JP2006114417A - Lead-acid storage battery - Google Patents

Lead-acid storage battery Download PDF

Info

Publication number
JP2006114417A
JP2006114417A JP2004302595A JP2004302595A JP2006114417A JP 2006114417 A JP2006114417 A JP 2006114417A JP 2004302595 A JP2004302595 A JP 2004302595A JP 2004302595 A JP2004302595 A JP 2004302595A JP 2006114417 A JP2006114417 A JP 2006114417A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
active material
lead
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004302595A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sugie
一宏 杉江
Shoji Horie
章二 堀江
Koichi Yonemura
浩一 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004302595A priority Critical patent/JP2006114417A/en
Priority to TW094110275A priority patent/TWI251365B/en
Priority to US10/585,078 priority patent/US8197967B2/en
Priority to PCT/JP2005/006475 priority patent/WO2005096431A1/en
Priority to KR1020067015821A priority patent/KR101139665B1/en
Priority to EP05727619.8A priority patent/EP1742289B1/en
Publication of JP2006114417A publication Critical patent/JP2006114417A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that Sb is eluted from a negative electrode at over-discharging a battery when a material which has lower hydrogen overvoltage than Pb such as Sb is added to the negative electrode for the purpose of improving charge receiving property in the negative electrode, and that Sb is eluted from the negative electrode and a negative electrode edge is corroded by re-precipitating on the negative electrode edge, and that the service life is deteriorated. <P>SOLUTION: Pb or Pb alloy which does not contain Sb in lattices of a positive electrode and the negative electrode and a connecting member is used, and Sb and Bi which have lower hydrogen overvoltage than Pb are contained in negative electrode active materials, and weight ratio (NAM/PAM) of the negative electrode active materials (NAM) and positive electrode active materials (PAM) constituting a unit cell is made to be 0.7 to 1.3, preferably 0.82 to 1.08. Furthermore, it is preferable that concentration of Sb or Bi in the negative electrode active materials is made to be 0.0004 to 0.006 wt%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、車両のエンジン始動用やバックアップ電源用などに用いられている。その中でも始動用の鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給している。エンジン始動後、鉛蓄電池はオルタネータによって充電される。ここで、鉛蓄電池の充電と放電とがバランスし、鉛蓄電池のSOC(充電状態)が90〜100%に維持されるよう、オルタネータの出力電圧および出力電流が設定されている。   Lead-acid batteries are used for vehicle engine start-up and backup power supplies. Among them, the lead acid battery for start-up supplies power to various electric / electronic devices mounted on the vehicle as well as power supply to the engine start cell motor. After the engine is started, the lead storage battery is charged by an alternator. Here, the output voltage and output current of the alternator are set so that charging and discharging of the lead storage battery are balanced and the SOC (charged state) of the lead storage battery is maintained at 90 to 100%.

近年、環境保全の観点から、車両の燃費向上が検討されている。例えば、車両の一時的な停車中にエンジンを停止するアイドルストップ車や、加速時にオルタネータの発電量を抑制しエンジン効率を向上させる充電制御システム、また、車両の減速を車両の運動エネルギーを電気エネルギーに変換し、この電気エネルギーを蓄電することによって行う回生ブレーキシステムが実用化されている。   In recent years, improvement in fuel efficiency of vehicles has been studied from the viewpoint of environmental conservation. For example, an idle stop vehicle that stops the engine while the vehicle is temporarily stopped, a charge control system that suppresses the amount of power generated by the alternator during acceleration and improves the engine efficiency, and the vehicle's kinetic energy is converted into electric energy. A regenerative braking system that converts this into electrical energy and stores this electrical energy has been put into practical use.

前記したようなシステムを搭載した車両では、アイドルストップ中や、オルタネータ発電抑制中では、鉛蓄電池は充電されない一方で、搭載機器へ、電力供給をしつづける必要があるため、必然的に放電深度は深くなる。また、回生ブレーキシステムを搭載した車両では、回生時の電気エネルギーを蓄電するために、鉛蓄電池のSOCを従来より低く、50〜90%程度に制御する必要があると同時に、頻繁に充電放電が繰り返されることになる。また、前記したように低SOCで使用されるだけで無く、車両部品の電動化に伴い、長期間の停車により鉛蓄電池が放電が進行し、過放電をしてしまうケースが多くなってきている。   In a vehicle equipped with a system as described above, the lead storage battery is not charged during idle stop or during alternator power generation suppression. Deepen. Further, in a vehicle equipped with a regenerative braking system, in order to store electric energy during regeneration, it is necessary to control the SOC of the lead storage battery to be about 50 to 90% lower than before, and at the same time, charging and discharging frequently occur. Will be repeated. In addition to being used at low SOC as described above, lead-acid batteries are increasingly discharged due to long-term stopping due to the electrification of vehicle parts, and there are increasing cases of overdischarge. .

従って、これらのシステムを搭載した車両に適応するため、鉛蓄電池は深い放電が行われ、尚且つ頻繁に充放電が繰り返された時の寿命特性が要求される。このような深放電寿命における鉛蓄電池の劣化要因は、深放電による正極における活物質の劣化と活物質−格子界面の高抵抗層の形成によるインピーダンスの増加および負極活物質の充電受入性の低下が主であった。   Therefore, in order to adapt to a vehicle equipped with these systems, the lead storage battery is required to have a life characteristic when deep discharge is performed and charge and discharge are frequently repeated. The deterioration factors of lead-acid batteries in such a deep discharge life are the deterioration of the active material in the positive electrode due to the deep discharge and the increase in impedance due to the formation of the high resistance layer at the active material-lattice interface and the decrease in charge acceptance of the negative electrode active material. It was the Lord.

車両の充電システムは、定電圧制御を基本としているため、負極の充電受入性低下により、充電早期に、負極電位が卑に移行し充電制御定電圧値まで電圧が上昇することで、電流が垂下する。そのため、鉛蓄電池は、充電電気量を十分確保することが出来なくなり、充電不足となり短寿命となる。   Since the vehicle charging system is based on constant voltage control, the current droops because the negative electrode potential shifts to the base and the voltage rises to the charge control constant voltage value at an early stage of charging due to the negative charge acceptability decline. To do. Therefore, the lead storage battery cannot secure a sufficient amount of charge electricity, becomes insufficiently charged and has a short life.

そこで、この劣化を抑制するため、例えば特許文献1には鉛−カルシウム−スズ合金の正極格子表面にスズおよびアンチモンを含有する鉛合金層を形成することが示されている。正極格子表面に存在するスズおよびアンチモンは活物質の劣化および活物質−格子界面での高抵抗層の形成を抑制する効果がある。   In order to suppress this deterioration, for example, Patent Document 1 discloses that a lead alloy layer containing tin and antimony is formed on the surface of a positive electrode lattice of a lead-calcium-tin alloy. Tin and antimony present on the surface of the positive electrode lattice have an effect of suppressing deterioration of the active material and formation of a high resistance layer at the active material-lattice interface.

また、特に正極格子表面に配置したアンチモンは、その一部が正極活物質に捕捉されるものの、他の一部はその微量が電解液に溶出し、負極板上に析出する。負極活物質上に析出したアンチモンは負極の充電電位を貴に移行させることによって、充電電圧を低下させる作用を有している。前記したような、定電圧充電制御における充電電圧の低下は充電電流を増大させる。その結果として、正極における充電電気量は確保され、充電不足を要因とする正極の劣化とこれによる鉛蓄電池の短寿命は抑制されていた。   In particular, a part of antimony disposed on the surface of the positive electrode lattice is trapped by the positive electrode active material, but a small amount of the other part elutes in the electrolytic solution and is deposited on the negative electrode plate. Antimony deposited on the negative electrode active material has a function of lowering the charging voltage by preciously shifting the charging potential of the negative electrode. As described above, the reduction of the charging voltage in the constant voltage charging control increases the charging current. As a result, the amount of charged electricity in the positive electrode was secured, and the deterioration of the positive electrode due to insufficient charging and the short life of the lead storage battery due to this were suppressed.

このような特許文献1のような構成は、SOCが90%を超えるような充電状態で用いられる始動用鉛蓄電池において非常に有効であり、寿命特性を飛躍的に改善するものであった。   Such a configuration as disclosed in Patent Document 1 is very effective in a start-up lead-acid battery used in a charged state in which the SOC exceeds 90%, and dramatically improves the life characteristics.

しかしながら、前記したようなアイドルストップ車や充電制御システム、回生ブレーキシステムを搭載したような車両、すなわち放電深度がより深く、充放電頻度がより多い使用環境化では、特許文献1のような構成のみの鉛蓄電池では、正極における寿命は確保できるものの、負極耳部で腐食が進行するという問題が発生してきた。これにより、負極耳厚みが減少し負極における集電効率を低下させ、寿命低下してしまう。   However, in the above-described idle stop vehicle, charge control system, vehicle equipped with a regenerative brake system, that is, in a use environment with a deeper discharge depth and a higher charge / discharge frequency, only the configuration as in Patent Document 1 is used. In the lead storage battery of this type, although the life of the positive electrode can be ensured, there has been a problem that corrosion proceeds at the negative electrode ear. As a result, the thickness of the negative electrode ear is reduced, the current collection efficiency in the negative electrode is lowered, and the life is shortened.

従来、負極耳の腐食に関しては、負極棚と負極耳が電解液から露出し、大気中の酸素に曝露されることによって、負極棚と負極との溶接部が腐食し、この部分で断線することが知られていた。しかしながら、負極棚および負極耳が電解液に浸漬した状態であっても、正極格子上に配置したSbや正極棚、正極柱および正極接続体といった鉛合金の接続部材中に含まれるSbが電解液に溶出し、負極耳表面に微量析出することにより、負極耳を腐食することがわかってきた。   Conventionally, with regard to the corrosion of the negative electrode ear, the negative electrode shelf and the negative electrode ear are exposed from the electrolyte solution and exposed to oxygen in the atmosphere, so that the welded portion between the negative electrode shelf and the negative electrode corrodes and breaks at this part. Was known. However, even when the negative electrode shelf and the negative electrode ear are immersed in the electrolyte, Sb contained in the lead alloy connecting member such as Sb arranged on the positive electrode grid, the positive electrode shelf, the positive electrode column, and the positive electrode connector is contained in the electrolyte. It has been found that the negative electrode ears are corroded by being eluted in a small amount and precipitated on the surface of the negative electrode ears.

特許文献2には、負極格子骨を除く正極格子、正極接続部材や負極格子耳や負極接続部材をSbを含まないPbもしくはPb合金で構成し、負極格子骨もしくは負極活物質のいずれか一方に減液量に影響しない程度の微量のSbを含んだ鉛蓄電池が提案されている。このような構成により、正極からのSbの溶出と負極耳へのSbの析出を抑制し、負極活物質中にSbを含むことによって、電池の充電受入性と深放電寿命を改善することが示されている。
特開平3−37962号公報 特開2003−346888号公報
In Patent Document 2, the positive electrode lattice excluding the negative electrode lattice bone, the positive electrode connection member, the negative electrode lattice ear, and the negative electrode connection member are made of Pb or Pb alloy not containing Sb, and either the negative electrode lattice bone or the negative electrode active material is used. A lead storage battery containing a small amount of Sb that does not affect the amount of liquid reduction has been proposed. Such a configuration suppresses the elution of Sb from the positive electrode and the precipitation of Sb on the negative electrode ear, and improves the battery charge acceptance and deep discharge life by including Sb in the negative electrode active material. Has been.
JP-A-3-37962 JP 2003-346888 A

上記のような特許文献2の構成を有した鉛蓄電池は、負極耳でのSb析出と、これによる負極耳腐食を抑制することができる。しかしながら、過放電したり、あるいは急放電を繰り返して行う充放電サイクルにおいて、負極活物質中のSbが電解液中に再溶出し、負極耳に析出し、負極耳を腐食させるということが判ってきた。   The lead storage battery having the configuration of Patent Document 2 as described above can suppress Sb precipitation at the negative electrode ear and negative electrode ear corrosion caused thereby. However, it has been found that Sb in the negative electrode active material is re-eluted into the electrolytic solution and deposited on the negative electrode ears and corrodes the negative electrode ears in a charge / discharge cycle in which overdischarge or rapid discharge is repeated. It was.

本発明は、前記したような放電深度が深く、充放電頻度が多い使用環境化における正極の劣化と負極での充電受入性を改善することによって、寿命特性を飛躍的に改善するとともに、過放電後も負極耳部へのアンチモンの移動を防ぐことにより、負極耳部における腐食を抑制することによって、高信頼性を有したアイドルストップ車や充電制御システムや、回生ブレーキシステム搭載車等に好適な鉛蓄電池を提供することを目的とする。   The present invention drastically improves the life characteristics by improving the deterioration of the positive electrode and the charge acceptability at the negative electrode in a use environment with a deep discharge depth and a high charge / discharge frequency as described above, and overdischarge. Afterwards, by preventing the antimony from moving to the negative electrode ear, and suppressing corrosion in the negative electrode ear, it is suitable for highly reliable idle stop vehicles, charge control systems, vehicles with regenerative brake systems, etc. It aims at providing lead acid battery.

前記した課題を解決するための、本発明の請求項1に係る発明は、負極格子耳と負極格子骨とからなる負極格子と負極格子骨に充填された負極活物質を備えた負極板と、正極格子耳と正極格子骨とからなる正極格子と正極格子骨に充填された正極活物質を備えた正極板を有し、正極格子耳を集合溶接する正極棚とこの正極棚より導出された正極柱もしくは正極接続体とからなる正極接続部材と、負極格子耳を集合溶接する負極棚とこの負極棚より導出された負極柱もしくは負極接続体とからなる負極接続部材を備えた鉛蓄電池において、前記正極格子および前記正極接続部材はSbを含有しない鉛もしくは鉛合金からなり、前記負極格子および前記負極接続部材はSbを含有しない鉛もしくは鉛合金からなり、負極活物質中にPbよりも水素過電圧が低い物質を負極活物質中に含み、かつ単位セルを構成する負極活物質(NAM)と正極活物質(PAM)の質量比(NAM/PAM)が0.7〜1.3であることを特徴とする鉛蓄電池を示すものである。   The invention according to claim 1 of the present invention for solving the above-described problem includes a negative electrode lattice comprising a negative electrode lattice ear and a negative electrode lattice bone, and a negative electrode plate comprising a negative electrode active material filled in the negative electrode lattice bone, A positive electrode shelf comprising a positive electrode lattice comprising a positive electrode lattice ear and a positive electrode lattice bone, and a positive electrode plate comprising a positive electrode active material filled in the positive electrode lattice bone, and a positive electrode shelf that collectively welds the positive electrode lattice ear and a positive electrode derived from the positive electrode shelf In a lead storage battery comprising a negative electrode connecting member comprising a positive electrode connecting member comprising a column or a positive electrode connecting body, a negative electrode shelf for collectively welding negative electrode grid ears, and a negative electrode pillar or negative electrode connecting body derived from the negative electrode shelf, The positive electrode grid and the positive electrode connection member are made of lead or a lead alloy not containing Sb, the negative electrode grid and the negative electrode connection member are made of lead or a lead alloy not containing Sb, and hydrogen is contained in the negative electrode active material rather than Pb. A material having a low voltage is included in the negative electrode active material, and the mass ratio (NAM / PAM) of the negative electrode active material (NAM) and the positive electrode active material (PAM) constituting the unit cell is 0.7 to 1.3. The lead acid battery characterized by this is shown.

また、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、前記質量比(NAM/PAM)を0.82〜1.08としたことを特徴とするものである。   The invention according to claim 2 of the present invention is characterized in that, in the lead storage battery of claim 1, the mass ratio (NAM / PAM) is set to 0.82 to 1.08.

さらに、本発明の請求項3に係る発明は、請求項1もしくは請求項2の鉛蓄電池において、前記水素過電圧が低い物質はSbを含む物質であり、かつ負極活物質中のSb濃度を0.0004〜0.006質量%としたことを特徴とするものである。   Furthermore, the invention according to claim 3 of the present invention is the lead-acid battery according to claim 1 or 2, wherein the substance having a low hydrogen overvoltage is a substance containing Sb, and the Sb concentration in the negative electrode active material is set to 0. It is characterized by being 0004 to 0.006 mass%.

そして、本発明の請求項4に係る発明は、請求項1もしくは請求項2の鉛蓄電池において、前記水素過電圧が低い物質はBiを含む物質であり、かつ負極活物質中のBi濃度を0.0004〜0.006質量%としたことを特徴とするものである。   According to a fourth aspect of the present invention, in the lead storage battery according to the first or second aspect, the substance having a low hydrogen overvoltage is a substance containing Bi, and the Bi concentration in the negative electrode active material is set at 0. 0. It is characterized by being 0004 to 0.006 mass%.

本発明の鉛蓄電池によれば、放電深度が深く、充放電頻度が多い使用環境化における正極の劣化と負極での充電受入性を改善することによって、寿命特性を飛躍的に改善するとともに、負極耳部における腐食を抑制することによって、高信頼性を有したアイドルストップ車や充電制御システムや、回生ブレーキシステム搭載車等に好適な鉛蓄電池を提供することができる。   According to the lead storage battery of the present invention, the life characteristics are dramatically improved by improving the deterioration of the positive electrode and the charge acceptability at the negative electrode in a use environment with a deep discharge depth and a high charge / discharge frequency. By suppressing the corrosion in the ear portion, it is possible to provide a lead storage battery suitable for a highly reliable idle stop vehicle, a charge control system, a regenerative brake system mounted vehicle, and the like.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

正極板2は図2に示したように、正極格子耳22と正極格子骨23とで構成される正極格子21に正極活物質24が充填された構成を有している。一方、負極板3は図3に示したように、負極格子耳32と負極格子骨33とで構成される負極格子31に負極活物質34が充填された構成を有している。   As shown in FIG. 2, the positive electrode plate 2 has a configuration in which a positive electrode active material 24 is filled in a positive electrode lattice 21 including positive electrode lattice ears 22 and positive electrode lattice bones 23. On the other hand, as shown in FIG. 3, the negative electrode plate 3 has a configuration in which a negative electrode active material 34 is filled in a negative electrode lattice 31 composed of negative electrode lattice ears 32 and negative electrode lattice bones 33.

本発明の鉛蓄電池1はセパレータ4と正極板2および負極板3の所定枚数を組合せ、正極格子耳22および負極格子耳32の同極性の耳部同士を集合溶接してそれぞれ正極棚5および負極棚6が形成される。正極棚5には正極接続体7もしくは正極極柱(図示せず)が、負極棚6には負極接続体(図示せず)もしくは負極柱8がそれぞれ形成される。図1に示した例では正極棚5に正極接続体7、負極棚6に負極柱8を設けた例を示しているが、必要に応じ、正極接続体7および負極柱8に換えて、正極柱および負極接続体をそれぞれ正極棚5および負極棚6に接合することとなる。   The lead storage battery 1 of the present invention combines a predetermined number of separators 4, positive electrode plates 2 and negative electrode plates 3, and collectively welds the same polarity ears of the positive electrode grid ears 22 and the negative electrode grid ears 32, respectively. A shelf 6 is formed. The positive electrode shelf 5 is formed with a positive electrode connector 7 or a positive electrode pole column (not shown), and the negative electrode shelf 6 is formed with a negative electrode connector (not shown) or a negative electrode column 8. The example shown in FIG. 1 shows an example in which the positive electrode shelf 5 is provided with the positive electrode connection body 7 and the negative electrode shelf 6 is provided with the negative electrode column 8, but if necessary, the positive electrode connection body 7 and the negative electrode column 8 can be replaced with the positive electrode. The column and the negative electrode connector are joined to the positive electrode shelf 5 and the negative electrode shelf 6, respectively.

例えば、6セルが直列接続された公称電圧12Vの始動用鉛蓄電池は、一般的に正極端子側から6番目の端セルを構成する極板群においては図1に示したように、正極棚5に正極接続体7が接続し、負極棚6には負極柱8が接続される。また、正極端子側から1番目の端セルを構成する極板群においては正極棚5に正極柱が接続され、負極棚6には負極接続体が接続される。そして、これら端セル間に位置する中間セルを構成する極板群は正極棚5、負極棚6ともに、接続体が接続された構成をとる。   For example, a starting lead storage battery having a nominal voltage of 12 V in which 6 cells are connected in series generally has a positive electrode shelf 5 as shown in FIG. 1 in the electrode plate group constituting the sixth end cell from the positive terminal side. The positive electrode connector 7 is connected to the negative electrode shelf 6, and the negative electrode column 8 is connected to the negative electrode shelf 6. Further, in the electrode plate group constituting the first end cell from the positive electrode terminal side, the positive electrode column is connected to the positive electrode shelf 5 and the negative electrode connector is connected to the negative electrode shelf 6. And the electrode plate group which comprises the intermediate | middle cell located between these end cells takes the structure by which the connection body was connected to both the positive electrode shelf 5 and the negative electrode shelf 6. FIG.

本発明において正極棚5、正極接続体7および/もしくは正極柱で構成される正極接続部材9と正極格子21はSb含まないPbもしくはPb合金で構成する。Sbを含まないPb合金としては、耐食性や機械的強度を考慮して、0.05〜3.0質量%程度のSnを含むPb−Sn合金や、0.01〜0.10質量%程度のCaを含むPb−Ca合金、あるいはこれらの三元合金(Pb−Ca−Sn合金)を用いることができる。   In the present invention, the positive electrode shelf 5, the positive electrode connection body 7, and / or the positive electrode connection member 9 and the positive electrode lattice 21 formed of the positive electrode column are formed of Pb or Pb alloy not containing Sb. As a Pb alloy not containing Sb, in consideration of corrosion resistance and mechanical strength, a Pb—Sn alloy containing about 0.05 to 3.0 mass% of Sn, or about 0.01 to 0.10 mass%. A Pb—Ca alloy containing Ca or a ternary alloy thereof (Pb—Ca—Sn alloy) can be used.

一方、負極に関して、負極棚6、負極接続体8および/もしくは負極極柱で構成される負極接続部材10と、負極格子31を正極と同様、実質上Sbを含まないPbもしくはPb合金で構成する。Sbを含まないPb合金としては、耐食性や機械的強度を考慮して、0.05〜3.0質量%程度のSnを含むPb−Sn合金や、0.01〜0.10質量%程度のCaを含むPb−Ca合金、あるいはこれらの三元合金(Pb−Ca−Sn合金)を用いることができる。また、負極においては、酸化腐食の頻度が低いため、純Pbを用いることもできる。   On the other hand, with respect to the negative electrode, the negative electrode connection member 10 constituted by the negative electrode shelf 6, the negative electrode connection body 8, and / or the negative electrode pole column, and the negative electrode lattice 31 are made of Pb or Pb alloy substantially free of Sb, like the positive electrode. . As a Pb alloy not containing Sb, in consideration of corrosion resistance and mechanical strength, a Pb—Sn alloy containing about 0.05 to 3.0 mass% of Sn, or about 0.01 to 0.10 mass%. A Pb—Ca alloy containing Ca or a ternary alloy thereof (Pb—Ca—Sn alloy) can be used. Moreover, since the frequency of oxidative corrosion is low in the negative electrode, pure Pb can also be used.

なお、0.01〜0.08質量%程度のBaや0.001〜0.05質量%Agといった元素の添加も正極格子の耐久性を向上する上で好ましい。なお、上記の組成の格子体や接続部材を製造する上で、溶融鉛合金からのCaの酸化消失を抑制するために0.001〜0.05質量%程度のAlの添加は、本発明の効果を損なうものでなく、許容しうるものである。   In addition, addition of an element such as about 0.01 to 0.08 mass% Ba or 0.001 to 0.05 mass% Ag is also preferable for improving the durability of the positive electrode grid. In addition, in manufacturing the lattice body and the connection member having the above composition, in order to suppress the disappearance of Ca oxidation from the molten lead alloy, the addition of about 0.001 to 0.05% by mass of Al It does not impair the effect and is acceptable.

そして、本発明では、負極活物質34中にPbよりも水素過電圧の低い物質を含む。Pbよりも水素過電圧が低い物質としては、Sbもしくはその化合物(Sb酸化物、硫酸塩等の塩)、あるいは、Biもしくはその化合物(Bi酸化物、硫酸塩等の塩)を選択することができる。負極活物質中のそれぞれの適切な含有濃度はSbもしくはその化合物を添加する場合、Sbとしての含有濃度を0.0004〜0.006質量%、Biもしくはその化合物を添加する場合、Biとしての含有濃度を0.0004〜0.006質量%とする。   In the present invention, the negative electrode active material 34 includes a material having a hydrogen overvoltage lower than that of Pb. As the substance having a hydrogen overvoltage lower than Pb, Sb or a compound thereof (Sb oxide, salt such as sulfate) or Bi or a compound thereof (Bi oxide, salt such as sulfate) can be selected. . The appropriate concentration of each of the negative electrode active materials is 0.004 to 0.006% by mass when Sb or a compound thereof is added, and Bi or the compound is added when Bi or a compound thereof is added. A density | concentration shall be 0.0004-0.006 mass%.

負極活物質中へのSbやBiの添加は負極活物質ペースト中にSb、Biやその化合物を添加すればよい。また、負極板をSbやBiを含む電解質、たとえばSbイオンやBiイオンを含む希硫酸電解液に浸漬し、電解めっきにより、負極活物質上にSbもしくはBiを電析させることもできる。   The addition of Sb or Bi to the negative electrode active material may be performed by adding Sb, Bi or a compound thereof to the negative electrode active material paste. Alternatively, the negative electrode plate can be immersed in an electrolyte containing Sb or Bi, for example, a dilute sulfuric acid electrolyte containing Sb ions or Bi ions, and Sb or Bi can be electrodeposited on the negative electrode active material by electrolytic plating.

SbもしくはBiの負極活物質中に添加することにより、負極活物質の充電性が顕著に改善され、寿命特性が向上する。特に、SbもしくはBiの含有濃度が0.0004質量%以上の領域で寿命特性は極めて顕著に改善される。一方、SbもしくはBiの含有濃度が0.006質量%を超える領域では負極耳の腐食が徐々に進行しはじめるため、含有濃度を0.006質量%以下とすることがより好ましい。   By adding it to the negative electrode active material of Sb or Bi, the chargeability of the negative electrode active material is remarkably improved and the life characteristics are improved. In particular, the life characteristics are remarkably improved in the region where the content of Sb or Bi is 0.0004% by mass or more. On the other hand, in the region where the Sb or Bi content exceeds 0.006% by mass, the corrosion of the negative electrode ears gradually begins to progress, so the content concentration is more preferably 0.006% by mass or less.

そして、本発明の鉛蓄電池では、単位セルを構成する、すなわち極板群を構成する負極活物質34(NAM)と正極活物質24(PAM)の質量比(NAM/PAM)を0.7〜1.3、好ましくは0.82〜1.08とする。   And in the lead acid battery of this invention, the mass ratio (NAM / PAM) of the negative electrode active material 34 (NAM) and the positive electrode active material 24 (PAM) which comprises a unit cell, ie, comprises an electrode group, is 0.7-. 1.3, preferably 0.82 to 1.08.

上記の極板群を用い、以降は定法に従って極板群が電解液に浸漬された、鉛蓄電池を組み立てることにより、本発明の鉛蓄電池を得ることができる。なお、本発明では負極活物質中にSb、BiといったPbよりも低い水素過電圧を有する物質を含むため、制御弁式鉛蓄電池に適用するものではない。制御弁式鉛蓄電池に適用した場合、微量のガス発生により、制御弁が開弁した状態となり、大気が電池内に流入し、負極を酸化するためである。   The lead storage battery of the present invention can be obtained by assembling a lead storage battery using the above electrode group and thereafter immersing the electrode group in an electrolyte according to a conventional method. In the present invention, since the negative electrode active material includes a material having a hydrogen overvoltage lower than Pb, such as Sb and Bi, it is not applied to a control valve type lead-acid battery. This is because when applied to a control valve type lead-acid battery, the control valve is opened due to the generation of a small amount of gas, and air flows into the battery and oxidizes the negative electrode.

上記の本発明の構成を有した鉛蓄電池は、また、負極活物質のみにSbやBiを含むので、正極からのSbが負極に移行することなく、負極耳の腐食を抑制することができる。負極に含まれるSbやBiは負極の過電圧を低下させ、充電受入性を改善し、鉛蓄電池の寿命特性を改善する。   Since the lead storage battery having the above-described configuration of the present invention contains Sb and Bi only in the negative electrode active material, corrosion of the negative electrode ear can be suppressed without Sb from the positive electrode moving to the negative electrode. Sb and Bi contained in the negative electrode lower the overvoltage of the negative electrode, improve charge acceptability, and improve the life characteristics of the lead storage battery.

一方、深い放電を繰り返したり、過放電した場合においても、負極活物質(NAM)と正極活物質(PAM)の質量比(NAM/PAM)を0.7〜1.3、好ましくは0.82〜1.08とすることにより、負極活物質からのSbやBiの溶出を抑制し、負極耳への再析出と、これによる負極耳の腐食を抑制することができる。   On the other hand, even when deep discharge is repeated or overdischarged, the mass ratio (NAM / PAM) of the negative electrode active material (NAM) to the positive electrode active material (PAM) is 0.7 to 1.3, preferably 0.82. By setting it to ˜1.08, elution of Sb and Bi from the negative electrode active material can be suppressed, and reprecipitation to the negative electrode ear and corrosion of the negative electrode ear due to this can be suppressed.

前記した質量比(NAM/PAM)の比率が0.7を下回ると電池を深放電や過放電した場合でのSbあるいはBiの負極活物質からの溶出が進行し、負極耳に再析出するため、急激に負極耳の腐食が進行するため、好ましくない。0.7以上、0.82未満の領域では、負極耳の腐食が進行するものの、その度合いは緩やかである。0.82以上の領域では、負極耳腐食が殆ど進行しない状態となるので、最も好ましい。   When the ratio of the mass ratio (NAM / PAM) is less than 0.7, elution of Sb or Bi from the negative electrode active material proceeds when the battery is deeply discharged or overdischarged, and re-deposits on the negative electrode ear. Since the corrosion of the negative electrode ear proceeds rapidly, it is not preferable. In the region of 0.7 or more and less than 0.82, corrosion of the negative electrode ear proceeds, but the degree thereof is moderate. The region of 0.82 or more is most preferable because negative electrode ear corrosion hardly occurs.

また、質量比(NAM/PAM)が1.08を超える領域では、電池を過放電した場合に、正極の劣化が進行し、過放電後のサイクル寿命特性が低下するため、好ましくない。また、この比率が1.3を超える領域では過放電後のサイクル寿命特性はさらに低下するとともに、余剰の負極活物質によって電池の重量増となるため、実用的でない。したがって、本発明では質量比(NAM/PAM)を0.7〜1.3、好ましくは0.82〜1.08とするものである。   Further, in a region where the mass ratio (NAM / PAM) exceeds 1.08, when the battery is overdischarged, the positive electrode is further deteriorated, and the cycle life characteristics after overdischarge are lowered. Further, in a region where this ratio exceeds 1.3, the cycle life characteristics after overdischarge are further deteriorated, and the excess negative electrode active material increases the weight of the battery, which is not practical. Accordingly, in the present invention, the mass ratio (NAM / PAM) is set to 0.7 to 1.3, preferably 0.82 to 1.08.

さらに、本発明において、正極格子骨の正極活物質と接する表面の少なくとも一部に正極格子骨よりも高濃度のSnを含む層を形成することにより、深い放電や過放電での正極の充電受入性を改善し、寿命特性を向上することができる。このSnを含む層はSnによる正極活物質−格子界面での高抵抗層の生成を抑制するものであるから、その効果を得る上で、少なくとも、正極格子母材よりも高濃度のSnを含むことが必要である。例えば、正極格子が1.6質量%のSnを含む場合、少なくとも1.6質量%を超える濃度のSn量とし、3.0〜6.0質量%とする。正極格子母材よりも低濃度とした場合、格子表面のSn濃度はかえって低下するため、好ましくないことは明らかである。   Furthermore, in the present invention, a layer containing Sn having a higher concentration than that of the positive electrode lattice bone is formed on at least a part of the surface of the positive electrode lattice bone in contact with the positive electrode active material. The life characteristics can be improved. This Sn-containing layer suppresses the formation of a high-resistance layer at the positive electrode active material-lattice interface by Sn. Therefore, in order to obtain the effect, the Sn-containing layer contains at least a higher concentration of Sn than the positive electrode lattice matrix. It is necessary. For example, when the positive electrode lattice includes 1.6% by mass of Sn, the Sn amount is at least at a concentration exceeding 1.6% by mass, and is 3.0 to 6.0% by mass. Obviously, if the concentration is lower than that of the positive electrode lattice base material, the Sn concentration on the surface of the lattice is lowered, which is not preferable.

以下に示す正極板等の鉛蓄電池部材を作成し、これら部材を組み合わせることにより、本発明例および比較例による電池を作成し、寿命試験を行うことによって負極耳の腐食と電池寿命特性の評価を行った。   Create lead-acid battery members such as the positive electrode plate shown below, combine these members to create batteries according to the present invention and comparative examples, and perform life tests to evaluate corrosion of the negative electrode ears and battery life characteristics. went.

1)正極板
1種類の正極格子を作成し、これに正極活物質を充填することにより、正極板を作成した。正極格子はPb−Ca−Sn合金を用い、合金組成はPb−0.07質量%Ca−1.3質量%Snである。この合金を段階的に圧延することによって、合金シートとした後に、エキスパンド加工を行って正極格子を形成した。なお、この正極格子中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
1) Positive electrode plate A positive electrode plate was prepared by preparing one type of positive electrode lattice and filling it with a positive electrode active material. The positive electrode lattice uses a Pb—Ca—Sn alloy, and the alloy composition is Pb—0.07 mass% Ca—1.3 mass% Sn. The alloy was rolled in stages to form an alloy sheet, and then expanded to form a positive electrode lattice. In addition, when Sb quantitative analysis in this positive electrode lattice was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

鉛粉(金属鉛、一酸化鉛および鉛丹の混合粉体)を水と希硫酸で混練して正極活物質ペーストを作成し、前記した正極格子に所定量充填した後、熟成乾燥することによって正極板を作製した。   By mixing lead powder (mixed powder of metallic lead, lead monoxide and red lead) with water and dilute sulfuric acid to make a positive electrode active material paste, filling the above-mentioned positive electrode lattice in a predetermined amount, and then aging and drying A positive electrode plate was produced.

2)負極板
Pb−0.07質量%Ca−0.25質量%Sn合金を、正極と同様に圧延した後、エキスパンド加工を施して負極格子体を作成した。なお、この正極格子合金中に含まれるSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
2) Negative electrode plate A Pb-0.07 mass% Ca-0.25 mass% Sn alloy was rolled in the same manner as the positive electrode, and then subjected to expansion processing to prepare a negative electrode lattice. In addition, when Sb quantitative analysis contained in this positive electrode lattice alloy was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

鉛粉(金属鉛と一酸化鉛の混合粉体)にエキスパンダ(硫酸バリウムおよびリグニン)およびカーボンを添加し、水と希硫酸で混練することにより、負極活物質ペーストを作成した。この負極活物質ペーストを負極格子体に充填し、その後、熟成乾燥することによって負極板を得た。なお、本実施例においては、負極活物質ペースト中にSbの硫酸塩を添加し、化成終了状態の負極活物質中のSb濃度をそれぞれ0(検出限界である0.0001質量%未満)、0.0002質量%、0.0004質量%、0.006質量%および0.007質量%とした負極板を作成した。また、負極活物質ペースト中にSbに換えてBiをBi酸化物として添加し、化成終了状態の負極活物質中のBi濃度をそれぞれ0(検出限界である0.0001質量%未満)、0.0002質量%、0.0004質量%、0.006質量%、0.007質量%とした負極板を作成した。   An expander (barium sulfate and lignin) and carbon were added to lead powder (mixed powder of metal lead and lead monoxide) and kneaded with water and dilute sulfuric acid to prepare a negative electrode active material paste. The negative electrode active material paste was filled in a negative electrode lattice, and then aged and dried to obtain a negative electrode plate. In this example, Sb sulfate was added to the negative electrode active material paste, and the Sb concentration in the negative electrode active material in the chemical conversion completed state was 0 (less than 0.0001% by mass, which is the detection limit), 0 Negative electrode plates with .0002 mass%, 0.0004 mass%, 0.006 mass%, and 0.007 mass% were prepared. Further, Bi is added as Bi oxide instead of Sb in the negative electrode active material paste, and the Bi concentration in the negative electrode active material in the chemical conversion completed state is 0 (less than 0.0001% by mass, which is the detection limit), 0. Negative electrode plates with 0002 mass%, 0.0004 mass%, 0.006 mass%, and 0.007 mass% were prepared.

3)セパレータ
セパレータは、厚さ0.3mmの微孔性ポリエチレン製シートをU字折りし、両側部を熱シールすることにより、上部のみが開口した袋状セパレータを作製した。微孔性ポリエチレン製シートは最大孔径10μmの微孔を有したものを用いた。なお、この袋状セパレータに正極板を収納した。
3) Separator As a separator, a 0.3 mm thick microporous polyethylene sheet was folded in a U shape and both sides were heat-sealed to produce a bag-shaped separator with only the upper part opened. The microporous polyethylene sheet used had micropores with a maximum pore diameter of 10 μm. A positive electrode plate was accommodated in this bag-like separator.

4)正極接続部材用鉛合金および負極接続部材用合金
正極接続部材および負極接続部材用合金として、Pb−2.5質量%Sn合金(合金A)とPb−2.5質量%Sb合金(合金B)を準備した。なお、合金A中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
4) Lead alloy for positive electrode connection member and alloy for negative electrode connection member As alloys for positive electrode connection member and negative electrode connection member, Pb-2.5 mass% Sn alloy (alloy A) and Pb-2.5 mass% Sb alloy (alloy) B) was prepared. In addition, when Sb quantitative analysis in the alloy A was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

(実施例1)
上記の正極板、負極板、袋状セパレータおよび正・負極の接続部材用合金を表1および表2に示した組み合わせで用い、1セル当たり正極板5枚と負極板6枚から成る極板群を備えた液式の55D23形の始動用鉛蓄電池(12V48Ah)を作製した。なお、実施例1においては、負極活物質中のSbの有無について検討した。
Example 1
Using the above-described positive electrode plate, negative electrode plate, bag-shaped separator, and positive / negative electrode connection member alloy in combinations shown in Tables 1 and 2, an electrode plate group consisting of 5 positive electrode plates and 6 negative electrode plates per cell A liquid type 55D23 type lead acid battery for starting (12V48Ah) was prepared. In Example 1, the presence or absence of Sb in the negative electrode active material was examined.

表1および表2に示した各電池について、過放電を行った後のサイクル寿命試験を行った。過放電は次に示す試験条件により行った。すなわち、25℃雰囲気下において、試験電池を10Aで、10.5Vとなるまで放電する。その後、電池端子間に12W電球を接続し、48時間放置した。その後、各電池を14.5V定電圧(最大電流25A)で8時間充電し、次のサイクル寿命試験を行った。   Each battery shown in Table 1 and Table 2 was subjected to a cycle life test after overdischarge. Overdischarge was performed under the following test conditions. That is, in a 25 ° C. atmosphere, the test battery is discharged at 10 A to 10.5 V. Thereafter, a 12 W bulb was connected between the battery terminals and left for 48 hours. Thereafter, each battery was charged at a constant voltage of 14.5 V (maximum current 25 A) for 8 hours, and the next cycle life test was performed.

サイクル寿命特性は次に示す試験条件により行った。25℃雰囲気下において、25A放電20秒と14V定電圧充電(最大充電電流25A)40秒とを7200サイクル繰り返した後に、このサイクルによる質量減(WL)を計測する。その後、300Aで30秒間放電し、30秒目の放電電圧(V30)を計測する。その後、質量減(WL)分の水を鉛蓄電池に補水する。この充放電7200サイクル毎のV30が7.0Vに低下するまでの充放電サイクル数を寿命サイクル数とした。なお、通常、始動用鉛蓄電池において、JISD5301で規定される軽負荷寿命試験は25A放電4分と、最大電流25Aとした定電圧充電10分のサイクルで構成されるが、本試験では、放電が頻繁に行われ、かつ、充電時間/放電時間の比率を低減することによって、放電深度がより深くなる試験条件とした。 The cycle life characteristics were measured under the following test conditions. In an atmosphere of 25 ° C., 25A discharge for 20 seconds and 14V constant voltage charge (maximum charging current 25A) for 40 seconds are repeated for 7200 cycles, and then the mass loss (W L ) due to this cycle is measured. Thereafter, the battery is discharged at 300 A for 30 seconds, and the discharge voltage (V 30 ) at 30 seconds is measured. Thereafter, the lead storage battery is replenished with water corresponding to the mass loss (W L ). The number of charge / discharge cycles until V 30 for every 7200 cycles of charge / discharge drops to 7.0V was defined as the number of life cycles. Normally, in a lead acid battery for start-up, the light load life test specified in JIS D5301 is composed of a cycle of 25A discharge 4 minutes and a constant voltage charge 10 minutes with a maximum current 25A. The test conditions were such that the depth of discharge was increased by reducing the charge time / discharge time ratio frequently.

なお、寿命サイクル数の算出方法は以下の通りである。n回目に計測したV30電圧(充放電サイクル数は7200×n)で、初めてV30が7.0V以下となったとき、そのV30をVnとする。そして、前回(n−1回目)のV30電圧をVn−1としたときに、縦軸をV30、横軸を充放電サイクル数のグラフにおいて、座標(7200(n−1)、Vn−1)と座標(7200n、Vn)間を直線Lで結び、この直線LとV30=7.0との交点における横軸の値を寿命サイクル数とした。 The method for calculating the number of life cycles is as follows. n-th on the measured V 30 voltage (number of charge and discharge cycles 7200 × n), the first time V 30 is equal to or less than 7.0 V, to the V 30 and Vn. Then, last of V 30 voltage of (n-1 time) is taken as Vn-1, the vertical axis V 30, the horizontal axis in the graph of the number of charge and discharge cycles, the coordinates (7200 (n-1), Vn- 1) and coordinates (7200n, Vn) are connected by a straight line L, and the value on the horizontal axis at the intersection of this straight line L and V 30 = 7.0 is defined as the number of life cycles.

また、寿命試験が終了した各電池について、電池の分解調査を行い、負極の耳腐食率を求めた。なお、試験前の初期状態の負極耳断面積をS、寿命試験後の負極耳断面積をSEとし、{100×(S−SE)/S}として求めた耳断面積の減少率を耳腐食率とした。なお、試験前の初期状態における負極耳断面積は(幅)13.0mm×(厚み)0.7mm=9.1mm2としており、耳腐食率50%の場合、腐食によって断面積が4.55mm2減少したことに相当する。 Moreover, about each battery which the lifetime test was complete | finished, the decomposition | disassembly investigation of the battery was conducted and the ear corrosion rate of the negative electrode was calculated | required. Note that the negative electrode ear cross-sectional area in the initial state before the test is S, the negative electrode ear cross-sectional area after the life test is SE, and the reduction rate of the ear cross-sectional area obtained as {100 × (S-SE) / S} is the ear corrosion. Rate. The cross-sectional area of the negative electrode ear in the initial state before the test was (width) 13.0 mm × (thickness) 0.7 mm = 9.1 mm 2. When the ear corrosion rate was 50%, the cross-sectional area was 4.55 mm due to corrosion. This is equivalent to 2 reductions.

これらの過放電後のサイクル寿命試験における、負極耳腐食率および寿命サイクル数の結果を表3および表4に示す。   Tables 3 and 4 show the results of the negative electrode ear corrosion rate and the life cycle number in the cycle life test after these overdischarges.

表4から、正極および負極の接続部材にSbを含む鉛合金(合金B:Pb−2.5質量%Sb)を用いた電池については、負極耳腐食は著しい。そして、負極耳断面積の大幅な減少により、放電電圧の低下が著しく、20000〜30000サイクルで寿命終了となった。   From Table 4, the negative electrode ear corrosion is remarkable for the battery using the lead alloy containing Sb (alloy B: Pb-2.5 mass% Sb) as the positive electrode and negative electrode connecting members. Then, due to a significant decrease in the cross-sectional area of the negative electrode ear, the discharge voltage was remarkably lowered, and the life was completed after 20000 to 30000 cycles.

表3から、正極、負極の格子およびの接続部材にSbを含むない鉛合金(合金A:Pb−2.5質量%Sn)を用い、負極活物質中にSbを含有した電池において、負極活物質(NAM)と正極活物質(PAM)の質量比(NAM/PAM)を0.7〜1.3とした本発明の鉛蓄電池は、他の比較例の鉛蓄電池に比較して、負極耳腐食が抑制されるとともに、良好な寿命サイクル数を有している。   From Table 3, in a battery in which a lead alloy not containing Sb (alloy A: Pb—2.5 mass% Sn) is used for the positive electrode, the negative electrode lattice, and the connecting member, and the negative electrode active material contains Sb, The lead storage battery of the present invention in which the mass ratio (NAM / PAM) of the substance (NAM) to the positive electrode active material (PAM) is 0.7 to 1.3 is less than the lead storage battery of other comparative examples. Corrosion is suppressed and it has a good life cycle number.

質量比(NAM/PAM)が0.6とした場合、Sbを負極活物質中に含むことにより、負極耳腐食は著しく、これによる集電性の低下によって、20000〜30000サイクル強で寿命終了した。これは寿命試験前の過放電によって負極より溶出したSbが負極耳に腐食し、充放電サイクルを経て負極耳を腐食させたものと推測できる。   When the mass ratio (NAM / PAM) is 0.6, the negative electrode ear corrosion is remarkable due to the inclusion of Sb in the negative electrode active material, and due to the decrease in the current collecting property, the life ends at over 20000-30000 cycles. . It can be assumed that Sb eluted from the negative electrode due to overdischarge before the life test corroded on the negative electrode ear, and corroded the negative electrode ear through the charge / discharge cycle.

一方、質量比(NAM/PAM)を1.35とした場合、負極耳の腐食程度はそれほど著しくないものの、寿命サイクル数は20000〜40000サイクルであった。このような質量比の場合、過放電による正極の容量低下が著しく、サイクル寿命を低下させたと推測できる。したがって、本発明において、質量比(NAM/PAM)は0.7〜1.3の範囲とすることが必要である。その中でも質量比(NAM/PAM)を0.82〜1.08とすることにより、負極耳腐食をより顕著に抑制しつつ、より顕著な寿命伸長効果を得ることができる。   On the other hand, when the mass ratio (NAM / PAM) was 1.35, the corrosion rate of the negative electrode ear was not so significant, but the life cycle number was 20000 to 40000 cycles. In the case of such a mass ratio, it can be presumed that the capacity of the positive electrode is significantly reduced due to overdischarge, and the cycle life is reduced. Therefore, in the present invention, the mass ratio (NAM / PAM) needs to be in the range of 0.7 to 1.3. Among them, by setting the mass ratio (NAM / PAM) to 0.82 to 1.08, it is possible to obtain a more remarkable life extension effect while more significantly suppressing negative electrode ear corrosion.

負極活物質中のSb濃度に関しては、0.0002質量%以上でサイクル寿命を改善する効果があるが、0.0004質量%以上とすることにより、より安定して高いサイクル寿命特性を得ることができる。また、Sb含有量が0.007質量%において、負極耳腐食率が増大するため、Sb含有量を0.006質量%以下とすることが好ましい。したがって、負極活物質中のSb量は0.0004〜0.006質量%とすることがより好ましい。負極活物質中のSbは負極の充電電位をより貴とすることにより、負極の充電受入れ性と寿命特性を改善したと考えられる。   Regarding the Sb concentration in the negative electrode active material, there is an effect of improving the cycle life at 0.0002% by mass or more, but by setting it to 0.0004% by mass or more, it is possible to obtain more stable and high cycle life characteristics. it can. In addition, when the Sb content is 0.007% by mass, the negative electrode ear corrosion rate increases, so the Sb content is preferably 0.006% by mass or less. Therefore, the amount of Sb in the negative electrode active material is more preferably 0.0004 to 0.006% by mass. It is considered that Sb in the negative electrode active material improved the charge acceptability and life characteristics of the negative electrode by making the charge potential of the negative electrode more noble.

(実施例2)
上記の正極板、負極板、袋状セパレータおよび正・負極の接続部材用合金を表5および表6に示した組み合わせで用い、実施例1と同様、1セル当たり正極板5枚と負極板6枚から成る極板群を備えた液式の55D23形の始動用鉛蓄電池(12V48Ah)を作製した。なお、実施例2においては、負極活物質中のBiの有無について検討した。
(Example 2)
The positive electrode plate, the negative electrode plate, the bag-shaped separator, and the positive and negative electrode connecting member alloys were used in the combinations shown in Tables 5 and 6, and as in Example 1, five positive electrode plates and one negative electrode plate 6 per cell. A liquid type 55D23 type lead acid battery for start-up (12V48Ah) having a group of electrode plates was produced. In Example 2, the presence or absence of Bi in the negative electrode active material was examined.

表5および表6に示した各電池について、実施例1と同様の試験条件で、過放電後のサイクル寿命試験を行った。その結果を表7および表8に示す。   Each battery shown in Table 5 and Table 6 was subjected to a cycle life test after overdischarge under the same test conditions as in Example 1. The results are shown in Table 7 and Table 8.

表7および表8に示した結果から、実施例1における負極活物質中のSbに換えてBiを添加した実施例2の結果は、実施例1にほぼ同等の結果が得られることがわかる。すなわち、正極および負極の接合部材にSbを含む合金Bを用いた比較例の電池は20000〜30000サイクル程度の寿命しか有さず、負極耳における腐食も進行していた。   From the results shown in Table 7 and Table 8, it can be seen that the result of Example 2 in which Bi is added instead of Sb in the negative electrode active material in Example 1 is almost the same as that of Example 1. That is, the battery of the comparative example using the alloy B containing Sb as the bonding member of the positive electrode and the negative electrode has only a life of about 20000 to 30000 cycles, and the corrosion at the negative electrode ear has also progressed.

一方、本発明の、正極および負極の格子と接合部材にSbを含まず、かつ負極活物質中にBiを含み、負極活物質(NAM)と正極活物質(PAM)の質量比(NAM/PAM)を0.7〜1.3とした本発明の鉛蓄電池は、他の比較例の鉛蓄電池に比較して、負極耳腐食が抑制されるとともに、良好な寿命サイクル数を有している。   On the other hand, the lattice of the positive and negative electrodes and the joining member of the present invention do not contain Sb, and the negative electrode active material contains Bi, and the mass ratio of the negative electrode active material (NAM) to the positive electrode active material (PAM) (NAM / PAM). ) Is 0.7 to 1.3, the lead acid battery of the present invention has a good life cycle number while suppressing negative electrode ear corrosion as compared with the lead acid batteries of other comparative examples.

また特に、質量比(NAM/PAM)を0.82〜1.08とし、かつ、負極活物質中のBi濃度を0.0004〜0.006質量%とすることにより、負極耳腐食をより顕著に抑制しつつ、より顕著な寿命伸長効果を得ることができる。   In particular, by making the mass ratio (NAM / PAM) 0.82 to 1.08 and the Bi concentration in the negative electrode active material 0.0004 to 0.006% by mass, the negative electrode ear corrosion becomes more prominent. It is possible to obtain a more prominent life extension effect while suppressing the above.

以上、説明してきたように、本発明の構成による鉛蓄電池は、過放電後のサイクル寿命試験においても極めて良好な寿命特性を有し、かつ負極耳の腐食を顕著に抑制できることが確認できた。   As described above, it has been confirmed that the lead storage battery according to the configuration of the present invention has extremely good life characteristics even in the cycle life test after overdischarge and can significantly suppress the corrosion of the negative electrode ear.

以上、本発明の鉛蓄電池によれば、深放電における正極の劣化と負極における充電受入性を改善することによって、深放電寿命特性を飛躍的に改善するとともに、負極耳部における腐食を抑制することができるので、高信頼性を有したアイドルストップ車や回生ブレーキシステム搭載車等に好適である。   As described above, according to the lead-acid battery of the present invention, by improving the positive electrode deterioration in the deep discharge and the charge acceptability in the negative electrode, the deep discharge life characteristics are dramatically improved and the corrosion in the negative electrode ear is suppressed. Therefore, it is suitable for a highly reliable idle stop vehicle, a vehicle equipped with a regenerative brake system, and the like.

極板群構成を示す一部破載図Partially broken view showing electrode plate configuration 正極板を示す図Diagram showing positive electrode plate 負極板を示す図Diagram showing the negative electrode plate

符号の説明Explanation of symbols

1 鉛蓄電池
2 正極板
3 負極板
4 セパレータ
5 正極棚
6 負極棚
7 正極柱
8 負極接続体
9 正極接続部材
10 負極接続部材
21 正極格子
22 正極格子耳
23 正極格子骨
24 正極活物質
31 負極格子
32 負極格子耳
33 負極格子骨
34 負極活物質
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Positive electrode shelf 6 Negative electrode shelf 7 Positive electrode pillar 8 Negative electrode connection body 9 Positive electrode connection member 10 Negative electrode connection member 21 Positive electrode lattice 22 Positive electrode lattice ear 23 Positive electrode lattice bone 24 Positive electrode active material 31 Negative electrode lattice 32 Negative electrode lattice ear 33 Negative electrode lattice bone 34 Negative electrode active material

Claims (4)

負極格子耳と負極格子骨とからなる負極格子と負極格子骨に充填された負極活物質を備えた負極板と、正極格子耳と正極格子骨とからなる正極格子と正極格子骨に充填された正極活物質を備えた正極板を有し、正極格子耳を集合溶接する正極棚とこの正極棚より導出された正極柱もしくは正極接続体とからなる正極接続部材と、負極格子耳を集合溶接する負極棚とこの負極棚より導出された負極柱もしくは負極接続体とからなる負極接続部材を備えた鉛蓄電池において、前記正極格子および前記正極接続部材はSbを含有しない鉛もしくは鉛合金からなり、前記負極格子および前記負極接続部材はSbを含有しない鉛もしくは鉛合金からなり、負極活物質中にPbよりも水素過電圧が低い物質を負極活物質中に含み、かつ単位セルを構成する負極活物質(NAM)と正極活物質(PAM)の質量比(NAM/PAM)が0.7〜1.3であることを特徴とする鉛蓄電池。 A negative electrode grid including a negative electrode lattice ear and a negative electrode lattice bone, a negative electrode plate including a negative electrode active material filled in the negative electrode lattice bone, a positive electrode lattice including a positive electrode lattice ear and a positive electrode lattice bone, and a positive electrode lattice bone A positive electrode connecting member having a positive electrode plate including a positive electrode active material and having a positive electrode shelf that collects and welds positive electrode grid ears, and a positive pole column or a positive electrode connection body derived from the positive electrode shelf, and the negative electrode grid ears are collectively welded. In a lead storage battery comprising a negative electrode connecting member comprising a negative electrode shelf and a negative electrode column or a negative electrode connecting body derived from the negative electrode shelf, the positive electrode grid and the positive electrode connecting member are made of lead or a lead alloy containing no Sb, The negative electrode grid and the negative electrode connecting member are made of lead or lead alloy not containing Sb, the negative electrode active material contains a substance having a hydrogen overvoltage lower than Pb in the negative electrode active material, and constitutes a unit cell. Lead-acid battery weight ratio of active material (NAM) and the positive electrode active material (PAM) (NAM / PAM) is characterized in that 0.7 to 1.3. 前記質量比を0.82〜1.08としたことを特徴とする請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the mass ratio is 0.82 to 1.08. 前記水素過電圧が低い物質はSbを含む物質であり、かつ負極活物質中のSb濃度を0.0004〜0.006質量%としたことを特徴とする請求項1もしくは2に記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein the substance having a low hydrogen overvoltage is a substance containing Sb, and the Sb concentration in the negative electrode active material is set to 0.0004 to 0.006 mass%. 前記水素過電圧が低い物質はBiを含む物質であり、かつ負極活物質中のBi濃度を0.0004〜0.006質量%としたことを特徴とする請求項1もしくは2に記載の鉛蓄電池。 The lead acid battery according to claim 1 or 2, wherein the substance having a low hydrogen overvoltage is a substance containing Bi, and a Bi concentration in the negative electrode active material is set to 0.0004 to 0.006 mass%.
JP2004302595A 2004-04-02 2004-10-18 Lead-acid storage battery Pending JP2006114417A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004302595A JP2006114417A (en) 2004-10-18 2004-10-18 Lead-acid storage battery
TW094110275A TWI251365B (en) 2004-04-02 2005-03-31 Lead-acid battery
US10/585,078 US8197967B2 (en) 2004-04-02 2005-04-01 Long life and low corrosion lead storage battery with a separator including silica and oil
PCT/JP2005/006475 WO2005096431A1 (en) 2004-04-02 2005-04-01 Lead storage battery
KR1020067015821A KR101139665B1 (en) 2004-04-02 2005-04-01 Lead storage battery
EP05727619.8A EP1742289B1 (en) 2004-04-02 2005-04-01 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004302595A JP2006114417A (en) 2004-10-18 2004-10-18 Lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2006114417A true JP2006114417A (en) 2006-04-27

Family

ID=36382751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004302595A Pending JP2006114417A (en) 2004-04-02 2004-10-18 Lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2006114417A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305370A (en) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Lead storage cell
JP2008140645A (en) * 2006-12-01 2008-06-19 Matsushita Electric Ind Co Ltd Lead acid battery
JP2015022796A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Lead storage battery
US9356321B2 (en) 2012-12-21 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Lead-acid battery
JP2016177909A (en) * 2015-03-19 2016-10-06 株式会社Gsユアサ Control valve type lead-acid battery
US10205193B2 (en) 2015-02-12 2019-02-12 Gs Yuasa International Ltd. Lead acid battery
WO2020132380A1 (en) * 2018-12-20 2020-06-25 Crown Battery Manufacturing Company Enhanced lead-acid battery using polyacrylonitrile fibers in active material
WO2022224884A1 (en) * 2021-04-20 2022-10-27 株式会社Gsユアサ Lead storage battery
JP7375457B2 (en) 2019-10-21 2023-11-08 株式会社Gsユアサ lead acid battery
WO2024005041A1 (en) * 2022-06-30 2024-01-04 株式会社Gsユアサ Lead-acid battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329948A (en) * 1995-06-01 1996-12-13 Japan Storage Battery Co Ltd Lead-acid battery
JP2003346888A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2004281197A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Lead acid storage battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329948A (en) * 1995-06-01 1996-12-13 Japan Storage Battery Co Ltd Lead-acid battery
JP2003346888A (en) * 2002-05-24 2003-12-05 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2004281197A (en) * 2003-03-14 2004-10-07 Matsushita Electric Ind Co Ltd Lead acid storage battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305370A (en) * 2006-05-10 2007-11-22 Matsushita Electric Ind Co Ltd Lead storage cell
JP2008140645A (en) * 2006-12-01 2008-06-19 Matsushita Electric Ind Co Ltd Lead acid battery
US9356321B2 (en) 2012-12-21 2016-05-31 Panasonic Intellectual Property Management Co., Ltd. Lead-acid battery
JP2015022796A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Lead storage battery
US10205193B2 (en) 2015-02-12 2019-02-12 Gs Yuasa International Ltd. Lead acid battery
JP2016177909A (en) * 2015-03-19 2016-10-06 株式会社Gsユアサ Control valve type lead-acid battery
WO2020132380A1 (en) * 2018-12-20 2020-06-25 Crown Battery Manufacturing Company Enhanced lead-acid battery using polyacrylonitrile fibers in active material
JP7375457B2 (en) 2019-10-21 2023-11-08 株式会社Gsユアサ lead acid battery
WO2022224884A1 (en) * 2021-04-20 2022-10-27 株式会社Gsユアサ Lead storage battery
WO2024005041A1 (en) * 2022-06-30 2024-01-04 株式会社Gsユアサ Lead-acid battery

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
JP5858048B2 (en) Lead acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP2008130516A (en) Liquid lead-acid storage battery
JP2006114417A (en) Lead-acid storage battery
JP5168893B2 (en) Lead acid battery
JP2009104914A (en) Lead-acid battery
JP2016042473A (en) Grid for lead storage battery and lead storage battery
JP4892827B2 (en) Lead acid battery
JP4904686B2 (en) Lead acid battery
JP2008218258A (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP5044888B2 (en) Liquid lead-acid battery
JP2006114416A (en) Lead-acid battery
JP4896392B2 (en) Lead acid battery
JP4904675B2 (en) Lead acid battery
JP2007305370A (en) Lead storage cell
JP4470381B2 (en) Lead acid battery
JP2019207786A (en) Lead acid battery
JP2002198085A (en) Lead storage battery
JPH0869811A (en) Lead-acid battery
JP2005294142A (en) Lead storage battery
JP2006164598A (en) Lead acid battery
JP2007213896A (en) Lead-acid storage battery
JP4923399B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719