JP2007035339A - Control valve type lead-acid storage battery - Google Patents

Control valve type lead-acid storage battery Download PDF

Info

Publication number
JP2007035339A
JP2007035339A JP2005213677A JP2005213677A JP2007035339A JP 2007035339 A JP2007035339 A JP 2007035339A JP 2005213677 A JP2005213677 A JP 2005213677A JP 2005213677 A JP2005213677 A JP 2005213677A JP 2007035339 A JP2007035339 A JP 2007035339A
Authority
JP
Japan
Prior art keywords
lead
control valve
valve type
battery
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005213677A
Other languages
Japanese (ja)
Inventor
Yoshibumi Hisama
義文 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005213677A priority Critical patent/JP2007035339A/en
Publication of JP2007035339A publication Critical patent/JP2007035339A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve type lead-acid storage battery used for auxiliary equipment of a hybrid car, of which lead ion is reduced at an anode at charging, prevented from short circuit between a cathode and the anode caused by dendritic electrodeposition substance of lead. <P>SOLUTION: The control valve type lead-acid battery uses a lattice made of lead or lead alloy not including antimony for a cathode plate and an anode plate. Ratio (B/A) of mass (B) of sulfuric acid contained in electrolyte liquid to a mass (A) of cathode activator is not less than 0.40 and not more than 0.52, and 10g/l to 30g/l of tetra-sodium borate is contained in the electrolyte liquid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、制御弁式鉛蓄電池に関するものである。   The present invention relates to a valve-regulated lead-acid battery.

近年、地球環境の観点で自動車の燃費向上によるCO2削減の取り組みがなされてきている。そして、エンジンと電動モータとを組み合わせた、いわゆるハイブリッド車が実用化され、普及の段階に入っている。 In recent years, efforts have been made to reduce CO 2 by improving automobile fuel efficiency from the viewpoint of the global environment. A so-called hybrid vehicle that combines an engine and an electric motor has been put into practical use and is in the stage of widespread use.

一方、従来の自動車は、エンジン始動を主な目的として鉛蓄電池が搭載されている。この鉛蓄電池は車両の各種制御を行うECUや各種の補機類にも電力を供給するが、エンジン始動後はオルタネータにより充電されるため、鉛蓄電池のSOC(充電状態)は80〜100%の比較的高い状態に維持される。   On the other hand, a conventional automobile is equipped with a lead storage battery mainly for engine start. This lead-acid battery supplies electric power to ECUs and various auxiliary machines that perform various controls of the vehicle, but since the engine is charged by an alternator after starting the engine, the SOC (charged state) of the lead-acid battery is 80 to 100%. It is kept relatively high.

一方、ハイブリッド車ではNi−MH電池等のメイン電池で電動モータを駆動し、サブ電池として用いられる鉛蓄電池はECUをはじめとする補機用電源として用いられる。このような、補機用鉛蓄電池では、車両内スペースの関係から、従来のエンジンルーム内に設置するのではなく、車室あるいは車室下もしくはトランクあるいはトランク下のスペースに設定されるのが通常である。したがって、充電時に酸素・水素ガスが排出されやすい開放液式の鉛蓄電池ではなく、酸素ガスを負極で吸収することにより負極での水素ガス発生を抑制した、負極吸収式の制御弁式鉛蓄電池を用いる。   On the other hand, in a hybrid vehicle, an electric motor is driven by a main battery such as a Ni-MH battery, and a lead storage battery used as a sub battery is used as a power source for auxiliary equipment such as an ECU. Such lead-acid batteries for auxiliary machines are usually installed in the space in the passenger compartment, under the passenger compartment, or in the trunk or under the trunk instead of being installed in the conventional engine room due to the space in the vehicle. It is. Therefore, instead of an open-liquid type lead acid battery in which oxygen and hydrogen gas are easily discharged during charging, a negative electrode absorption control valve type lead acid battery that suppresses hydrogen gas generation at the negative electrode by absorbing oxygen gas at the negative electrode. Use.

ハイブリッド車では、エンジンを制御するECUの他、メイン電池を制御するためのECUといった各種のECUを搭載しており、その分、ECUに流れる暗電流は通常の車両に比較して高いレベルにある。   The hybrid vehicle is equipped with various ECUs such as an ECU for controlling the main battery in addition to an ECU for controlling the engine, and accordingly, dark current flowing through the ECU is at a higher level than that of a normal vehicle. .

暗電流は車両を完全停止した状態でも流れ続けるため、車両の使用頻度が少ない場合、鉛蓄電池が過放電状態になる。特に制御弁式鉛蓄電池では、開放液式の鉛蓄電池に比較して、電解液中の硫酸量が少なく制限されるため、放電容量が少なく、より過放電されやすい。また、過放電状態での電解液の硫酸濃度も液式鉛蓄電池の場合より低くなるため、正極−負極間の短絡が発生しやすくなる。   Since the dark current continues to flow even when the vehicle is completely stopped, the lead storage battery is overdischarged when the vehicle is used less frequently. In particular, in the control valve type lead acid battery, the amount of sulfuric acid in the electrolytic solution is limited to be smaller than that of the open liquid type lead acid battery, so that the discharge capacity is small and the battery is more easily overdischarged. Moreover, since the sulfuric acid concentration of the electrolytic solution in the overdischarged state is lower than that in the case of the liquid lead acid battery, a short circuit between the positive electrode and the negative electrode is likely to occur.

このような短絡は、電解液中の硫酸濃度の低下とともに、放電生成物である硫酸鉛の電解液中の溶解度が上昇することにより起こるものである。硫酸鉛は溶解することにより、鉛イオンとして存在するが、鉛蓄電池を充電した際に鉛イオンが負極上で還元し樹枝状電析物として析出する。この樹枝状電析物がセパレータを貫通することにより、正極−負極間が短絡する。   Such a short circuit is caused by an increase in the solubility of lead sulfate, which is a discharge product, in the electrolytic solution as the sulfuric acid concentration in the electrolytic solution decreases. When lead sulfate is dissolved, lead sulfate is present as lead ions. However, when the lead storage battery is charged, lead ions are reduced on the negative electrode and deposited as dendritic deposits. When this dendritic electrodeposit penetrates the separator, the positive electrode and the negative electrode are short-circuited.

鉛蓄電池を過放電した際に発生する短絡を抑制するために、電解液中に硫酸ナトリウムを添加することが知られている(例えば特許文献1参照)。硫酸ナトリウムは、希硫酸電解液中で硫酸イオンが欠乏した際に硫酸イオンの電離度を上げる緩衝剤としての作用がある。そして、過放電時の硫酸イオン濃度低下が抑制され、鉛イオンの溶解度が低下するため、樹枝状電析物の成長とこれによる短絡が抑制される。
特開平4−171672号公報
In order to suppress a short circuit that occurs when a lead storage battery is overdischarged, it is known to add sodium sulfate to the electrolyte (see, for example, Patent Document 1). Sodium sulfate acts as a buffering agent that increases the degree of ionization of sulfate ions when sulfate ions are deficient in the dilute sulfuric acid electrolyte. And since the fall of the sulfate ion concentration at the time of overdischarge is suppressed and the solubility of lead ion falls, the growth of a dendritic electrodeposit and a short circuit by this are suppressed.
JP-A-4-171672

特許文献1に記載されたように、電解液中へ硫酸ナトリウムを添加することにより、鉛蓄電池を過放電した際の樹枝状電析物とこれによる内部短絡を抑制する効果があるが、ハイブリッド車は一般の車両に比較して暗電流が大きい傾向にあり、硫酸ナトリウムの添加のみでは、内部短絡防止効果は不十分であった。   As described in Patent Document 1, by adding sodium sulfate to the electrolytic solution, there is an effect of suppressing dendritic electrodeposits and internal short circuit caused by overdischarge of the lead storage battery. Tended to have a larger dark current than ordinary vehicles, and the effect of preventing an internal short circuit was insufficient only by adding sodium sulfate.

前記した課題を解決するために、本発明の請求項1に係る発明は、正極板及び負極板にアンチモンを含まない鉛もしくは鉛合金格子を用い、正極活物質量(A)に対する電解液中の硫酸質量(B)の比率(B/A)が0.40以上0.52以下であり、かつ電解液中に4ホウ酸ナトリウムを10g/l〜30g/l含むことを特徴とする制御弁式鉛蓄電池を示すものである。   In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention uses a lead or lead alloy lattice containing no antimony for the positive electrode plate and the negative electrode plate, The ratio of sulfuric acid mass (B) (B / A) is 0.40 or more and 0.52 or less, and 10 g / l to 30 g / l of sodium tetraborate is contained in the electrolytic solution. It shows a lead storage battery.

さらに、本発明の請求項2に係る発明は、請求項1の制御弁式鉛蓄電池において、正極板および負極板の下部を浸漬する遊離電解液を有したものである。   Furthermore, the invention according to claim 2 of the present invention is the control valve type lead-acid battery according to claim 1, which has a free electrolyte for immersing the lower part of the positive electrode plate and the negative electrode plate.

本発明の鉛蓄電池は、ハイブリッド車両のように、一般の車両に比較して暗電流が大きい車両に用いた場合であっても、過放電時の樹枝状電析物の生成とこれによる電池内部短絡を抑制することができる。   The lead-acid battery of the present invention generates a dendritic deposit during overdischarge and the inside of the battery even when it is used for a vehicle having a dark current larger than that of a general vehicle such as a hybrid vehicle. Short circuit can be suppressed.

本発明の制御弁式鉛蓄電池の構成を説明する。   The configuration of the control valve type lead storage battery of the present invention will be described.

本発明の制御弁式鉛蓄電池は、正極および負極の格子合金としてアンチモンを含まない、鉛もしくは鉛合金を用いる。格子に必要とされる機械的強度や耐食性を確保するために0.2質量%〜2.0質量%程度の濃度のSnや0.03質量%〜0.1質量%程度の濃度のCaを添加することが可能である。   The control valve type lead storage battery of the present invention uses lead or a lead alloy containing no antimony as a lattice alloy of the positive electrode and the negative electrode. In order to ensure the mechanical strength and corrosion resistance required for the lattice, Sn having a concentration of about 0.2% to 2.0% by mass and Ca having a concentration of about 0.03% to 0.1% by mass are used. It is possible to add.

正極および負極格子体には、従来より知られているボールミル式鉛粉やバートン式鉛粉といった、公知の鉛蓄電池用鉛粉を水と希硫酸で練合して得た活物質ペーストを充填する。なお、正極活物質の化成効率や利用率向上を目的として、鉛粉中に鉛丹を添加することができる。また、負極活物質の収縮を抑制する防縮剤(硫酸バリウム、リグニン)や導電性を向上するためのカーボンといった導電剤を添加することができる。さらに、活物質の機械的強度を確保するために、1〜十数mm程度の長さを有した合成繊維(ポリエステル繊維等)を添加することができる。   The positive and negative grids are filled with an active material paste obtained by kneading known lead powder for lead-acid batteries such as ball mill type lead powder and Burton type lead powder with water and dilute sulfuric acid. . In addition, a red lead can be added in lead powder for the purpose of the chemical conversion efficiency and utilization rate improvement of a positive electrode active material. Further, a conductive agent such as a shrink preventing agent (barium sulfate, lignin) for suppressing shrinkage of the negative electrode active material or carbon for improving conductivity can be added. Furthermore, in order to ensure the mechanical strength of the active material, a synthetic fiber (polyester fiber or the like) having a length of about 1 to several tens mm can be added.

正極・負極活物質に活物質ペーストを充填後、熟成乾燥して未化成状態の正極板および負極板を得る。これら正・負極板と耐酸性を有したガラス繊維やポリプロピレン樹脂繊維で構成されたマットセパレータとを組み合わせて制御弁式鉛蓄電池を組立る。   After filling the positive electrode / negative electrode active material with an active material paste, it is aged and dried to obtain an unformed positive electrode plate and negative electrode plate. A control valve type lead storage battery is assembled by combining these positive / negative electrode plates and a mat separator made of acid-resistant glass fiber or polypropylene resin fiber.

本発明の制御弁式鉛蓄電池は、電解液中に含まれる硫酸質量(B)と正極活物質(PbO2)質量(A)の比率を(B/A)を0.40以上、かつ0.52以下の範囲とし、かつ、電解液中に4ホウ酸ナトリウムを10.0g/l〜30g/l含む。 In the control valve type lead-acid battery of the present invention, the ratio of the mass of sulfuric acid (B) and the mass of positive electrode active material (PbO 2 ) (A) contained in the electrolyte is (B / A) of 0.40 or more, and It is made into the range of 52 or less, and 10.0 g / l-30 g / l of sodium tetraborate is included in electrolyte solution.

4ホウ酸ナトリウムは電解液中の硫酸量が低下した状態で、硫酸の電離度を上昇させ、電解液中の硫酸イオン濃度を増加させることにより、放電生成物(硫酸鉛)の電解液中への溶解度を低下させ、その結果、樹枝状電析物の負極上での析出と、これによる電池内部短絡を抑制すると考えられる。   Sodium tetraborate increases the ionization degree of sulfuric acid and increases the sulfuric acid ion concentration in the electrolytic solution in a state in which the amount of sulfuric acid in the electrolytic solution is reduced, thereby bringing the discharge product (lead sulfate) into the electrolytic solution. As a result, it is considered that the precipitation of the dendritic electrodeposit on the negative electrode and the internal short circuit of the battery due to this are suppressed.

このような4ホウ酸ナトリウムによる内部短絡抑制効果は、特に前記した硫酸質量(B)と正極活物質量(A)の比率(B/A)が0.40以上、0.52以下の範囲において、最も顕著に得ることができる。この比率が0.40未満の領域では、4ホウ酸ナトリウムによる効果は従来から知られている硫酸ナトリウムを添加する効果と顕著な差がない。   Such an internal short-circuit suppressing effect by sodium tetraborate is particularly effective when the ratio (B / A) of the sulfuric acid mass (B) to the positive electrode active material amount (A) is 0.40 or more and 0.52 or less. Can be obtained, most notably. In the region where this ratio is less than 0.40, the effect of sodium tetraborate is not significantly different from the conventionally known effect of adding sodium sulfate.

また上記の比率(B/A)が0.52を超える領域では、内部短絡抑制効果は殆ど向上しない上、負極でのガス吸収効率が低下し、ガス発生による減液が大きくなるため好ましくない。   Moreover, in the region where the ratio (B / A) exceeds 0.52, the effect of suppressing internal short circuit is hardly improved, and the gas absorption efficiency at the negative electrode is lowered, and the liquid reduction due to gas generation becomes large, which is not preferable.

また、従来の制御弁式鉛蓄電池では硫酸質量(B)と正極活物質(PbO2)量(A)の比率が0.3〜0.35であるが、本発明の制御弁式鉛蓄電池では、この比率が0.40〜0.52と比較的高い。したがって、すべての電解液を正極板、負極板およびセパレータに含浸固定させる構成では電解液の硫酸濃度が高くならざるを得ない。一般に電解液中の硫酸濃度が44.2%を超えるとサルフェーションや正極活物質の軟化、充電受入性の低下が顕著になるため、これを避けるため、極板およびセパレータから遊離した電解液を有した構成とし、電解液の硫酸濃度をより低い値に設定することが好ましい。但し、電池容量の面から35%以上とすることが好ましい。 In the conventional control valve type lead acid battery, the ratio of the sulfuric acid mass (B) and the positive electrode active material (PbO 2 ) amount (A) is 0.3 to 0.35. This ratio is relatively high at 0.40 to 0.52. Therefore, in a configuration in which all the electrolyte is impregnated and fixed to the positive electrode plate, the negative electrode plate, and the separator, the sulfuric acid concentration of the electrolyte solution must be increased. In general, when the sulfuric acid concentration in the electrolytic solution exceeds 44.2%, sulfation, softening of the positive electrode active material, and reduction in charge acceptability become significant. To avoid this, the electrolytic solution released from the electrode plate and the separator must be present. It is preferable to set the sulfuric acid concentration of the electrolytic solution to a lower value. However, it is preferably 35% or more from the viewpoint of battery capacity.

遊離電解液を有する構成とした電池では、例えば電池を反転させた状態で充電操作を行った場合、制御弁が開くと内部の電解液が外部に漏出する可能性があるが、車両用の鉛蓄電池では車両に固定して使用するのが常であり、通常使用において電池を反転状態で使用することは皆無であるため、遊離電解液を有していても実用上、全く問題はない。   In the case of a battery having a free electrolyte solution, for example, when a charging operation is performed with the battery inverted, the internal electrolyte solution may leak to the outside when the control valve is opened. A storage battery is usually fixed to a vehicle and used, and the battery is never used in an inverted state in normal use. Therefore, even if it has a free electrolyte, there is no practical problem.

以上の構成を有した本発明の制御弁式鉛蓄電池は、暗電流が比較的大きい、ハイブリッド車の補機用鉛蓄電池として用いた場合においても、過放電時の内部短絡を抑制することができる。   The control valve type lead storage battery of the present invention having the above configuration can suppress an internal short circuit during overdischarge even when it is used as a lead storage battery for auxiliary equipment of a hybrid vehicle having a relatively large dark current. .

(実施例1)
以下、実施例により、本発明の効果を説明する。
Example 1
Hereinafter, the effects of the present invention will be described with reference to examples.

本実施例では、電解液中の硫酸質量(B)に対する正極活物質(PbO2)量(A)の比率(B/A)と、電解液中の4ホウ酸ナトリウムの添加量を様々に変化させて2V44Ahの制御弁式鉛蓄電池を作成した。 In this example, the ratio (B / A) of the amount (A) of the positive electrode active material (PbO 2 ) to the mass of sulfuric acid (B) in the electrolytic solution and the amount of sodium tetraborate added in the electrolytic solution are varied. 2V44Ah control valve type lead acid battery was made.

なお、比較対照のため、4ホウ酸ナトリウムにかえて硫酸ナトリウムを様々に変化させた電池を作成した。   For comparison, a battery in which sodium sulfate was changed in place of sodium tetraborate was prepared.

正極板としてPb−1.6質量%Sn−0.06質量%Caの圧延シートをエキスパンド加工して得た格子体にボールミル式鉛粉(Pb0:75質量部、Pb:25質量部)とともに、鉛丹(Pb34:95質量部、PbO:5質量部)を添加し、これらを水と希硫酸で練合して得たペーストを充填したものを用いた。 A grid obtained by expanding a rolled sheet of Pb-1.6 mass% Sn-0.06 mass% Ca as a positive electrode plate together with ball mill type lead powder (Pb0: 75 mass parts, Pb: 25 mass parts), Lead paste (Pb 3 O 4 : 95 parts by mass, PbO: 5 parts by mass) was added, and a paste filled with paste obtained by kneading these with water and dilute sulfuric acid was used.

負極板としてPb−0.20質量%Sn−0.07質量%Caの圧延シートをエキスパンド加工して得た格子体に前記のボールミル式鉛粉にリグニン、硫酸バリウム、アセチレンブラックを添加した後、水と希硫酸とを練合して得たペーストを充填したものを用いた。   After adding lignin, barium sulfate, and acetylene black to the above-mentioned ball mill type lead powder to a grid obtained by expanding a rolled sheet of Pb-0.20 mass% Sn-0.07 mass% Ca as a negative electrode plate, A paste filled with paste obtained by kneading water and dilute sulfuric acid was used.

上記の正極板をU字折したガラス繊維マットセパレータに挟みこみ、上記の負極板と組み合わせて極板群を作成した。極板群の構成は正極板6枚、負極板7枚である。そして電槽に極板群を収納した後、蓋を接合し、蓋に設けた注液口から電解液を注液し、化成充電した後、注液口に弁体を取り付けた。これらの電池の構成を表1および表2に示す。   The positive electrode plate was sandwiched between U-folded glass fiber mat separators and combined with the negative electrode plate to prepare an electrode plate group. The configuration of the electrode plate group is six positive plates and seven negative plates. And after accommodating the electrode plate group in the battery case, the lid was joined, the electrolytic solution was injected from the injection port provided in the lid, and after chemical conversion charging, the valve body was attached to the injection port. Tables 1 and 2 show the configurations of these batteries.

Figure 2007035339
Figure 2007035339

Figure 2007035339
Figure 2007035339

なお、表1および表2の電池の電解液の添加剤添加前の硫酸濃度を44.2質量%とした。この場合、比率(B/A)が0.40以上で極板やセパレータに含浸保持できない、遊離電解液が発生した。なお、ここで、硫酸濃度44.2質量%、添加物(4ホウ酸ナトリウムもしくは硫酸ナトリウム)5〜50g/lの電解液とは、硫酸44.2質量部と63.8質量部の水を混合した電解液原液(硫酸濃度44.2質量%)の1lにそれぞれ5〜50gの4ホウ酸ナトリウムないし硫酸ナトリウムを添加することによって得られた電解液を意味する。   In addition, the sulfuric acid concentration before the additive addition of the electrolyte solution of the battery of Table 1 and Table 2 was 44.2 mass%. In this case, a free electrolytic solution was generated in which the ratio (B / A) was 0.40 or more and the electrode plate or separator could not be impregnated and held. Here, the electrolytic solution having a sulfuric acid concentration of 44.2% by mass and an additive (sodium tetraborate or sodium sulfate) of 5 to 50 g / l is composed of 44.2 parts by mass of sulfuric acid and 63.8 parts by mass of water. It means an electrolytic solution obtained by adding 5 to 50 g of sodium tetraborate or sodium sulfate to 1 liter of the mixed electrolyte solution stock (sulfuric acid concentration: 44.2% by mass).

表1および表2に示した各電池について、過放電サイクル試験と5時間率容量試験(25℃、8.8A放電、1.75V終止)を行った。過放電試験条件は以下の通りである。   Each battery shown in Table 1 and Table 2 was subjected to an overdischarge cycle test and a 5-hour rate capacity test (25 ° C., 8.8 A discharge, 1.75 V termination). The overdischarge test conditions are as follows.

試験温度:25℃
試験手順:
(1)放電(2.2A定電流放電、終止電圧1.75V)
(2)過放電(170Ω、1週間)
(3)回復充電(2.33V定電圧、最大電流50A、2時間)
(4)分解調査(1週毎にn=3を分解)、樹枝状電析物による短絡が確認された週数
を過放電短絡寿命とし、試験終了。
Test temperature: 25 ° C
Test procedure:
(1) Discharge (2.2 A constant current discharge, end voltage 1.75 V)
(2) Overdischarge (170Ω, 1 week)
(3) Recovery charge (2.33V constant voltage, maximum current 50A, 2 hours)
(4) Decomposition investigation (decomposes n = 3 every week), number of weeks in which short circuit due to dendritic electrodeposits was confirmed
Is overdischarged short circuit life, and the test is completed.

上記の過放電試験の結果を図1に示す。なお、図1の凡例において、硫酸Naおよび4ホウ酸Naとは、それぞれ電解液中に添加する、硫酸ナトリウム、4ホウ酸ナトリウムを示す。   The results of the above overdischarge test are shown in FIG. In the legend of FIG. 1, Na sulfate and Na borate indicate sodium sulfate and sodium borate respectively added to the electrolytic solution.

図1に示した結果から、硫酸質量(B)と正極活物質量(A)との比率(B/A)が0.4〜0.52の範囲、かつ4ホウ酸ナトリウムの添加量10g/l以上の範囲で優れた過放電短絡寿命を有することがわかる。   From the results shown in FIG. 1, the ratio (B / A) of the mass of sulfuric acid (B) to the amount of positive electrode active material (A) is in the range of 0.4 to 0.52, and the amount of sodium tetraborate added is 10 g / It can be seen that it has an excellent overdischarge short-circuit life in the range of 1 or more.

硫酸ナトリウムを添加した電池では、比率(B/A)の増加とともに過放電短絡寿命は直線的に増加するものの、4ホウ酸ナトリウムを添加した場合、比率(B/A)が0.40以上で急激に過放電短絡寿命が増大する。そして比率(B/A)が0.52で最大となる。   In the battery to which sodium sulfate was added, the overdischarge short-circuit life increased linearly as the ratio (B / A) increased, but when sodium tetraborate was added, the ratio (B / A) was 0.40 or more. The overdischarge short-circuit life increases abruptly. The ratio (B / A) is maximum at 0.52.

次に電解液添加剤として4ホウ酸ナトリウムを用いた場合の5時間率放電容量試験結果を表3に、硫酸ナトリウムを用いた場合の結果を表4に示す。   Next, Table 3 shows the results of a 5-hour rate discharge capacity test when sodium tetraborate is used as an electrolytic solution additive, and Table 4 shows the results when sodium sulfate is used.

Figure 2007035339
Figure 2007035339

Figure 2007035339
Figure 2007035339

表3および表4に示した結果から、電解液中に硫酸ナトリウムや4ホウ酸ナトリウムを添加することにより、5時間率容量が徐々に低下していく。特に、4ホウ酸ナトリウムを50g/l添加した場合は容量の低下が著しいため、好ましくない。したがって、本発明では、4ホウ酸ナトリウムの上限値を30g/l以下とする。   From the results shown in Tables 3 and 4, by adding sodium sulfate or sodium tetraborate into the electrolytic solution, the 5-hour rate capacity gradually decreases. In particular, the addition of 50 g / l of sodium tetraborate is not preferable because the capacity is significantly reduced. Therefore, in this invention, the upper limit of sodium tetraborate shall be 30 g / l or less.

(実施例2)
次に、実施例の電池17〜31とこれら電池の電解液中の硫酸濃度を49.0質量%として、極板群より遊離する電解液がない状態とした電池67〜81を作成した。これらの電池についてJIS D5301で示す重負荷寿命試験を行った。重負荷寿命試験条件は以下の通りである。
(Example 2)
Next, the batteries 17 to 31 of Examples and the sulfuric acid concentrations in the electrolytes of these batteries were set to 49.0% by mass, and batteries 67 to 81 were prepared in a state where there was no electrolyte released from the electrode plate group. These batteries were subjected to a heavy load life test shown in JIS D5301. The heavy load life test conditions are as follows.

(重負荷寿命試験条件)
(1)放電(20A定電流、1時間)
(2)充電( 5A定電流、5時間)
(3)容量確認(上記の放電−充電25サイクル毎に20A定電流放電、放電終止電圧
10.2V)
(4)試験温度(40℃ 液相)
上記の容量確認での放電容量(20A×放電時間の積)が初期の50%である22Ahまで低下した時点で試験終了とし、放電−充電サイクル数と(3)での放電容量との関係線から寿命サイクル数を求めた。これらの結果を電池の構成とともに、表5に示す。
(Heavy load life test conditions)
(1) Discharge (20A constant current, 1 hour)
(2) Charging (5A constant current, 5 hours)
(3) Capacity check (20A constant current discharge, discharge end voltage every 25 cycles of the above discharge-charge
10.2V)
(4) Test temperature (40 ° C liquid phase)
The test ends when the discharge capacity (20A × discharge time product) in the capacity check is reduced to 22Ah, which is 50% of the initial value, and the relationship line between the number of discharge-charge cycles and the discharge capacity in (3) From this, the number of life cycles was determined. These results are shown in Table 5 together with the configuration of the battery.

Figure 2007035339
Figure 2007035339

表5に示した結果から、本発明によれば、特に電解液中の硫酸濃度を低下させることにより、寿命サイクル特性を著しく改善することができる。これは硫酸濃度の上昇による正極活物質の軟化と、負極活物質のサルフェーションが抑制されたものによると推測される。また、遊離電解液により、電解液中の硫酸イオンの活物質への補給が容易になって、電池容量が増大することによっても寿命が伸長したと考えられる。   From the results shown in Table 5, according to the present invention, the life cycle characteristics can be remarkably improved by reducing the sulfuric acid concentration in the electrolytic solution. This is presumed to be due to the suppression of the softening of the positive electrode active material due to the increase in sulfuric acid concentration and the sulfation of the negative electrode active material. In addition, it is considered that the free electrolyte solution facilitates the replenishment of sulfate ions in the electrolyte solution to the active material, and the life is extended by increasing the battery capacity.

以上、本発明によれば、過放電時の樹枝状電析物による電池内部短絡を抑制し、さらに遊離電解液を有した構成とすることにより、優れた重負荷寿命特性を有した鉛蓄電池を得ることができる。   As described above, according to the present invention, a lead storage battery having excellent heavy load life characteristics can be obtained by suppressing the internal short circuit of the battery due to the dendritic electrodeposit during overdischarge and further having a free electrolyte. Obtainable.

本発明の鉛蓄電池は、過放電時においても内部短絡を顕著に抑制することから、ハイブリッド車補機用の鉛蓄電池といった、暗電流によって過放電されやすい用途に好適である。   Since the lead storage battery of the present invention remarkably suppresses an internal short circuit even at the time of overdischarge, it is suitable for an application that is easily overdischarged by dark current, such as a lead storage battery for a hybrid vehicle auxiliary machine.

実施例における過放電短絡寿命試験結果を示す図The figure which shows the overdischarge short circuit life test result in an Example

Claims (2)

正極板及び負極板にアンチモンを含まない鉛もしくは鉛合金格子を用い、
正極活物質量(A)に対する電解液中の硫酸質量(B)の比率(B/A)が0.40以上0.52以下であり、
かつ電解液中に4ホウ酸ナトリウムを10g/l〜30g/l含むことを特徴とする制御弁式鉛蓄電池。
Using lead or lead alloy grids that do not contain antimony on the positive and negative plates,
The ratio (B / A) of the sulfuric acid mass (B) in the electrolytic solution to the positive electrode active material amount (A) is 0.40 or more and 0.52 or less,
And the control valve type lead acid battery characterized by including 10 g / l-30 g / l of sodium tetraborate in electrolyte solution.
正極板および負極板の下部を浸漬する遊離電解液を有した請求項1に記載の制御弁式鉛蓄電池。 The control valve type lead acid battery of Claim 1 which has the free electrolyte which immerses the lower part of a positive electrode plate and a negative electrode plate.
JP2005213677A 2005-07-25 2005-07-25 Control valve type lead-acid storage battery Pending JP2007035339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213677A JP2007035339A (en) 2005-07-25 2005-07-25 Control valve type lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213677A JP2007035339A (en) 2005-07-25 2005-07-25 Control valve type lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2007035339A true JP2007035339A (en) 2007-02-08

Family

ID=37794357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213677A Pending JP2007035339A (en) 2005-07-25 2005-07-25 Control valve type lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2007035339A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
WO2010129625A2 (en) * 2009-05-05 2010-11-11 Axion Power International, Inc. Energy storage device with improved lead sulfate solubility
JP2014160588A (en) * 2013-02-20 2014-09-04 Panasonic Corp Control valve type lead storage battery
US9356321B2 (en) 2012-12-21 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Lead-acid battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142220A1 (en) * 2008-05-20 2009-11-26 株式会社ジーエス・ユアサコーポレーション Lead storage battery and process for producing the lead storage battery
CN101999190A (en) * 2008-05-20 2011-03-30 株式会社杰士汤浅国际 Lead storage battery and process for producing the lead storage battery
CN105119001A (en) * 2008-05-20 2015-12-02 株式会社杰士汤浅国际 Lead storage battery and process for producing the lead storage battery
WO2010129625A2 (en) * 2009-05-05 2010-11-11 Axion Power International, Inc. Energy storage device with improved lead sulfate solubility
WO2010129625A3 (en) * 2009-05-05 2011-02-24 Axion Power International, Inc. Energy storage device with improved lead sulfate solubility
US9356321B2 (en) 2012-12-21 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Lead-acid battery
JP2014160588A (en) * 2013-02-20 2014-09-04 Panasonic Corp Control valve type lead storage battery

Similar Documents

Publication Publication Date Title
JP5126454B2 (en) Lead acid battery
JP5857962B2 (en) Lead acid battery
US11870096B2 (en) Absorbent glass mat battery
US9570779B2 (en) Flooded lead-acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
WO2014162674A1 (en) Lead acid storage battery
JP2008130516A (en) Liquid lead-acid storage battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP2008186654A (en) Lead-acid battery
JP2007328979A (en) Lead acid storage battery
JP2007035339A (en) Control valve type lead-acid storage battery
JP2003051334A (en) Sealed lead-acid battery
US20100062327A1 (en) Non-toxic alkaline electrolyte with additives for rechargeable zinc cells
JP5531746B2 (en) Lead acid battery
US10355316B2 (en) High performance lead acid battery with advanced electrolyte system
JP2006114417A (en) Lead-acid storage battery
JP4892827B2 (en) Lead acid battery
JP2004014283A (en) Valve regulated lead battery
JP2004327299A (en) Sealed lead-acid storage battery
KR20090045483A (en) Composition of electrolyte of lead storage battery
JP2005294142A (en) Lead storage battery
JP2019207786A (en) Lead acid battery
JP2012199026A (en) Negative electrode active material paste, lead acid battery and method for manufacturing lead acid battery
JP2005268061A (en) Lead storage cell
JP2000058105A (en) Lead-acid battery