JPS63213264A - Lead storage battery - Google Patents

Lead storage battery

Info

Publication number
JPS63213264A
JPS63213264A JP62044803A JP4480387A JPS63213264A JP S63213264 A JPS63213264 A JP S63213264A JP 62044803 A JP62044803 A JP 62044803A JP 4480387 A JP4480387 A JP 4480387A JP S63213264 A JPS63213264 A JP S63213264A
Authority
JP
Japan
Prior art keywords
electrolyte
plate
metal ion
battery
improve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62044803A
Other languages
Japanese (ja)
Inventor
Shinji Saito
慎治 斉藤
Masayuki Terada
正幸 寺田
Takumi Hayakawa
早川 他く美
Asahiko Miura
三浦 朝比古
Akio Komaki
小牧 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP62044803A priority Critical patent/JPS63213264A/en
Publication of JPS63213264A publication Critical patent/JPS63213264A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the overdischarge leaving property by using and incorporating a Pb-Ca family alloy plate and a Pb-Sn family alloy plate to make an electrode base body, and containing an alkaline metal ion, an alkaline earth ion, or a phosphoric acid ion in the electrolyte. CONSTITUTION:On a Pb-0.06 wt.%, Ca-0.3 wt.% Sn alloy plate, a Pb-2.5 wt.% Sn alloy sheet of 0.5 mm thick is laminated and rolled to press the Pb-Sn plate to the Pb-Ca-Sn plate. And an electrode base body of 3 mm thick is produced in a punching, filled with a paste, and aged and dried to make a positive electrode. On the other hand, since the density of sulfric acid of the electrolyte is remarkably reduced and the conductivity of the solution is also remarkably reduced when the battery is overdischarged, the conductivity of not only the grid but also of the electrolyte must be maintained to improve the overdischarge leaving property. As an additive to the electrolyte, in consideration of the influence to the other properties (cycle life, capacity, and the like) of the battery primarily, an alkaline metal ion or an alkaline earth metal ion is preferable. In such a composition, the overdischarge leaving property can be improve remarkably.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、従来の鋳造法を用いずに電極基体表面のSn
含有量を増加させることができ、かを電解液中に存在さ
せることにより、長期間鉛蓄電池を放置したり、過放電
して放置させたりした後でも充電回復性を良好とするこ
とを目的従来の技術 一般に、鉛蓄電池は長期間放置されたり、また過放電の
状態で放置されたりすると充電不可能な状態になる。従
来、このような状態に陥らない様にするために、鉛蓄電
池の格子合金に関して工夫がなされており1例えば電極
基体のsb含有量を減らして自己放電を減少させたり、
減液しないようにするためにSbを含有しないPb−C
a系合金を使ったりしている。また、ものであるために
、格子に導電体をコーティングしたり、活物質中に導電
体を添加したりしている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a method for depositing Sn on the surface of an electrode substrate without using a conventional casting method.
The purpose of this is to improve charge recovery even after a lead-acid battery has been left unused for a long period of time or over-discharged by having it present in the electrolyte. Generally speaking, if a lead-acid battery is left unused for a long period of time or left in an over-discharged state, it becomes unable to be recharged. Conventionally, in order to prevent this situation from occurring, improvements have been made to the lattice alloy of lead-acid batteries.1 For example, reducing the sb content of the electrode substrate to reduce self-discharge;
Pb-C containing no Sb to prevent liquid loss
A-based alloys are also used. Moreover, since it is a material, the grid is coated with a conductor, or the active material is added with a conductor.

さらには、Pb−Ca系合金を用いる場合、一般に鋳造
格子が多いが、pb−sb系合金に比べて渦流れが悪い
こと、鋳造後の強度がpb−sb系合金に比べて劣るた
めに、圧延シートを用いてエキスバンド加工したものが
考えられイ玉^ 発明が解決しようとする問題点 過放電放置後の充電回復性を良好とするために格子に導
電体をコーティングしても導電体と格子本体または活物
質との結合か弱いために格子からはくすしたり、また、
導電体自身が耐酸性、耐酸化性において劣るために実用
化されに(い。活物質中に導電体を添加しても格子との
界面に存在させにくいので、実用には供しにくいため格
子合金として特性を回復させるようにしている。この場
合、Pb−0o系合金にSnを含有させて鋳造性と共に
過放電放置特性を向上させることが実用化されているが
、Snはpbに比べて高価であるために添加量も制限さ
れ、その量によって性能も限界となり工業的にはむずか
しい。さらに、鉛蓄電池の現実の使用の際には、完全充
電下で使用されるとは限らず極端な場合には希硫酸がほ
とんどない状態で放置されることもある。この様な条件
下ではいくらPb−Ca−Sn系合金を用いても充電不
可能となる。
Furthermore, when using Pb-Ca alloys, cast lattices are generally used, but the vortex flow is poorer than that of pb-sb alloys, and the strength after casting is inferior to that of pb-sb alloys. It is conceivable to use a rolled sheet with an expanded band process.Problems to be solved by the inventionEven if the grid is coated with a conductor in order to improve the charge recovery after over-discharging, the conductor will not become a conductor. Due to weak bonding with the lattice body or active material, it may be removed from the lattice, or
The conductor itself has poor acid resistance and oxidation resistance, so it has not been put into practical use. In this case, it has been put into practical use to add Sn to the Pb-0o alloy to improve castability and overdischarge characteristics, but Sn is more expensive than Pb. Therefore, the amount added is limited, and the amount limits the performance, making it difficult to use industrially.Furthermore, in actual use of lead-acid batteries, they are not always used fully charged, and in extreme cases. In some cases, the battery is left in a state where there is almost no dilute sulfuric acid.Under such conditions, no matter how much Pb-Ca-Sn alloy is used, charging becomes impossible.

本発明は上記問題点をすべて解決した鉛蓄電池を提供す
るものである。
The present invention provides a lead-acid battery that solves all of the above problems.

問題点を解決するための手段 本発明は、従来の格子(鋳造、シートエキスバント)ニ
対してSn含有量を格子表面部に増加させるためにPb
−0o系合金板とPb−Sn系合金板とを用いてまず一
体化して板片とし、それを素材と鉛蓄電池の111極基
体とし、がっ、電解液中に、アルカリ金属イオンやアル
カリ土類イオンまたはリン酸イオンが存在するようにし
た鉛蓄電池である。
Means for Solving the Problems The present invention discloses the use of Pb to increase the Sn content on the surface of the lattice compared to conventional lattices (casting, sheet extract).
-0o alloy plate and Pb-Sn alloy plate are first integrated into a plate piece, which is used as a material and the 111 electrode base of a lead-acid battery. This is a lead-acid battery in which similar ions or phosphate ions are present.

作用 鉛蓄電池は充電せずに長期間放置すると自己放電により
充電不能な状態になり、また深い放電後放置されると同
様に充電不能な状態となる。
If a lead-acid battery is left uncharged for a long period of time, it will become unrechargeable due to self-discharge, and if it is left uncharged after deep discharge, it will also become unrechargeable.

この原因としては、正極板の内部抵抗が著しく上昇する
ためであり、その上昇させる要因は恐らく次の様に考え
られる。鉛蓄電池か過放電されると電解液比重が低下し
、極板内部の基体近傍では表面に比べてさらに低下して
いる。この場合電極基体のPbの溶解度か上昇し、P 
b”?が生成すると正極基体近傍の活物質であるpbo
tはPHが高くなると不安定になり1局部電池反応ヲ形
成シ、PbO,+Pb+2H* SO,−1−2P b
 S 04 +2 H* 0 トh ッテP b S 
O4ヲ生成する。同時にPb5O,JtP)(か高いと
溶解析出をくり返して結晶か成長し非還元性のPb5o
、が基体界面を被覆するようになる。さらには、上記局
部電池反応でH,804か消費されると正極電位か低下
して−400〜−200m V (V S 、 HP 
/ H、S’ t 80− ) e ライt m”とP
b (電極基体)+5O247,Pb5O,+2e−の
局部電池反応が相乗して生ずるよう番ζなり(E * 
−−370m V  v s  HS’/ HP*8C
a)。
The reason for this is that the internal resistance of the positive electrode plate increases significantly, and the factors causing this increase are probably as follows. When a lead-acid battery is over-discharged, the specific gravity of the electrolyte decreases, and it is even lower near the base inside the electrode plate than at the surface. In this case, the solubility of Pb in the electrode substrate increases, and Pb
When b”? is generated, pbo, which is an active material near the positive electrode substrate,
t becomes unstable as the pH increases, forming a local cell reaction, PbO, +Pb+2H* SO, -1-2P b
S 04 +2 H* 0 Toh tteP b S
Generates O4. At the same time Pb5O, JtP)
, comes to cover the substrate interface. Furthermore, when H,804 is consumed in the above local battery reaction, the positive electrode potential decreases to -400 to -200 mV (VS, HP
/ H, S' t 80-) e light t m" and P
b (Electrode base) The order is ζ so that the local battery reactions of +5O247, Pb5O, +2e- occur synergistically (E*
--370m V vs HS'/HP*8C
a).

p b so、の成長とPbOxの生成によって高抵抗
皮膜が形成され、つまるところ充電不能に陥いる。そこ
で、これらの高抵抗皮膜が形成しre/+%−φグーy
++&11シート4blJ五マ111虐−1−一一一一
−If−・pbot(活物質)とか導通させる化合物が
存在すればよい。Snはこのような過放電放置に対して
効果のあることが従来指摘されており、本発明者らは、
Pb−0o系合金にSnをt極基体合金元素として第1
に取り上げた。この効果については明確にされてはいな
いか、pbマトリックス中にCaSn、またはPbxO
aySnzなる金属間化合物が生成し、電極基体かアノ
ード酸化されるとこれか酸化皮膜中に分散して導電性が
保持されているか、またはsnか酸化されてShoやS
nO,のような化合物となり、これが半導体的性質(n
型半導体)を有することにより充電性がよくなるものと
考えている。一方、過放電されると電解液である硫酸濃
度か著しく低下して、その結果、液の伝導度も著しく低
下する。したがって、過放電放置特性は格子だけでな(
、電解液の伝導性維持が必要となる。そこで添加物とし
て、第1に電池の他の性能(寿命、容量など)への影響
を考慮し、El@mすtけ11ン酢市ルテニナン層で4
1さらに、充電では、正極側で酸化反応か生じ、電子が
負荷側へ流れ、電解液中では、H+、S〇七によって負
極から電荷を担ってくる。しかし、過放電後はPHか7
近傍になるのでH,0か増加し、5OZ−もHも少なく
なる。したがって電荷の担手として5Or−塩のカチオ
ンか必要となる。そこで、第1表に種々の硫酸塩のイオ
ン伝導度を示したが、アルカリ金属イオン(Na古Kt
ど)やアルカリ土類金属イオン(MP’“、Oa”+な
ど)が良好である。また、添加物としてはコスト的にも
これらの物質は安価で工業的にも得やすいものである。
A high resistance film is formed by the growth of p b so and the generation of PbOx, which ultimately leads to the inability to charge. Therefore, these high-resistance films form and re/+%-φ goo y
++&11 sheet 4blJ5ma111-1-1111-If-・pbot (active material) or other compound that makes it conductive should be present. It has been previously pointed out that Sn is effective against such overdischarge, and the present inventors
The first step is to add Sn to the Pb-0o alloy as a t-pole alloy element.
It was featured in This effect is not clear, or CaSn or PbxO in the pb matrix.
An intermetallic compound called aySnz is generated, and when the electrode base is anodically oxidized, it is dispersed in the oxide film and maintains conductivity, or sn is oxidized and becomes Sho or S.
It becomes a compound like nO, which has semiconducting properties (n
We believe that having a type semiconductor) will improve charging performance. On the other hand, when the battery is over-discharged, the concentration of sulfuric acid, which is the electrolytic solution, decreases significantly, and as a result, the conductivity of the solution also decreases significantly. Therefore, the overdischarge characteristics are not limited to the lattice (
, it is necessary to maintain the conductivity of the electrolyte. Therefore, as an additive, we first considered the effect on other performance of the battery (life, capacity, etc.), and added 4.
1 Furthermore, during charging, an oxidation reaction occurs on the positive electrode side, electrons flow to the load side, and in the electrolyte, H+ and S07 carry charge from the negative electrode. However, after overdischarging, the pH is 7.
Since they are close to each other, H and 0 increase, and both 5OZ- and H decrease. Therefore, a 5Or-salt cation is required as a charge carrier. Therefore, Table 1 shows the ionic conductivity of various sulfates.
etc.) and alkaline earth metal ions (MP'", Oa"+, etc.) are good. Furthermore, as additives, these substances are inexpensive and easy to obtain industrially.

第   1   表 実施例 以下に本発明の一実施例を示す。Chapter 1 Table Example An example of the present invention is shown below.

Pb−0,06重量4Ca−0.3重JlISrz7)
合金板に厚さ0.5 mのPb−2,5重量4Sn合金
シートを重ね合わせて圧延しPb−Sn板をPb−Ca
−Sn板に圧着させる。そして、打抜き方式で厚さ3f
iの電極基体を作製し、ペーストを充填して熟成、乾燥
させ正極板とした。
Pb-0.06 weight 4Ca-0.3 weight JlISrz7)
A Pb-2,5 weight 4Sn alloy sheet with a thickness of 0.5 m was superimposed on the alloy plate and rolled, and the Pb-Sn plate was transformed into a Pb-Ca sheet.
- Pressure-bond to the Sn plate. Then, the thickness is 3f by punching method.
An electrode base of i was prepared, filled with paste, aged and dried to obtain a positive electrode plate.

化成を行って鉛蓄電池を組み立て4V−4Ahの電池を
作製した。また、電解液にはNa=SO。
Chemical conversion was performed and a lead acid battery was assembled to produce a 4V-4Ah battery. In addition, the electrolyte contains Na=SO.

M7SO,、H,PO,をそれぞれ所定濃度(0,1モ
ル/))に調整し電池に注液した。このようにして作製
した鉛蓄電池を1.7Ωで24時間放電し、6ケ月間2
5°C中で放置し、放置後2.45第   2   表 表より電池NcL1〜7と魔8〜14とを比べると鋳造
品より圧延板打抜格子の方かいずれも回復性はまさって
いる。これは、電極基体表面のSn含有量か鋳造品の1
.5優以上であるためと考えられる。また、Nl18〜
14の中でもぬ9.1O111はそれぞれアルカリ金属
イオン、アルカリ土類金属イオン、リン酸イオンが存在
するためにその充電回復性の効果は一層まさっている。
M7SO, H, and PO were each adjusted to a predetermined concentration (0.1 mol/)) and injected into the battery. The lead-acid battery produced in this way was discharged at 1.7Ω for 24 hours, and
2.45 after being left at 5°C. From Table 2, when comparing batteries NcL1 to 7 and M8 to 14, the recovery performance of the rolled plate punched grid is superior to that of the cast product. . This is determined by the Sn content on the surface of the electrode substrate or the 1% of the cast product.
.. This is thought to be because the score is 5 or higher. Also, Nl18~
9.1O111, which is not one of the 14, has an even better charge recovery effect because of the presence of alkali metal ions, alkaline earth metal ions, and phosphate ions.

これにより、単にi&基体のSnの効果だけでなく、上
記電解液添加物の存在は有効である。さらに、これらの
添加物をあらゆる組合せで添加したN1112.13.
14のものはNα9.10.11のものに比べてより一
層その効果が増大している。以上のことにより、実際使
用時での過放電放置特性の向上を考慮して、Pb−Ca
−SnとPb−Snの圧延板単独のみではむずかしく、
この電極基体表面のSn含有量を上げた電極基体とアル
カリ金属イオン、アルカリ土類金属イオンおよびリン酸
イオンを共存させることによってそれらが相乗的に効果
を発揮し、充電回復性を実用上支障のないものにするこ
とかわかった。
As a result, not only the effect of Sn in the i&substrate but also the presence of the electrolyte additive is effective. Furthermore, N1112.13. with all combinations of these additives added.
The effect of No. 14 is even greater than that of No. 9.10.11. As a result of the above, considering the improvement of overdischarge characteristics during actual use, Pb-Ca
- It is difficult to use rolled sheets of Sn and Pb-Sn alone,
By coexisting an electrode base with an increased Sn content on the surface of this electrode base and alkali metal ions, alkaline earth metal ions, and phosphate ions, they exert a synergistic effect, and the charge recovery performance is improved without any practical hindrance. I realized that I should make it into something that doesn't exist.

発明の効果 上述したように、本発明は鉛蓄電池の過放電放置特性を
著しく向上させ、工業的価値は甚だ大なるものである。
Effects of the Invention As described above, the present invention significantly improves the overdischarge characteristics of lead-acid batteries, and has enormous industrial value.

Claims (1)

【特許請求の範囲】[Claims] Pb−Ca系合金板とPb−Sn系合金板とを用いて一
体化して板片をつくり、これを構成素材として電極基体
とし、かつ電解液中にアルカリ金属イオン又はアルカリ
土類金属イオン又はリン酸イオンを存在させたことを特
徴とする鉛蓄電池。
A Pb-Ca alloy plate and a Pb-Sn alloy plate are integrated to form a plate piece, which is used as a constituent material for an electrode base, and an alkali metal ion or alkaline earth metal ion or phosphorus is added to the electrolyte. A lead-acid battery characterized by the presence of acid ions.
JP62044803A 1987-02-27 1987-02-27 Lead storage battery Pending JPS63213264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62044803A JPS63213264A (en) 1987-02-27 1987-02-27 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62044803A JPS63213264A (en) 1987-02-27 1987-02-27 Lead storage battery

Publications (1)

Publication Number Publication Date
JPS63213264A true JPS63213264A (en) 1988-09-06

Family

ID=12701581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62044803A Pending JPS63213264A (en) 1987-02-27 1987-02-27 Lead storage battery

Country Status (1)

Country Link
JP (1) JPS63213264A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004976A1 (en) * 1999-07-09 2001-01-18 Japan Storage Battery Co., Ltd. Positive plate current collector for lead storage battery and lead storage battery comprising the same
US6921611B2 (en) 1999-07-09 2005-07-26 Johnson Controls Technology Company Method of making a battery
US6953641B2 (en) 2001-01-05 2005-10-11 Johnson Controls Technology Company Battery grid
WO2013058058A1 (en) * 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery
US8974972B2 (en) 2005-05-23 2015-03-10 Johnson Controls Technology Company Battery grid
US9130232B2 (en) 2010-03-03 2015-09-08 Johnson Controls Technology Company Battery grids and methods for manufacturing same
US9577266B2 (en) 2007-03-02 2017-02-21 Johnson Controls Technology Company Negative grid for battery
US9748578B2 (en) 2010-04-14 2017-08-29 Johnson Controls Technology Company Battery and battery plate assembly
JP2018125294A (en) * 2015-01-28 2018-08-09 日立化成株式会社 Lead storage cell and automobile provided with the same
US10170768B2 (en) 2013-10-08 2019-01-01 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10418637B2 (en) 2013-10-23 2019-09-17 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid arrangement for plate-shaped battery electrode and accumulator
US10892491B2 (en) 2011-11-03 2021-01-12 CPS Technology Holdings LLP Battery grid with varied corrosion resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126726A (en) * 1976-04-17 1977-10-24 Yuasa Battery Co Ltd Lead battery
JPS5521868A (en) * 1978-08-03 1980-02-16 Yuasa Battery Co Ltd Enclosed lead battery
JPS609065A (en) * 1983-06-28 1985-01-18 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery
JPS60232668A (en) * 1984-05-02 1985-11-19 Matsushita Electric Ind Co Ltd Grid for lead storage battery and manufacture thereof
JPS6127066A (en) * 1984-07-16 1986-02-06 Matsushita Electric Ind Co Ltd Grid for lead-acid battery and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52126726A (en) * 1976-04-17 1977-10-24 Yuasa Battery Co Ltd Lead battery
JPS5521868A (en) * 1978-08-03 1980-02-16 Yuasa Battery Co Ltd Enclosed lead battery
JPS609065A (en) * 1983-06-28 1985-01-18 Shin Kobe Electric Mach Co Ltd Sealed lead storage battery
JPS60232668A (en) * 1984-05-02 1985-11-19 Matsushita Electric Ind Co Ltd Grid for lead storage battery and manufacture thereof
JPS6127066A (en) * 1984-07-16 1986-02-06 Matsushita Electric Ind Co Ltd Grid for lead-acid battery and its manufacture

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004976A1 (en) * 1999-07-09 2001-01-18 Japan Storage Battery Co., Ltd. Positive plate current collector for lead storage battery and lead storage battery comprising the same
US6620551B1 (en) 1999-07-09 2003-09-16 Japan Storage Battery Co., Ltd. Positive plate current collector for lead storage battery and lead storage battery comprising the same
US6921611B2 (en) 1999-07-09 2005-07-26 Johnson Controls Technology Company Method of making a battery
US7799463B2 (en) 1999-07-09 2010-09-21 Johnson Controls Technology Company Method of producing battery plates
US8034488B2 (en) 1999-07-09 2011-10-11 Johnson Controls Technology Company Battery grid
US6953641B2 (en) 2001-01-05 2005-10-11 Johnson Controls Technology Company Battery grid
US7398581B2 (en) 2001-01-05 2008-07-15 Johnson Controls Technology Company Method for making battery plates
US7763084B2 (en) 2001-01-05 2010-07-27 Johnson Controls Technology Company Method for making battery plates
US8974972B2 (en) 2005-05-23 2015-03-10 Johnson Controls Technology Company Battery grid
US8980419B2 (en) 2005-05-23 2015-03-17 Johnson Controls Technology Company Battery grid
US9577266B2 (en) 2007-03-02 2017-02-21 Johnson Controls Technology Company Negative grid for battery
US9130232B2 (en) 2010-03-03 2015-09-08 Johnson Controls Technology Company Battery grids and methods for manufacturing same
US9748578B2 (en) 2010-04-14 2017-08-29 Johnson Controls Technology Company Battery and battery plate assembly
US10985380B2 (en) 2010-04-14 2021-04-20 Cps Technology Holdings Llc Battery and battery plate assembly with highly absorbent separator
US11824204B2 (en) 2010-04-14 2023-11-21 Cps Technology Holdings Llc Battery and battery plate assembly with absorbent separator
JPWO2013058058A1 (en) * 2011-10-18 2015-04-02 新神戸電機株式会社 Lead acid battery
WO2013058058A1 (en) * 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery
US10892491B2 (en) 2011-11-03 2021-01-12 CPS Technology Holdings LLP Battery grid with varied corrosion resistance
US11539051B2 (en) 2011-11-03 2022-12-27 Cps Technology Holdings Llc Battery grid with varied corrosion resistance
US10170768B2 (en) 2013-10-08 2019-01-01 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10840515B2 (en) 2013-10-08 2020-11-17 Clarios Germany Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US11611082B2 (en) 2013-10-08 2023-03-21 Clarios Germany Gmbh & Co. Kg Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10418637B2 (en) 2013-10-23 2019-09-17 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid arrangement for plate-shaped battery electrode and accumulator
JP2018125294A (en) * 2015-01-28 2018-08-09 日立化成株式会社 Lead storage cell and automobile provided with the same

Similar Documents

Publication Publication Date Title
JPWO2010032782A1 (en) Lead acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JPS63213264A (en) Lead storage battery
JP5656068B2 (en) Liquid lead-acid battery
JP5050309B2 (en) Lead acid battery
JP3094423B2 (en) Lead storage battery
JP3047463B2 (en) Lead storage battery
KR950004457B1 (en) Lead battery
JP2000200598A (en) Sealed lead-acid battery
US2994626A (en) Low loss battery
JPS63148556A (en) Paste type lead acid battery
JP2006155901A (en) Control valve type lead-acid storage battery
JP2523585B2 (en) Sealed lead acid battery
JP2002319409A (en) Lead acid storage battery anode current collector and lead acid storage battery using the same
JPS63244568A (en) Lead-acid battery
JPS61198574A (en) Lead storage battery
JP2808685B2 (en) Lead storage battery
JPH01140557A (en) Lead-acid battery
JPS63213263A (en) Lead storage battery
JP2518090B2 (en) Lead acid battery
JPH0770321B2 (en) Sealed lead acid battery
JPH01117279A (en) Lead-acid battery
GB2238159A (en) Lead accumulator
JP2002124251A (en) Positive electrode for lead-acid battery and its manufacturing method
JPH01128357A (en) Lead storage battery