JPH04179063A - Sealed type lead-acid battery - Google Patents

Sealed type lead-acid battery

Info

Publication number
JPH04179063A
JPH04179063A JP2305548A JP30554890A JPH04179063A JP H04179063 A JPH04179063 A JP H04179063A JP 2305548 A JP2305548 A JP 2305548A JP 30554890 A JP30554890 A JP 30554890A JP H04179063 A JPH04179063 A JP H04179063A
Authority
JP
Japan
Prior art keywords
sulfate
electrolytic solution
acid battery
lead
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2305548A
Other languages
Japanese (ja)
Inventor
Eiji Nitta
新田 英次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2305548A priority Critical patent/JPH04179063A/en
Publication of JPH04179063A publication Critical patent/JPH04179063A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a sealed lead acid battery in thin form by adding Ce sulfate having large dissolutiveness and a high specific electric conductivity to electrolytic solution, CONSTITUTION:Pb-Ca-Sn alloy or Pb-Ca-Sn-Al-alloy is used to a lattice of a pos. electrode plate, while 2-200g/l Ce sulfate is included in electrolytic solution. That is, a larger quantity of Ce sulfate can be dissolved than the quantities of conventional additives, which suppresses Pb ion production in the electrolytic solution having become water at the time of overdischarge, to provide prevention of internal shortcircuiting. This permits to use a thin separator, which should make the resultant cell still thinner in structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は密閉形鉛蓄電池の改良に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to improvements in sealed lead-acid batteries.

従来の技術とその課題 密閉形鉛蓄電池は電解液がガラス繊維よりなるマット状
セパレータで保持されているため液が外部に漏れず、ま
な補水も不要なので携帯用の家電機器の電源として広く
普及している。
Conventional technology and its issues Sealed lead-acid batteries are widely used as a power source for portable home appliances because the electrolyte is held in a mat-like separator made of glass fiber, so the liquid does not leak outside and does not require additional water replenishment. ing.

密閉形鉛蓄電池は開放形の鉛蓄電池に比べ電解液量を著
しく制限することによって密閉化を図っているが、この
電解液が著しく少ないという特徴は深い放電を行った場
合、電解液中の硫酸が消費されてしまうため水素イオン
と硫酸イオンがなくなり単なる水となって高抵抗となる
ため充電回復性が低下してしまう、また放電後電解液が
水になると表1に示すようにf!酸鉛の溶解度が極端に
上昇し、溶解した硫酸鉛が多量の鉛イオンを解離するた
め充電時に負極板上に針状鉛として析出し、セパレータ
を貫通して正極板に接触して内部短絡を生しる。この現
象は特に薄形化した電池ではセパレータを薄くしている
ため生じやすく薄形化を進める上での障害になっていた
Sealed lead-acid batteries are sealed by significantly limiting the amount of electrolyte compared to open lead-acid batteries, but the characteristic of this extremely small amount of electrolyte is that when deep discharge is performed, sulfuric acid in the electrolyte As the electrolyte is consumed, hydrogen ions and sulfate ions disappear, and it becomes just water, resulting in high resistance, which reduces charge recovery.Furthermore, if the electrolyte becomes water after discharge, as shown in Table 1, f! The solubility of acid lead increases extremely, and the dissolved lead sulfate dissociates a large amount of lead ions, which precipitates as needle-shaped lead on the negative electrode plate during charging, penetrates the separator and comes into contact with the positive electrode plate, causing an internal short circuit. Live. This phenomenon is particularly likely to occur in thinner batteries because the separators are thinner, and has been an obstacle in making the batteries thinner.

表1 これらの間朗を解消する目的でvA酸ナトリウム、硫酸
マグネシウム、硫酸アンモニウム等の可溶性の硫酸塩を
電解液に添加することが提案されている。これらの硫酸
塩の作用は深放電によって硫酸がなくなった時も電池反
応に関与しない硫酸塩がイオンに解離して水になった電
解液に導電性を付与することおよび鉛イオンに対する共
通イオン効果により、その濃度の増加を抑えて充電時の
針状釦の析出を防止する。
Table 1 It has been proposed to add soluble sulfates such as sodium vA acid, magnesium sulfate, and ammonium sulfate to the electrolytic solution in order to eliminate these problems. The action of these sulfates is that even when sulfuric acid is exhausted due to deep discharge, the sulfates that do not participate in the battery reaction dissociate into ions, imparting conductivity to the water electrolyte, and due to the common ion effect on lead ions. , suppresses the increase in its concentration and prevents the precipitation of needle-like buttons during charging.

ところが、硫酸アンモニウムは溶解度が大きいので高い
効果が期待される半面アンモニウムイオン(NH4” 
)が多原子分子であるため化学的な安定性に乏しく正極
で容易に酸化分解されて消失し早期に効果を失ってしま
う。硫酸マグネシウムは、硫酸ナトリウムに比べると溶
解度がやや大きい点では優れているが導電性に劣り、現
在硫酸ナトリウムが最も広く使用されている。しかし、
硫酸ナトリウムは添加量が少ないと効果がなく、添加量
を著増したくても溶解度が小さいので限度があり、期待
する効果を得ていない、そのため、薄いセパレータを使
用した電池では深放電を繰り返すと短期に内部短絡を生
じてしまう欠点があった。
However, since ammonium sulfate has a high solubility, it is expected to be highly effective, whereas ammonium ion (NH4)
) is a polyatomic molecule, it has poor chemical stability and is easily oxidized and decomposed at the positive electrode, disappearing and quickly losing its effectiveness. Magnesium sulfate is superior to sodium sulfate in that it has a slightly higher solubility, but it is inferior in conductivity, and sodium sulfate is currently the most widely used. but,
Sodium sulfate has no effect if the amount added is small, and even if you want to significantly increase the amount added, there is a limit due to low solubility, and the expected effect is not obtained. Therefore, in batteries using thin separators, repeated deep discharges It had the disadvantage of causing an internal short circuit in a short period of time.

課題を解決するための手段 本発明は溶解度が大きく、同時に比電導度の高い性質を
もつFiX′#セシウムを電解液に添加することにより
上記欠点を解消し、より薄形の密閉形鉛蓄電池を可能に
するものである。
Means for Solving the Problems The present invention solves the above drawbacks by adding FiX'#cesium, which has high solubility and high specific conductivity, to the electrolyte, and makes it possible to create thinner sealed lead-acid batteries. It is what makes it possible.

実施例 本発明電池に用いる硫酸セシウムの特性を従来の添加物
と比較して表2に示す。
EXAMPLE Table 2 shows the characteristics of cesium sulfate used in the battery of the present invention in comparison with conventional additives.

表2 実施例1 表3に示すごとく電解液に各種添加物を加え5Ahの電
池を供試し、つぎの実験を行った。
Table 2 Example 1 Various additives were added to the electrolytic solution as shown in Table 3, and a 5Ah battery was used to conduct the following experiment.

実験1 20HR電流にて端子間電圧が0■になるままで放電し
、引き続き端子間を短絡して150時間放置し、その後
2.25V/セルの定電圧で充電を行い、その30分目
の電流と5時間目の電流を調べる。
Experiment 1 Discharge with a 20HR current while the voltage between the terminals becomes 0■, then short-circuit the terminals and leave it for 150 hours, then charge with a constant voltage of 2.25V/cell, and after 30 minutes Check the current and the current at the 5th hour.

実験2 定電流で完全に充電した後、2OHRt流にて端子間電
圧が0■になるまで放電し、引き続き端子間を短絡して
40℃にて6ケ月問および12ケ月間の保存を行い、1
0HR1流にて定格容量の200%の充電を行い容量の
回復率を調べる。結果を表3に示す。
Experiment 2 After fully charging with constant current, discharge with 2OHRt current until the voltage between the terminals becomes 0■, then short-circuit the terminals and store at 40℃ for 6 months and 12 months. 1
Charge to 200% of the rated capacity using 0HR1 flow and examine the capacity recovery rate. The results are shown in Table 3.

表3 実験1の結果から、実験方法に示すごとき放置条件では
、硫酸セシウムを電解液に添加すれば充電骨は入れは従
来のものに比べ改善されることがわかる。実験2の結果
から、実験方法に示すような条件及び充電条件において
は硫酸セシウムの存在が有効であることがわかる。また
、これらを添加したセルはいずれも放置後の充電で内部
短絡を生じるものは見られなかった。
Table 3 From the results of Experiment 1, it can be seen that under the storage conditions shown in the experimental method, the addition of cesium sulfate to the electrolytic solution improves the charging performance compared to the conventional method. The results of Experiment 2 show that the presence of cesium sulfate is effective under the conditions and charging conditions shown in the experimental method. In addition, no internal short circuit was observed in any of the cells to which these were added during charging after being left unused.

実施例2 厚さ3mmの電池(セパレータ厚さ0.811 )を2
0ケ作製し、これを2等分して、比重1.300の硫酸
に、一方には硫酸ナトリウム飽和溶液を、他方には硫酸
セシウムを150 g、I溶解した電解液を同量注液し
て初充電を行ったのちJISに規定された過放電放置試
験を行った、その結果、硫酸ナトリウムを添加したもの
は8ケに内部短絡を生じたが、硫酸セシウムを添加した
ものは皆無であった。また、硫酸セシウムを使用したも
のは過放電放置後の充電時の電流受は入れ性も良好であ
った。なお、硫酸セシウムの電解液への添加量は2Q/
f;!以下では、従来のものと効果が変らず、一方20
0 Q/A以上では電解液自体の導電率の低下が電池の
放電電圧の低下に大きく影響してくるので添加量を限定
する必要がある。
Example 2 Two batteries with a thickness of 3 mm (separator thickness 0.811)
0 pieces, divide it into two equal parts, and pour equal amounts of an electrolyte solution in which 150 g of cesium sulfate and 1 are dissolved in sulfuric acid with a specific gravity of 1.300 into one part, a saturated solution of sodium sulfate, and the other part. After initial charging, we conducted an over-discharge test as specified by JIS.As a result, internal short circuits occurred in 8 batteries with the addition of sodium sulfate, but none with the addition of cesium sulfate. Ta. In addition, the battery using cesium sulfate had good current reception during charging after overdischarging. The amount of cesium sulfate added to the electrolyte is 2Q/
f;! Below, the effect is the same as the conventional one, while 20
If the electrolytic solution exceeds 0 Q/A, the reduction in the conductivity of the electrolytic solution itself will greatly affect the reduction in the discharge voltage of the battery, so it is necessary to limit the amount added.

発明の効果 Fii&酸セシウムは従来の添加物に比べ多量に溶解す
ることができるので過放電時の水になった電解液中での
鉛イオン生成を抑制して内部短絡を防止するのに著しい
効果を発揮する。そのため従来より薄いセパレータを使
用することができ電池をさらに一層薄形化することがで
きる。また導電性が従来のものより優れているので過放
電放置後の充電回復性も良好であり、その工業的価値は
大である。
Effects of the invention Since Fii & cesium oxide can be dissolved in larger quantities than conventional additives, it is extremely effective in suppressing lead ion formation in the electrolyte that becomes water during overdischarge and preventing internal short circuits. demonstrate. Therefore, a thinner separator can be used than in the past, and the battery can be made even thinner. Furthermore, since the conductivity is superior to conventional ones, the charge recovery property after being left overdischarged is also good, and its industrial value is great.

Claims (1)

【特許請求の範囲】[Claims] 1、鉛−カルシウム−錫合金または鉛−カルシウム−錫
−アルミニウム合金を正極板の格子に用いると共に、電
解液に2〜200g/lの硫酸セシウムを含む密閉形鉛
蓄電池。
1. A sealed lead-acid battery in which a lead-calcium-tin alloy or a lead-calcium-tin-aluminum alloy is used for the grid of the positive electrode plate, and the electrolyte contains 2 to 200 g/l of cesium sulfate.
JP2305548A 1990-11-08 1990-11-08 Sealed type lead-acid battery Pending JPH04179063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2305548A JPH04179063A (en) 1990-11-08 1990-11-08 Sealed type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2305548A JPH04179063A (en) 1990-11-08 1990-11-08 Sealed type lead-acid battery

Publications (1)

Publication Number Publication Date
JPH04179063A true JPH04179063A (en) 1992-06-25

Family

ID=17946487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2305548A Pending JPH04179063A (en) 1990-11-08 1990-11-08 Sealed type lead-acid battery

Country Status (1)

Country Link
JP (1) JPH04179063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306799A (en) * 2010-03-24 2012-01-04 衡阳瑞达电源有限公司 Deep cycle-resistant lead-acid storage battery plate and manufacturing method
JP2013131389A (en) * 2011-12-21 2013-07-04 Gs Yuasa Corp Lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102306799A (en) * 2010-03-24 2012-01-04 衡阳瑞达电源有限公司 Deep cycle-resistant lead-acid storage battery plate and manufacturing method
JP2013131389A (en) * 2011-12-21 2013-07-04 Gs Yuasa Corp Lead storage battery

Similar Documents

Publication Publication Date Title
CN104064817A (en) Lead-acid storage battery electrolyte additive and preparation method thereof
JP2002260714A (en) Valve controlled lead storage battery
JPH04179063A (en) Sealed type lead-acid battery
US2582845A (en) Means for reducing local action in lead acid storage batteries
JPS58117658A (en) Sealed lead-acid battery
JPH01267965A (en) Sealed lead-acid battery
US3447971A (en) Neutral secondary battery
KR950004457B1 (en) Lead battery
US2994626A (en) Low loss battery
JPH01117279A (en) Lead-acid battery
JP2553858B2 (en) Lead acid battery
JPS63244568A (en) Lead-acid battery
JP3216450B2 (en) Electrolyte for lead-acid batteries
JPS586275B2 (en) lead acid battery
US3523831A (en) Storage battery with nicotinic acid amide additive
JPS62139275A (en) Sealed lead-acid battery
JPS6319771A (en) Function recovery agent of lead-acid battery and its function recovery method
JPH079806B2 (en) Zinc electrode for alkaline storage battery
JPS63211574A (en) Sealed lead-acid battery
JPH01117273A (en) Lead-acid battery
JPS6216505B2 (en)
JPS61198574A (en) Lead storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS6327827B2 (en)
JPH01281683A (en) Lead storage battery