JPH01267965A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH01267965A
JPH01267965A JP63096364A JP9636488A JPH01267965A JP H01267965 A JPH01267965 A JP H01267965A JP 63096364 A JP63096364 A JP 63096364A JP 9636488 A JP9636488 A JP 9636488A JP H01267965 A JPH01267965 A JP H01267965A
Authority
JP
Japan
Prior art keywords
concentration
quaternary ammonium
ammonium ions
ion
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63096364A
Other languages
Japanese (ja)
Inventor
Eiji Nitta
新田 英次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP63096364A priority Critical patent/JPH01267965A/en
Publication of JPH01267965A publication Critical patent/JPH01267965A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the recovery charging characteristic and provide a trait to sustain with overdischarge and being left as it is for a long time, by adding quarternary ammonium ions. CONSTITUTION:With co-existence of quarternary ammonium having common ion as SO, a weak electrolytic PbSO4 reduces its electric dissociativeness, and the concentration of Pb<2+> is suppressed. That is, the electric dissociativeness (concentration of Pb<2+>) of PbSO4 is invertedly proportional to the concentration of the quaternary ammonium ions added. Accordingly admission of charging is improved by adding tetraethyl-ammonium ions or tetramethyl-ammonium ions as quaternary ammonium ion to the electrolyte. Even under long-term left condition and charge condition, existence of the quarternary ammonium ion has good effect.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in sealed lead-acid batteries.

従来の技術とその課題 密閉形鉛蓄電池は電解液が外部に漏れないのでポータプ
ル電子機器の小型電源として広く普及している。近年密
閉形鉛蓄電池は小形軽量化や高性能化が進み、限られた
スペース内により多くの活物質を入れる必要に迫られて
、1セル当たりの活物質量に対する硫酸量の割合が小さ
くなってきている。したがって過放電または長期放置に
よる自己放電などの原因により電解液比重の著しい低下
を生じる。を解液中の硫酸濃度(比重)が低下すると、
極板中に生成した硫酸鉛は次の表に見るごとく、硫酸濃
度の低下と共に溶解度が大きくなり、特に硫酸が著しく
少ない領域では激増する。
Conventional technology and its problems Sealed lead-acid batteries are widely used as small power sources for portable electronic devices because their electrolyte does not leak outside. In recent years, sealed lead-acid batteries have become smaller and lighter and have higher performance, and as a result, it is necessary to fit more active material into a limited space, and the ratio of sulfuric acid to the amount of active material per cell has become smaller. ing. Therefore, due to causes such as overdischarge or self-discharge due to long-term storage, the electrolyte specific gravity significantly decreases. When the sulfuric acid concentration (specific gravity) in the solution decreases,
As shown in the table below, the solubility of lead sulfate formed in the electrode plate increases as the sulfuric acid concentration decreases, and it increases dramatically especially in areas where sulfuric acid is extremely low.

その後の周囲温度の変化や充電などのために硫酸鉛の比
較的大きな結晶や鉛の針状結晶が極板表面に析出する。
Due to subsequent changes in ambient temperature and charging, relatively large crystals of lead sulfate and needle-shaped lead crystals are deposited on the surface of the electrode plate.

このように充電しても元に戻り難い結晶性硫酸鉛が生成
すると、再充電が困難になリ、電池容量や放電電圧が低
下しなり、また鉛の針状結晶生成はセパレータを貫通し
て内部短絡の原因となっていた。
The formation of crystalline lead sulfate, which is difficult to return to its original state even after charging, makes recharging difficult and reduces battery capacity and discharge voltage.Also, the formation of needle-shaped lead crystals can penetrate the separator. This caused an internal short circuit.

これらの欠点を解消する目的で硫酸ナトリウムや硫酸カ
リウムなどのアルカリ金属の硫酸塩や硫酸アンモニウム
などの添加による改良が試みられているが、アルカリ金
属の場合は、添加量が少ないと効果に乏しく、また多量
に添加すると蓄電池の内部抵抗の増加、活物質細孔内へ
の電解液の浸透力の低下、電解液中の水素イオン濃度の
減少などにより容量や放電電圧の低下をもたらす欠点が
あった。また硫酸アンモニウムの添加はアンモニウムイ
オン(NH4+)が酸化を受けやすく、酸化によりNo
2−やN0s−を生じ、格子の腐食やシャトル作用によ
り自己放電を促進したり、さらに硫酸アンモニウムは弱
塩基性塩のため電離度が小さくn2”の生成を抑制する
効果に乏しいものであった。
In order to eliminate these drawbacks, improvements have been attempted by adding alkali metal sulfates such as sodium sulfate and potassium sulfate, and ammonium sulfate, but in the case of alkali metals, they are ineffective if added in small amounts, When added in large amounts, there are drawbacks such as an increase in the internal resistance of the storage battery, a decrease in the permeability of the electrolyte into the pores of the active material, and a decrease in the concentration of hydrogen ions in the electrolyte, resulting in a decrease in capacity and discharge voltage. In addition, when ammonium sulfate is added, ammonium ions (NH4+) are easily oxidized, and due to oxidation, No.
2- and N0s- are generated, which promotes self-discharge due to lattice corrosion and shuttle action. Furthermore, since ammonium sulfate is a weakly basic salt, its degree of ionization is small and it is not effective in suppressing the generation of n2''.

課題を解決するための手段 本発明は電解液に対し溶解度が大きく、かつ電離度が著
しく大きい第4アンモニウムイオンを添加することによ
り上記欠点を解消した密閉形鉛蓄電池を提供するもので
、水酸化第4アンモニウムイオンは電子構造から見て水
酸化ナトリウムや水酸化カリウムに相当する塩基性をも
っている。
Means for Solving the Problems The present invention provides a sealed lead-acid battery that eliminates the above drawbacks by adding quaternary ammonium ions that have a high solubility in the electrolytic solution and a significantly high degree of ionization. The quaternary ammonium ion has basicity corresponding to sodium hydroxide or potassium hydroxide in terms of its electronic structure.

作用 この第4アンモニウムイオンを電解液に添加することに
よる作用は分析化学で共通イオン効果と呼ばれているも
ので、その原理を電解液中のPb2+の濃度について略
述する。
Effect The effect of adding quaternary ammonium ions to the electrolytic solution is called the common ion effect in analytical chemistry, and its principle will be briefly explained with regard to the concentration of Pb2+ in the electrolytic solution.

いま、pb s O41モルが単独に溶液中にあると、
その電離度をα′とすれば、門SQ、、Pb2”。
Now, if 1 mole of pb s O4 is alone in solution,
If the degree of ionization is α', the gate SQ,,Pb2''.

304 ’−のそれぞれはつぎのように分配する。304'- are distributed as follows.

Pb5Oa dPb2”+sOi 2−1−α′ α′
  α′ この反応の平衡定数Kpbは[Pt2”]  [SO0
’−]/ [Pt) S Oaコ=α’2/(1−α′
)で表わされ、α′の大きさは1xlO−’  g/l
程度で、したがってpbso、はほとんど1と見なすこ
とができる。
Pb5Oa dPb2"+sOi 2-1-α'α'
α′ The equilibrium constant Kpb of this reaction is [Pt2”] [SO0
'-]/ [Pt) S Oa = α'2/(1-α'
), and the size of α' is 1xlO-' g/l
degree, and therefore pbso, can be considered almost 1.

第4アンモニウム(ここでは記号Aで表わす)の硫酸塩
1モルが単独に溶液1j2中にあるときの748度をβ
′とすると ASO,al“+304 ’− 1−β′ β′   β′ 硫酸第4アンモニウムは強電解質なので、電離度β′は
大きくほぼ1と見なすことができる。
When 1 mole of quaternary ammonium sulfate (denoted here by the symbol A) is alone in solution 1j2, 748 degrees is β
', then ASO, al"+304 '- 1-β'β'β' Since quaternary ammonium sulfate is a strong electrolyte, the degree of ionization β' can be considered to be large and approximately 1.

次に硫酸鉛と硫酸第4アンモニウムが同一溶液に混在し
ている場合を考えると、それらのvhM度をそれぞれα
、βとすれば各成分の配分は次のようになる。
Next, considering the case where lead sulfate and quaternary ammonium sulfate are mixed in the same solution, their vhM degrees are α
, β, the distribution of each component is as follows.

Pb5O<!PbPbSO42− 1−α  α   α ASO,!A2”+30.2− 1−β  β   β 第4アンモニウムイオンは他のどんなイオンの影響も受
けないので充分型Mすると考えられ、β′中βと見なす
ことができる。
Pb5O<! PbPbSO42- 1-α α α ASO,! A2''+30.2- 1-β β β Since the quaternary ammonium ion is not affected by any other ions, it is considered to be sufficiently type M, and can be regarded as β in β'.

[Pb2”]=α、[304’−]=α+β。[Pb2'']=α, [304'-]=α+β.

Pb5Oa=1−α Kpb=α’2/<1−α′ ) =α(α±β)/(1−α) 1−α′=1−α=β中1なので、 α′2;α2+α、したがってα′〉αすなわち弱電解
質のpbso、は5o42−という共通イオンを持つ第
4アンモニウムが共存するとその電離度が小さくなり、
肺24の濃度は小さく抑えられる。
Pb5Oa=1-α Kpb=α'2/<1-α') = α(α±β)/(1-α) 1-α'=1-α=1 in β, so α'2; α2+α, Therefore, the degree of ionization of α'〉α, that is, the weak electrolyte pbso, decreases when quaternary ammonium having a common ion of 5o42- coexists.
The concentration in the lungs 24 is kept small.

pbso、と第4アンモニウム塩の濃度をそれぞれCp
b、Ctaとすれば、 pb?の濃度[Pb2+]=αcpb、 So、 2−
イオン濃度[S Oa ’ ] = a Cpb+βC
ja、 Pb S O4濃度[PbSO4] = (1
−α)CpbKpb= [Pb”]  [SO0”] 
/ [Pb2+]=αcpb(aCpb+βCta) 
/ (1−a ) Cabl−α中1.βキ1と考えら
れるから、Kρb−a2Cpb+αCta 極端な場合としてCpb= Cta= Cとすれば、K
 pb=α(α+1)C α+1中1とすれば、α= K pb/ CすなわちP
b S O4の電離度(Pb 2”の濃度)は添加する
第4アンモニウムイオンの濃度に反比例することがわか
る。
pbso, and quaternary ammonium salt concentration as Cp, respectively.
If b and Cta, then pb? Concentration of [Pb2+] = αcpb, So, 2-
Ion concentration [SOa'] = a Cpb+βC
ja, Pb SO4 concentration [PbSO4] = (1
−α) CpbKpb= [Pb”] [SO0”]
/ [Pb2+]=αcpb(aCpb+βCta)
/ (1-a) 1 in Cabl-α. Since βki1 is considered, Kρb-a2Cpb+αCta In the extreme case, if Cpb=Cta=C, then K
pb=α(α+1)C If 1 in α+1, then α=K pb/C, that is, P
It can be seen that the degree of ionization of bS O4 (concentration of Pb 2'') is inversely proportional to the concentration of quaternary ammonium ions added.

実施例 本発明ははじめに記した鉛電池の欠点を改良するもので
あり、以下本発明に至った実験の結果を説明する。
EXAMPLE The present invention improves the drawbacks of lead batteries described at the beginning, and the results of experiments that led to the present invention will be explained below.

第1表に示すごとく電解液に各種添加物を加え5Ahの
電池を供試し、次の実験を行った。
Various additives were added to the electrolytic solution as shown in Table 1, and a 5Ah battery was used for the following experiment.

実験1 20 HR電流にて端子間電圧がOvになるまで放電し
、引き続き端子間を短絡して150時間放!放置そのの
ち2.25V/セルの定電圧で充電を行い、その30分
目の電流と5時間目充電電流値を調べる。
Experiment 1 Discharge with 20 HR current until the voltage between the terminals reaches Ov, then short-circuit the terminals and leave it for 150 hours! After leaving it for a while, it was charged at a constant voltage of 2.25 V/cell, and the current at 30 minutes and the charging current value at 5 hours were checked.

実験2 定電流で完全に充電した後、20HR電流にて端子間電
圧がOvになるまで放!し、引き続き端子間を短絡して
40℃にて6ケ月問および12ケ月間の保存を行い、1
011R電流にて定格容量の200%の充電を行い容量
の回復率を調べる。結果を第1表に示す。
Experiment 2 After fully charging with constant current, discharge with 20HR current until the voltage between the terminals reaches Ov! Then, short-circuit the terminals and store at 40℃ for 6 months and 12 months.
Charge to 200% of the rated capacity with 011R current and examine the capacity recovery rate. The results are shown in Table 1.

実験1の結果から、実験方法に示すごとき放置条件及び
充電条件では、第4アンモンニウムイオンであるテトラ
メチルアンモニウムイオンやテトラエチルアンモニウム
イオンを電解液に添加すれば充電受は入れは従来のもの
に比べ改善され、しかも添加量が少なくても同様の作用
を有することがわかる。実験2の結果から、実験方法に
示すように長期放置条件及び充電条件においては第4ア
ンモニウムイオンの存在が有効であることがわかる。ま
た、これらを添加したセルはいずれも放置後の充電で内
部短絡を生じるものは見られなかった。
From the results of Experiment 1, under the standing and charging conditions shown in the experimental method, if quaternary ammonium ions such as tetramethylammonium ion and tetraethylammonium ion are added to the electrolyte, the charging capacity will be improved compared to the conventional one. It can be seen that the effect is improved and the same effect can be obtained even if the amount added is small. The results of Experiment 2 show that the presence of quaternary ammonium ions is effective under long-term storage conditions and charging conditions as shown in the experimental method. In addition, no internal short circuit was observed in any of the cells to which these were added during charging after being left unused.

また、本発明は第4アンモニウム塩単独の添加に限らず
燐酸や硼酸などを併用することは何等差支えない。
Furthermore, the present invention is not limited to the addition of a quaternary ammonium salt alone, and may be used in combination with phosphoric acid, boric acid, etc.

発明の効果 テトラメチルアンモニウムイオンあるいはテトラエチル
アンモニウムイオンを電解液に添加することにより電解
液の低比重領域でのPb 2”の溶解量を低く抑えて、
結晶成長を妨げ、しかも第4アンモニウムイオンの存在
により、電解液の電導度を大きく低下させることがない
ため回復充電特性が改良されると共に、セパレータ貫通
ショートもなくなり、過放電や長期放置に耐える電池を
提供することができ、その工業的価値は大である。
Effects of the invention By adding tetramethylammonium ions or tetraethylammonium ions to the electrolytic solution, the amount of Pb 2'' dissolved in the low specific gravity region of the electrolytic solution can be suppressed to a low level.
The presence of quaternary ammonium ions prevents crystal growth and does not significantly reduce the conductivity of the electrolyte, improving recovery charging characteristics, eliminating short-circuits through the separator, and making the battery resistant to overdischarge and long-term storage. It is of great industrial value.

Claims (1)

【特許請求の範囲】[Claims] 1、鉛−カルシウム−錫合金または鉛−カルシウム−錫
−アルミニウム合金を正極格子に用いると共に、電解液
に第4アンモニウムイオンを含む密閉形鉛蓄電池。
1. A sealed lead-acid battery using a lead-calcium-tin alloy or a lead-calcium-tin-aluminum alloy for the positive electrode grid and containing quaternary ammonium ions in the electrolyte.
JP63096364A 1988-04-19 1988-04-19 Sealed lead-acid battery Pending JPH01267965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096364A JPH01267965A (en) 1988-04-19 1988-04-19 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096364A JPH01267965A (en) 1988-04-19 1988-04-19 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH01267965A true JPH01267965A (en) 1989-10-25

Family

ID=14162929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096364A Pending JPH01267965A (en) 1988-04-19 1988-04-19 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH01267965A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152973A (en) * 2006-12-14 2008-07-03 Osaka Univ Electrolytic solution for lead storage battery, anode for lead storage battery, lead storage battery equipped with electrolytic solution and/or anode, and additive for lead acid battery
US9356321B2 (en) 2012-12-21 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Lead-acid battery
WO2019088040A1 (en) 2017-10-31 2019-05-09 日本板硝子株式会社 Lead storage battery separator and lead storage battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008152973A (en) * 2006-12-14 2008-07-03 Osaka Univ Electrolytic solution for lead storage battery, anode for lead storage battery, lead storage battery equipped with electrolytic solution and/or anode, and additive for lead acid battery
US9356321B2 (en) 2012-12-21 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Lead-acid battery
WO2019088040A1 (en) 2017-10-31 2019-05-09 日本板硝子株式会社 Lead storage battery separator and lead storage battery

Similar Documents

Publication Publication Date Title
JP2008130516A (en) Liquid lead-acid storage battery
JP2002260714A (en) Valve controlled lead storage battery
JPS63213264A (en) Lead storage battery
JPH01267965A (en) Sealed lead-acid battery
JP2007035339A (en) Control valve type lead-acid storage battery
JPS58117658A (en) Sealed lead-acid battery
JP3216450B2 (en) Electrolyte for lead-acid batteries
US3447971A (en) Neutral secondary battery
JPH04179063A (en) Sealed type lead-acid battery
KR950004457B1 (en) Lead battery
JP2553858B2 (en) Lead acid battery
JP2959108B2 (en) Lead storage battery
JP3094423B2 (en) Lead storage battery
JPS63244568A (en) Lead-acid battery
JPH01117279A (en) Lead-acid battery
JPS6319771A (en) Function recovery agent of lead-acid battery and its function recovery method
JP3582068B2 (en) How to charge lead storage batteries
JP2808685B2 (en) Lead storage battery
JP2762730B2 (en) Nickel-cadmium storage battery
JPS6327827B2 (en)
JPS5819876A (en) Electrolyte
JPS61198574A (en) Lead storage battery
JPS5929375A (en) Sealed lead storage battery
JPS58197664A (en) Alkaline zinc secondary battery
JPS63211574A (en) Sealed lead-acid battery