JPS5924500B2 - lead acid battery - Google Patents

lead acid battery

Info

Publication number
JPS5924500B2
JPS5924500B2 JP53142660A JP14266078A JPS5924500B2 JP S5924500 B2 JPS5924500 B2 JP S5924500B2 JP 53142660 A JP53142660 A JP 53142660A JP 14266078 A JP14266078 A JP 14266078A JP S5924500 B2 JPS5924500 B2 JP S5924500B2
Authority
JP
Japan
Prior art keywords
lead
cadmium
lattice
alloy
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53142660A
Other languages
Japanese (ja)
Other versions
JPS5569965A (en
Inventor
博人 中島
研 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP53142660A priority Critical patent/JPS5924500B2/en
Publication of JPS5569965A publication Critical patent/JPS5569965A/en
Publication of JPS5924500B2 publication Critical patent/JPS5924500B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【発明の詳細な説明】 本発明はアンチモンを含まない鉛合金格子体を用いたメ
ンテナンスフリー鉛蓄電池に関するものであり、鉛一カ
ルシウムー錫−カドミウム(−アルミニウム)合金を用
いることにより、メンテナンスフリー鉛蓄電池の定電流
過充電寿命およびサイクル寿命を改善することを目的と
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a maintenance-free lead-acid battery using a lead alloy lattice that does not contain antimony. The purpose is to improve the constant current overcharge life and cycle life of the battery.

最近、鉛蓄電池の市場では補水の手間を省けること、お
よび自己放電量が少なく注液状態で長期保存可能なこと
などの利点からメンテナンスフリー(保守不要)化の傾
向が強くなつている。
Recently, there has been a strong trend in the market for lead-acid batteries toward maintenance-free batteries, which have advantages such as saving the time and effort of refilling with water, and having low self-discharge and being able to be stored for long periods of time in an injected state.

この種の電池はガス発生量が少ないためその端子部の腐
食もほとんどなく、また補水の必要がないので任意の場
所へ配置可能という利点をも兼有している。メンテナン
スフリー化の方法として、電槽鞍を低くして極板をセパ
レーターで包む方法や迷路状排気部の採用など構造面の
工夫もあるが、従来の鉛蓄電池と最も異なる点は格子体
の合金組成を変えたことにある。
This type of battery generates a small amount of gas, so there is almost no corrosion of its terminals, and it also has the advantage of being able to be placed in any location since it does not require water replenishment. As a maintenance-free method, there are structural improvements such as lowering the cell saddle and wrapping the electrode plate with a separator, and using a labyrinth-shaped exhaust section, but the biggest difference from conventional lead-acid batteries is the alloy of the lattice. The reason is that the composition has been changed.

その例として鉛−アンチモン合金中のアンチモソ含有量
を従来の4〜6wt%から2〜3wtCfbに減少させ
たもの、−あるいはアンチモンを全く含まない鉛−カル
シウム合金系合金や鉛−ストロンチウム合金系合金を採
用したものがあげられる。しかしアンチモンを含まない
鉛合金を格子体に用いた鉛蓄電池は鉛−アンチモン合金
系の格子体を用いたものに比較して、定電流過充電特性
が著しく劣りまた比較的放電の深い低率放電の条件下で
は充放電サイクルがあまり進まないうちに急激な容量低
下を起こすとともに、容量低下後の充電受入特性が極め
て悪くなる欠点があ一る。
Examples include lead-antimony alloys in which the antimoso content is reduced from the conventional 4-6 wt% to 2-3 wtCfb, or lead-calcium alloys or lead-strontium alloys that do not contain antimony at all. I can list what was adopted. However, lead-acid batteries that use a lead alloy grid that does not contain antimony have significantly poorer constant current overcharging characteristics than those that use a lead-antimony alloy grid, and have a relatively deep low-rate discharge. Under these conditions, there is a drawback that the capacity rapidly decreases before the charge/discharge cycle progresses much, and the charge acceptance characteristics become extremely poor after the capacity decreases.

そしてこれらの現象は放電時格子体腐食層1と硫酸鉛が
集中的に生成しやすいために起こると考えられている、
。またこの定電流過充電寿命の短い鉛蓄電池では、次の
ような問題点がある。すなわち一般一の2.30〜2.
50V/セルの電圧を印加しての定電圧充電では、充電
器の能力で制限される定電流域を経過後は充電が進むに
つれ電流は暫減し、ガス発生や格子体腐食が抑制される
。しかし仮に電池内の1セルに微細ショートが起こつた
場合、充電末においても電流は低減せず定電流過充電と
同じ条件となる。そしてこうしたとき鉛−カルシウム合
金を格子体に用いた鉛蓄電池では急激に容量低下を起こ
すcとが知られている。本発明は以上の点に鑑みてなさ
れたものであり、従来の鉛一カルシウムー錫合金にカド
ミウムを添加することにより、界面特性が改善され放電
時の抵抗の小さい腐食層が生成し、特に定電流過充電寿
命が大幅に改善できることを発見し、この発見に基いて
なされたものである。
These phenomena are thought to occur because the lattice corrosion layer 1 and lead sulfate are likely to be generated intensively during discharge.
. Furthermore, lead-acid batteries with short constant current overcharge lifespans have the following problems. That is, 2.30 to 2.
In constant voltage charging by applying a voltage of 50V/cell, after the constant current range limited by the capacity of the charger has passed, the current gradually decreases as charging progresses, suppressing gas generation and grid corrosion. . However, if a minute short circuit occurs in one cell in the battery, the current will not decrease even at the end of charging, resulting in the same condition as constant current overcharging. It is known that in such a case, a lead-acid battery using a lead-calcium alloy as a lattice material rapidly loses its capacity. The present invention has been made in view of the above points, and by adding cadmium to the conventional lead-calcium-tin alloy, the interface properties are improved and a corrosion layer with low resistance during discharge is generated, which is particularly effective at constant current. This was based on the discovery that the overcharge life can be significantly improved.

以下、本発明に基く実施例について説明する。Examples based on the present invention will be described below.

従来の鉛−カルシウム−錫合金に0.05〜3.0wt
%のカドミウムを添加した合金からなる格子体を用いて
NS4OZ型電池を試作し、JIS過充電試験(JIS
D53Ol)を行つたところ、第1表に示すような結果
が得られた。なおJIS過充電試験とは40−45℃の
条件で(1)4,5Aで110時間過充電、(2)48
時間放置、(3)150Aで30秒間放電を1サイクル
とし、150A放電での30秒目電圧が7.2Vになつ
た時点を寿命としている。またJIS寿命サイクル数(
JISD53Ol)の結果もあわせて第1表に示す。該
JIS寿命試験は40−45℃の条件で、(1)20A
で1時間放電、(2)5Aで4時間放電を1サイクルと
し、20A放電で42分になつた時点を寿命としている
5。第1表からもわかるように、格子体合金にカドミウ
ムを添加することにより鉛−カルシウム−錫合金系の格
子体を用いた鉛蓄電池の定電流過充電寿命を大幅に改善
することが可能であり、従来の鉛−アンチモン合金系の
電池と同等の性能が得られることがわかる。
0.05 to 3.0wt to conventional lead-calcium-tin alloy
An NS4OZ type battery was prototyped using a lattice made of an alloy containing 30% cadmium, and a JIS overcharge test (JIS
D53Ol), the results shown in Table 1 were obtained. The JIS overcharge test is (1) overcharging at 4.5A for 110 hours at 40-45℃, (2) 48
(3) Discharge at 150A for 30 seconds as one cycle, and the life is defined as the time when the voltage reaches 7.2V at the 30th second of 150A discharge. Also, JIS life cycle number (
The results of JISD53Ol) are also shown in Table 1. The JIS life test was conducted under the conditions of 40-45℃, (1) 20A
(2) One cycle is discharge for 4 hours at 5A, and the life is defined as 42 minutes at 20A5. As can be seen from Table 1, by adding cadmium to the lattice alloy, it is possible to significantly improve the constant current overcharge life of lead-acid batteries using a lead-calcium-tin alloy lattice. , it can be seen that performance equivalent to that of conventional lead-antimony alloy batteries can be obtained.

一般に鉛−カルシウム−錫合金系の電池はフロート用と
して使用されることが多く、この方面でさらに鉛蓄電池
の特性が向上し需要の伸びることが期待される。
Generally, lead-calcium-tin alloy batteries are often used for floats, and it is expected that the characteristics of lead-acid batteries will further improve in this field, and demand will increase.

しかも鉛−カルシウム−錫合金へのカドミウムの添加は
交互充放電寿命を延ばすこともわかる。しかしカドミウ
ムは電解液である硫酸に比較的容易に侵されるため、カ
ドミウムの添加量が2.0wt%を添えると格子体の腐
食が多くなり電池としての寿命は短くなる。またカドミ
ウムは負極板上に析出してデンドライト状の結晶を成長
させ、セパレータの貫通シヨートの原因となる。したが
つてカドミウムの添加量としては2.0wt%以下が望
ましい。第1表に示す合金組成以外の格子体を用いた鉛
蓄電池についても試1験を行つたが、錫を含まない鉛−
カルシウム−カドミウム合金は耐食性が悪く時効硬化後
の格子体強度も低いため錫の添加は必要である。
Moreover, it is also found that the addition of cadmium to the lead-calcium-tin alloy extends the alternate charge-discharge life. However, since cadmium is relatively easily attacked by sulfuric acid, which is an electrolytic solution, if the amount of cadmium added is 2.0 wt%, corrosion of the lattice will increase and the life of the battery will be shortened. Further, cadmium precipitates on the negative electrode plate and causes dendrite-like crystals to grow, causing shoots through the separator. Therefore, the amount of cadmium added is preferably 2.0 wt% or less. One test was also conducted on a lead-acid battery using a grid other than the alloy composition shown in Table 1.
Calcium-cadmium alloys have poor corrosion resistance and low lattice strength after age hardening, so it is necessary to add tin.

そして錫の添加量としては0.1〜1.5wt%が適当
であることがわかつた。すなわち錫を含まない鉛−カル
シウム合金の格子体を用いた本発明によらない鉛蓄電池
の試験結果を第2表に示す。
It was also found that the appropriate amount of tin to be added is 0.1 to 1.5 wt%. That is, Table 2 shows the test results of a lead-acid battery not according to the present invention using a lead-calcium alloy lattice that does not contain tin.

JISD53Olによる過充電条件は一般のフロート(
定電圧)充電に比べて非常に苛酷な条件であり、格子体
の腐食は促進される。
The overcharging conditions according to JISD53Ol are general float (
(constant voltage) charging conditions are extremely harsh compared to charging, and corrosion of the grid is accelerated.

第1表と第2表とを比較すると、鉛−カルシウム系合金
を格子体に用いた鉛蓄電池の定電流過充電寿命の改善に
はカドミウムと錫とを同時に添加することが有効である
とわかる。このカドミウムと錫を同時に添加した場合に
著しく効果のあられれる理由として次のようなことが考
えられる。
Comparing Tables 1 and 2, it can be seen that adding cadmium and tin at the same time is effective in improving the constant current overcharge life of lead-acid batteries using a lead-calcium alloy for the lattice. . The following is thought to be the reason why the effect is so great when cadmium and tin are added at the same time.

すなわちJISD53Olによる定電流過充電条件での
鉛−カルシウム合金を格子体に用いた鉛蓄電池の寿命の
原因として、格子体表面の高抵抗酸化皮膜の生成と格子
体自体の腐食とがあげられる。前者の高抵抗酸化皮膜は
α−PbOやPbOxからなると推定され非常に緻密で
あり、格子体/活物質問の絶縁体となる。
That is, the causes of the life span of a lead-acid battery using a lead-calcium alloy as a lattice under constant current overcharge conditions according to JISD53Ol are the formation of a high-resistance oxide film on the surface of the lattice and corrosion of the lattice itself. The former high-resistance oxide film is estimated to be composed of α-PbO or PbOx, and is very dense, and serves as an insulator in the form of a lattice/living substance.

ただしこの皮膜は放電時のみ絶縁作用を示し一種の半導
体と考えられる。ところでカドミウムが存在すると、カ
ドミウム自体は比効的容易に腐食されるため、腐食層は
ポーラスとなるとともに電導体であるβ−PbO2が生
成し、腐食層も格子体内に複雑に入り込み、格子体/活
物質問の電子の移動を容易にする。しかし、カドミウム
を添加したゾけでは腐食が進み格子体腐食により寿命は
制限される。錫はカドミウムの溶出を防止し、よつて腐
食層は適度な多孔度と電導度を保ち、その結果、定電流
過充電寿命が著しく改善されると考えられる。また格子
体強度の改善と合金溶解中におけるカルシウム酸化を防
止するためアルミニウムを添加した合金について検討し
たが、カドミウムの効果はアルミニウム有無の場合全く
変わらず、これより鉛−カルシウム−錫−アルミニウム
−カドミウム合金として用いても良い。
However, this film exhibits an insulating effect only during discharge, and is considered to be a type of semiconductor. By the way, when cadmium is present, cadmium itself is easily corroded in terms of specific efficiency, so the corrosion layer becomes porous and β-PbO2, which is an electric conductor, is generated, and the corrosion layer also enters the lattice in a complicated manner, causing the lattice/ Facilitates the movement of electrons in living matter. However, in the case of cadmium-added sol, corrosion progresses and the service life is limited due to lattice corrosion. It is believed that tin prevents leaching of cadmium, thus maintaining the corroded layer with appropriate porosity and conductivity, and as a result, the galvanostatic overcharge life is significantly improved. In addition, we investigated alloys with aluminum added to improve the strength of the lattice and prevent calcium oxidation during alloy melting, but the effect of cadmium was the same in the presence or absence of aluminum. It may also be used as an alloy.

アルミニウムの添加量としては、0.005〜0.1w
t%の範囲では電池性能に対しては、何ら影響はないこ
とがわかつた。なお上記の実施例では正・負極板とも同
一の鉛−カルシウム−錫−カドミウム(−アルミニウム
)合金を用いたが、負極板としては従来の鉛一カルシウ
ム一錫合金よりなる格子体を用いてもかまわない。以上
述べたように本発明は鉛蓄電池の定電流過充電寿命を大
幅に延ばすとともにサイクル寿命の改善にも効果があり
、工業上の価値の大なるものである。
The amount of aluminum added is 0.005 to 0.1w
It was found that within the range of t%, there was no effect on battery performance. In the above embodiment, the same lead-calcium-tin-cadmium (-aluminum) alloy was used for both the positive and negative electrode plates, but a conventional lattice made of lead-calcium-tin alloy could be used as the negative electrode plate. I don't mind. As described above, the present invention is effective in significantly extending the constant current overcharge life of lead-acid batteries and improving the cycle life, and is of great industrial value.

Claims (1)

【特許請求の範囲】 1 カルシウム0.03〜0.12wt%、錫0.1〜
1.5wt%、カドミウム0.1〜2.0wt%、残部
鉛よりなる鉛合金格子体を用いることを特徴とする鉛蓄
電池。 2 カルシウム0.03〜0.12wt%、錫0.1〜
1.5wt%、カドミウム0.1〜2.0wt%、アル
ミニウム0.005〜0.1wt%、残部鉛よりなる鉛
合金格子体を用いることを特徴とする鉛蓄電池。
[Claims] 1. Calcium 0.03-0.12wt%, Tin 0.1-0.1%
A lead-acid battery characterized by using a lead alloy lattice body consisting of 1.5 wt% cadmium, 0.1 to 2.0 wt% cadmium, and the balance lead. 2 Calcium 0.03~0.12wt%, Tin 0.1~
A lead-acid battery characterized by using a lead alloy lattice body consisting of 1.5 wt%, cadmium 0.1 to 2.0 wt%, aluminum 0.005 to 0.1 wt%, and the balance lead.
JP53142660A 1978-11-17 1978-11-17 lead acid battery Expired JPS5924500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53142660A JPS5924500B2 (en) 1978-11-17 1978-11-17 lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53142660A JPS5924500B2 (en) 1978-11-17 1978-11-17 lead acid battery

Publications (2)

Publication Number Publication Date
JPS5569965A JPS5569965A (en) 1980-05-27
JPS5924500B2 true JPS5924500B2 (en) 1984-06-09

Family

ID=15320524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53142660A Expired JPS5924500B2 (en) 1978-11-17 1978-11-17 lead acid battery

Country Status (1)

Country Link
JP (1) JPS5924500B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135058A (en) * 1984-12-05 1986-06-23 Yuasa Battery Co Ltd Lead storage battery

Also Published As

Publication number Publication date
JPS5569965A (en) 1980-05-27

Similar Documents

Publication Publication Date Title
WO2010058240A1 (en) Low water loss battery
US4166155A (en) Maintenance-free battery
JP2016177909A (en) Control valve type lead-acid battery
JPH10188963A (en) Sealed lead-acid battery
JPS5924500B2 (en) lead acid battery
JP4904658B2 (en) Method for producing lead-acid battery
US2994626A (en) Low loss battery
JP2005294142A (en) Lead storage battery
KR950004457B1 (en) Lead battery
JPS61198574A (en) Lead storage battery
JP3102000B2 (en) Lead storage battery
JP4923399B2 (en) Lead acid battery
JP4742424B2 (en) Control valve type lead acid battery
JPH01117279A (en) Lead-acid battery
JP2019204790A (en) Control valve type lead-acid battery
JPS6216505B2 (en)
JPH0770321B2 (en) Sealed lead acid battery
JPH01117272A (en) Lead-acid battery
JPS6327827B2 (en)
KR860000820B1 (en) Storage battery
JP2808685B2 (en) Lead storage battery
JP2553598B2 (en) Sealed lead acid battery
Prengaman et al. Corrosion resistant positive grids, novel separators, and negative plate additives for increased vrla battery life
JP2977600B2 (en) Lead storage battery
JP2553858B2 (en) Lead acid battery