery Granted JPS6266569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60207370A JPS6266569A (en) 1985-09-19 1985-09-19 Cathode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60207370A JPS6266569A (en) 1985-09-19 1985-09-19 Cathode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS6266569A true JPS6266569A (en) 1987-03-26
JPH0437544B2 JPH0437544B2 (en) 1992-06-19

Family

ID=16538603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60207370A Granted JPS6266569A (en) 1985-09-19 1985-09-19 Cathode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS6266569A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077149A (en) * 1990-09-26 1991-12-31 Matsushita Electric Industrial Co., Ltd. Nickel/hydrogen storage battery and method of manufacturing the same
WO1999043035A1 (en) * 1998-02-20 1999-08-26 Sanyo Electric Co., Ltd. Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
US6548210B1 (en) 1998-11-30 2003-04-15 Sanyo Electric Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319086A (en) * 1976-08-04 1978-02-21 Jiyuuzou Maekawa Compound stress load universal tester
JPS54129331A (en) * 1978-03-29 1979-10-06 Sanyo Electric Co Alkaliizinc storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319086A (en) * 1976-08-04 1978-02-21 Jiyuuzou Maekawa Compound stress load universal tester
JPS54129331A (en) * 1978-03-29 1979-10-06 Sanyo Electric Co Alkaliizinc storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077149A (en) * 1990-09-26 1991-12-31 Matsushita Electric Industrial Co., Ltd. Nickel/hydrogen storage battery and method of manufacturing the same
WO1999043035A1 (en) * 1998-02-20 1999-08-26 Sanyo Electric Co., Ltd. Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
US7063915B1 (en) 1998-02-20 2006-06-20 Sanyo Electric Co., Ltd. Nickel electrode for alkali storage battery, method of producing nickel electrode for alkali storage battery, and alkali storage battery
US7112228B2 (en) 1998-02-20 2006-09-26 Sanyo Electric Co., Ltd. Nickel electrode for alkaline storage battery, method of producing nickel electrode for alkaline storage battery, and alkaline storage battery
CN1307734C (en) * 1998-02-20 2007-03-28 三洋电机株式会社 Nickel electrode for alkali storage battery, method of prodcuing same and alkali storage battery thereof
US6548210B1 (en) 1998-11-30 2003-04-15 Sanyo Electric Co., Ltd. Nickel electrodes for alkaline secondary battery and alkaline secondary batteries

Also Published As

Publication number Publication date
JPH0437544B2 (en) 1992-06-19

Similar Documents

Publication Publication Date Title
US5079110A (en) Alkaline storage cell
KR100386874B1 (en) Alkaline storage battery and method for charging battery
JPS5832473B2 (en) Manufacturing method of sealed nickel-cadmium alkaline storage battery
JPS6266569A (en) Cathode plate for alkaline storage battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP2591988B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH0275156A (en) Cd-containing powder and negative electrode material for alkaline storage battery
JPS5910538B2 (en) Nickel-cadmium alkaline storage battery
JPS61233967A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH04109556A (en) Closed-type secondary battery
JP3225608B2 (en) Nickel hydroxide positive electrode plate for alkaline battery and method for producing the same
JPH01117273A (en) Lead-acid battery
JP2577964B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPH10172559A (en) Nickel active material for alkaline storage battery and manufacture thereof
JP3416174B2 (en) Nickel positive electrode for alkaline storage batteries
JPS63158749A (en) Zinc electrode for alkaline storage battery
JPS6215994B2 (en)
JPS61101955A (en) Alkali zinc storage cell
JP2591986B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JPS6351051A (en) Hydrogen absorption alloy negative electrode for alkaline cell
JPH0239063B2 (en)
JPH0430145B2 (en)
JPS6047376A (en) Lead storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term