JPS6327827B2 - - Google Patents

Info

Publication number
JPS6327827B2
JPS6327827B2 JP55043941A JP4394180A JPS6327827B2 JP S6327827 B2 JPS6327827 B2 JP S6327827B2 JP 55043941 A JP55043941 A JP 55043941A JP 4394180 A JP4394180 A JP 4394180A JP S6327827 B2 JPS6327827 B2 JP S6327827B2
Authority
JP
Japan
Prior art keywords
lead
electrolyte
acid
sulfuric acid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55043941A
Other languages
Japanese (ja)
Other versions
JPS56141179A (en
Inventor
Hidemi Fukunaga
Katsuhiro Takahashi
Sadao Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4394180A priority Critical patent/JPS56141179A/en
Publication of JPS56141179A publication Critical patent/JPS56141179A/en
Publication of JPS6327827B2 publication Critical patent/JPS6327827B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は、電解質に硫酸コロイドを用いた鉛蓄
電池に関するもので、とくに充電時の正、負極の
短絡を抑制することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a lead-acid battery using colloidal sulfuric acid as an electrolyte, and particularly aims to suppress short circuits between positive and negative electrodes during charging.

従来、正極格子体に純鉛あるいはPb−Ca合金
を用いた鉛蓄電池は、深い放電を行うとつぎの充
電ができにくくなり、さらに深い放電状態で電池
が長期間放置されると充電特性がさらに劣化する
傾向があつた。これは深い放電および深い放電状
態での放置によつて、正極格子体と活物質の界面
に結晶性の発達した絶縁性の硫酸鉛が生成するの
が一つの原因であつた。近年になつて深い放電を
行つても格子体表面にこのような結晶性の硫酸鉛
が生成しにくい鉛合金が開発され、この問題は一
応解決されたかに見えた。
Conventionally, lead-acid batteries that use pure lead or Pb-Ca alloy for the positive electrode grid become difficult to charge after deep discharge, and if the battery is left in a deeply discharged state for a long period of time, the charging characteristics deteriorate further. There was a tendency for it to deteriorate. One reason for this was that insulating lead sulfate with developed crystallinity was formed at the interface between the positive electrode lattice and the active material due to deep discharge and leaving the battery in a deep discharge state. In recent years, lead alloys have been developed that are less likely to produce crystalline lead sulfate on the surface of the lattice even when deep discharge is performed, and this problem seemed to have been solved for the time being.

しかし、このような深い放電を行つても充電特
性の良い格子合金を用いた鉛蓄電池においても、
とくに硫酸コロイド電解質を用いた鉛蓄電池で
は、深い放電を行う充放電サイクルを繰り返す
と、極板上部で正、負極間の短絡が生じやすい欠
点が出てきた。
However, even with lead-acid batteries using lattice alloys that have good charging characteristics even after such deep discharge,
In particular, lead-acid batteries using a sulfuric acid colloid electrolyte have the disadvantage that short circuits between the positive and negative electrodes tend to occur at the top of the electrode plates when repeated charge-discharge cycles with deep discharges occur.

この理由は次のように考えられる。すなわち、
鉛蓄電池の充電末期に発生する酸素ガスがコロイ
ド電解質上部だ気泡となつて溜まり、その気泡空
洞内に硫酸コロイドから離漿した少量の硫酸水溶
液が溜まり、つぎに鉛蓄電池の放電反応によつて
電解質中の硫酸イオンが消費されて硫酸濃度が低
くなる。さらに、深い放電状態で放置されると、
自己放電反応によつてさらに硫酸イオンが消費さ
れて、電解質は中性領域に近くなり、そのために
鉛の溶解度が高くなり電解質中に鉛が溶解してゆ
く。このような状態で充電をすると、気泡中に離
漿した硫酸水溶液部を含む通電経路では、他の部
分より電解質の抵抗が低く、電流密度が高くな
り、負極に溶解した鉛イオンが析出し、充放電サ
イクルを繰り返すとそれが針状となつて発達し、
最後に正極に到達する。このようにして短絡現象
を生じるものと考えられる。
The reason for this is thought to be as follows. That is,
Oxygen gas generated at the end of charging of a lead-acid battery accumulates as bubbles in the upper part of the colloidal electrolyte, and a small amount of sulfuric acid aqueous solution synergized from the sulfuric acid colloid accumulates in the bubble cavity. The sulfate ions inside are consumed and the sulfuric acid concentration decreases. Furthermore, if left in a deep discharge state,
As sulfate ions are further consumed by the self-discharge reaction, the electrolyte approaches a neutral region, which increases the solubility of lead and leads to dissolution in the electrolyte. When charging under such conditions, the electrolyte resistance is lower than other parts of the current-carrying path that includes the sulfuric acid aqueous solution part synergized in the bubbles, and the current density becomes higher, leading to the precipitation of lead ions dissolved in the negative electrode. As the charge and discharge cycles are repeated, they develop into needle-like shapes,
Finally, the positive electrode is reached. It is thought that the short circuit phenomenon occurs in this way.

本発明は、このような極板上部に発生した気泡
部での短絡を防ぐことを目的とする。すなわち、
本発明は、電解液のPHが7前後では吸水能力が高
く、PHが1程度になるとほとんど吸水性を示さな
い性質を有する吸水性化合物を、電解質中の気泡
が溜まりやすい部分、すなわち、極板上部の電解
質中に添加することを特徴とするものである。
An object of the present invention is to prevent short circuits caused by bubbles generated in the upper part of the electrode plate. That is,
The present invention uses a water-absorbing compound that has a high water-absorbing ability when the pH of the electrolyte is around 7 and exhibits almost no water-absorbing ability when the pH of the electrolyte is around 1, to be used in areas where air bubbles tend to accumulate in the electrolyte, that is, on the electrode plate. It is characterized by being added to the upper electrolyte.

この構成によつて、電池が深い放電状態にな
り、電解質が中性領域になつた場合に気泡中に離
漿する電解液を吸水性化合物中に保持させて、充
電時の電流密度が気泡空洞部で高くなるのを防
ぎ、短絡をさけることができる。その後の充電に
よつて電解質のPHが低くなると、吸水性化合物に
保持されていた水分は電解質内に戻され、放電特
性を劣化させることはない。本発明はこのように
して電池の極板上部での短絡を抑制するものであ
る。
With this configuration, the water-absorbing compound retains the electrolyte that synergates into bubbles when the battery enters a deep discharge state and the electrolyte reaches a neutral region, and the current density during charging is reduced to the bubble cavity. This can prevent short circuits from occurring. When the pH of the electrolyte is lowered by subsequent charging, the water held in the water-absorbing compound is returned to the electrolyte and does not deteriorate the discharge characteristics. In this way, the present invention suppresses short circuits at the upper portions of the battery plates.

なお、特公昭54−112570号公報のように、別の
目的でコロイド電解質全体に吸水性化合物を添加
することが提案されているが、特に高率放電にお
いては少量のこのような吸水性化合物も電解質抵
抗を高める要因となり高率放電特性を劣化させる
ので、高率放電用では全体に上記吸水性化合物を
添加するのは避けるべきである。また、特に小形
密閉鉛蓄電池では限られた電槽内容積中にできる
限り多くの硫酸量を確保し、高容量化をはかるた
めにも好ましくない。これらの観点から本願発明
は上部の直接放電の抵抗に寄与しない部分に集中
的に添加するものである。
Note that, as in Japanese Patent Publication No. 54-112570, it has been proposed to add a water-absorbing compound to the entire colloidal electrolyte for another purpose, but especially in high-rate discharge, even a small amount of such a water-absorbing compound is For high rate discharge applications, it should be avoided to add the above-mentioned water-absorbing compound to the entire composition, since it becomes a factor that increases the electrolyte resistance and deteriorates the high rate discharge characteristics. In addition, it is not preferable especially for small sealed lead-acid batteries because it is necessary to secure as much sulfuric acid as possible in the limited internal volume of the battery to increase the capacity. From these viewpoints, the present invention concentrates the addition to the upper portion that does not contribute to the resistance of direct discharge.

以下、本発明を実施例により説明する。 The present invention will be explained below using examples.

第1図は本発明の鉛蓄電池の一実施例を示す。 FIG. 1 shows an embodiment of a lead-acid battery according to the present invention.

図において、1は電槽であり、その内部には3
枚の負極2と2枚の正極板3および突起部4のあ
る枠状の隔離板5よりなる極板群を挿入し、硫酸
コロイド電解質6を注入し、さらに硫酸コロイド
中に吸水力がPHに依存する吸水性化合物を10重量
%添加した硫酸コロイド7を注入している。な
お、正極3の格子体には、深い放電を行つても充
電特性が比較的優れているPb−Ca(0.08重量%)
−Sn(0.5重量%)合金を用いた。8は電槽の開口
部にエポキシ樹脂により接着した蓋、9は負極端
子、10は正極端子、11は安全弁、12は耐酸
性樹脂繊維綿である。
In the figure, 1 is a battery case, and there are 3
An electrode plate group consisting of two negative electrode plates 2, two positive electrode plates 3, and a frame-shaped separator plate 5 with projections 4 is inserted, and a sulfuric acid colloid electrolyte 6 is injected. Sulfuric acid colloid 7 to which 10% by weight of the dependent water-absorbing compound has been added is injected. The lattice of the positive electrode 3 contains Pb-Ca (0.08% by weight), which has relatively good charging characteristics even during deep discharge.
-Sn (0.5% by weight) alloy was used. 8 is a lid adhered to the opening of the battery case with epoxy resin, 9 is a negative terminal, 10 is a positive terminal, 11 is a safety valve, and 12 is acid-resistant resin fiber cotton.

なお、吸水力がPHに依存する化合物としては、
アクリル酸系モノマーまたはメタクリル酸系モノ
マーをグラフト共重合したデン粉が顕著な効果の
ある化合物であり、たとえば三洋化成工業(株)より
サンウエツト1M−300などの名で販売されている
のはその一例であり、この例では粉末状のサンウ
エツト1M−300を用いた。
In addition, compounds whose water absorption power depends on pH are:
Starch obtained by graft copolymerizing acrylic acid-based monomers or methacrylic acid-based monomers is a compound with remarkable effects, and one example is the one sold under the name Sunwet 1M-300 by Sanyo Chemical Industries, Ltd. In this example, powdered Sunwet 1M-300 was used.

上記構成の10時間率放電容量が3Ahで、容量が
電解液量律則の電池をAとし、吸水性物質を添加
した層を設けないで、電解質層6,7ともに通常
の硫酸コロイドを用いた電池をBとする。
A battery having the above configuration with a 10-hour rate discharge capacity of 3 Ah and a capacity determined by the amount of electrolyte is designated as A, and a normal sulfuric acid colloid is used for both electrolyte layers 6 and 7 without providing a layer containing a water-absorbing substance. Let the battery be B.

これらの電池を20℃において10時間率相当の定
抵抗負荷で20時間放電し350mAで12時間充電す
る充放電サイクルを行つた。第2図は1セル当た
り1・75Vになるまでの放電時間の推移を示す。
電池Bの特性がS印のように劣化しているのは、
正、負極間に溜まつた気泡部において負極から針
状に析出した鉛が正極に到達したことによるもの
であつた。
These batteries were subjected to a charge/discharge cycle in which they were discharged for 20 hours at 20°C under a constant resistance load equivalent to a 10-hour rate and charged at 350 mA for 12 hours. Figure 2 shows the transition of discharge time until the voltage reaches 1.75V per cell.
The reason why the characteristics of battery B have deteriorated as shown by the S mark is because
This was due to lead depositing in the form of needles from the negative electrode in the air bubbles accumulated between the positive and negative electrodes and reaching the positive electrode.

第3図および第4図はこの短絡現象を図解した
ものであるが、コロイド電解質層6中の上部で、
突起部4のある枠状隔離板5の下に充電末期に発
生した酸素ガスが溜まつて形成された気泡13の
中に離漿した硫酸水溶液14が溜まり、電池の深
い放電によつてPHが上昇すると鉛イオンが電解質
中に溶解し、つぎの充電の時に負極2から針状の
鉛15が析出し、これが正極4に到達したことに
よるものである。
3 and 4 illustrate this short-circuit phenomenon, in the upper part of the colloidal electrolyte layer 6,
The syneresis sulfuric acid aqueous solution 14 accumulates in the bubbles 13 formed by the accumulation of oxygen gas generated at the end of charging under the frame-shaped separator 5 with the protrusion 4, and the pH increases due to deep discharge of the battery. This is because lead ions are dissolved in the electrolyte when the battery rises, and needle-shaped lead 15 is precipitated from the negative electrode 2 during the next charging and reaches the positive electrode 4.

本発明による電池ではこのような現象による短
絡を生じない。吸水性物質を混合した電解質層7
は、通常生成する気泡の大きさから、隔離板6の
上部片の下端6aから5〜15mm下位の部分まで設
けることによつて効果があり、必要以上にこの層
7を厚くすることは高率放電特性の低下を招くな
どの悪影響を与える。また隔離板の前記部分6a
から5mm以内までしか設けない場合は、気泡13
中に離漿した電解液14を吸水できないこともあ
り、最低5mm以上は必要である。
In the battery according to the present invention, short circuits due to such phenomena do not occur. Electrolyte layer 7 mixed with water-absorbing substance
Considering the size of the bubbles normally generated, it is effective to provide the layer 7 5 to 15 mm below the lower end 6a of the upper piece of the separator 6, and it is highly unlikely to make the layer 7 thicker than necessary. This may cause adverse effects such as deterioration of discharge characteristics. Also, said portion 6a of the separator
If it is only provided within 5mm from the air bubble 13
Since the electrolytic solution 14 that has synercised inside may not be able to be absorbed, a minimum width of 5 mm or more is required.

以上のように、本発明は極板群の一部を含む上
部の電解質中に硫酸コロイドに吸水力がPHに依存
性を有する化合物を添加した層を設けることによ
つて、正、負極の短絡を抑制し、電池の充放電サ
イクル寿命を長くするものであり、その効果は極
めて大である。
As described above, the present invention provides short-circuiting of the positive and negative electrodes by providing a layer containing a sulfuric acid colloid and a compound whose water absorption power is dependent on pH in the upper electrolyte that includes a part of the electrode plate group. The effect of this is extremely large, as it suppresses this and lengthens the charge/discharge cycle life of the battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す鉛蓄電池の縦
断面図、第2図は深い放電と充電の繰り返しサイ
クル特性の比較図、第3図は従来の正、負極の短
絡現象を示す要部の正面図、第4図は第3図−
′線断面図である。 2……負極、3……正極、5……隔離板、6…
…電解質、7……吸水性化合物を添加した電解
質。
Fig. 1 is a longitudinal cross-sectional view of a lead-acid battery showing an embodiment of the present invention, Fig. 2 is a comparison diagram of repeated cycle characteristics of deep discharge and charging, and Fig. 3 is a diagram showing the short circuit phenomenon of the conventional positive and negative electrodes. Front view of the section, Figure 4 is Figure 3-
FIG. 2...Negative electrode, 3...Positive electrode, 5...Separator, 6...
...Electrolyte, 7...An electrolyte to which a water-absorbing compound is added.

Claims (1)

【特許請求の範囲】 1 電解質が硫酸を含むコロイドからなる鉛蓄電
池において、上記硫酸を含むコロイドと、水分の
吸収力にPH依存性を有し、中性領域およびその近
傍で水分の吸収力が高い化合物とを混合した混合
物層を、極板群の一部を含む上部の電解質中に設
けたことを特徴とする鉛蓄電池。 2 PH依存性を有する吸水性化合物が、アクリル
酸系モノマーまたはメタクリル酸系モノマーをグ
ラフト共重合したデン粉である特許請求の範囲第
1項記載の鉛蓄電池。 3 PH依存性を有する吸水化合物を添加した硫酸
コロイド混合物層が枠状隔離板の上部片の下端か
ら5〜15mm下位の部分まで設けられている特許請
求の範囲第1項記載の鉛蓄電池。
[Scope of Claims] 1. In a lead-acid battery whose electrolyte is a colloid containing sulfuric acid, the colloid containing sulfuric acid has a PH-dependent water absorption ability, and the water absorption ability decreases in the neutral region and its vicinity. 1. A lead-acid battery characterized in that a mixture layer containing a high-density compound is provided in an upper electrolyte that includes a part of the electrode plate group. 2. The lead-acid battery according to claim 1, wherein the water-absorbing compound having pH dependence is starch obtained by graft copolymerizing an acrylic acid monomer or a methacrylic acid monomer. 3. The lead-acid battery according to claim 1, wherein the sulfuric acid colloid mixture layer containing a pH-dependent water-absorbing compound is provided to a portion 5 to 15 mm below the lower end of the upper piece of the frame-shaped separator.
JP4394180A 1980-04-02 1980-04-02 Lead acid battery Granted JPS56141179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4394180A JPS56141179A (en) 1980-04-02 1980-04-02 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4394180A JPS56141179A (en) 1980-04-02 1980-04-02 Lead acid battery

Publications (2)

Publication Number Publication Date
JPS56141179A JPS56141179A (en) 1981-11-04
JPS6327827B2 true JPS6327827B2 (en) 1988-06-06

Family

ID=12677716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4394180A Granted JPS56141179A (en) 1980-04-02 1980-04-02 Lead acid battery

Country Status (1)

Country Link
JP (1) JPS56141179A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01143158A (en) * 1987-11-27 1989-06-05 Shin Kobe Electric Mach Co Ltd Lead storage battery
DE4242661C2 (en) * 1992-12-17 1999-09-09 Sonnenschein Accumulatoren Maintenance-free, high-capacity lead accumulator

Also Published As

Publication number Publication date
JPS56141179A (en) 1981-11-04

Similar Documents

Publication Publication Date Title
JP2017063001A (en) Lead storage battery
JP2008130516A (en) Liquid lead-acid storage battery
JP4507483B2 (en) Control valve type lead acid battery
JPS6327827B2 (en)
JP2004220792A (en) Lead-acid battery
JPS61165956A (en) Sealed type lead acid battery
US3457111A (en) Alkaline storage battery with be(oh)2 in the electrolyte
JPH0770321B2 (en) Sealed lead acid battery
KR100287123B1 (en) Alkali-zinc secondary battery
JP4742424B2 (en) Control valve type lead acid battery
JPS62139275A (en) Sealed lead-acid battery
JP2808685B2 (en) Lead storage battery
JPH01117279A (en) Lead-acid battery
JPH01267965A (en) Sealed lead-acid battery
JP2553598B2 (en) Sealed lead acid battery
KR860000820B1 (en) Storage battery
JPS61198574A (en) Lead storage battery
JP3622354B2 (en) Alkaline battery
JPS5924500B2 (en) lead acid battery
JPS63124367A (en) Alkaline zinc storage battery
JPH01128357A (en) Lead storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS61104564A (en) Alkaline zinc storage battery
JPS5956353A (en) Organic electrolyte battery
JP2000058105A (en) Lead-acid battery