JP4904675B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4904675B2
JP4904675B2 JP2004263624A JP2004263624A JP4904675B2 JP 4904675 B2 JP4904675 B2 JP 4904675B2 JP 2004263624 A JP2004263624 A JP 2004263624A JP 2004263624 A JP2004263624 A JP 2004263624A JP 4904675 B2 JP4904675 B2 JP 4904675B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
active material
amount
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004263624A
Other languages
Japanese (ja)
Other versions
JP2006079973A (en
Inventor
恒典 吉村
道男 榑松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004263624A priority Critical patent/JP4904675B2/en
Publication of JP2006079973A publication Critical patent/JP2006079973A/en
Application granted granted Critical
Publication of JP4904675B2 publication Critical patent/JP4904675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

車両のエンジン始動用やバックアップ電源用といった様々な用途に鉛蓄電池が用いられている。その中でも始動用の鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給する。エンジン始動後、鉛蓄電池はオルタネータによって充電される。ここで、鉛蓄電池の充電と放電とがバランスし、鉛蓄電池のSOC(充電状態)が90〜100%に維持されるよう、オルタネータの出力電圧および出力電流が設定されている。   Lead-acid batteries are used for various purposes such as vehicle engine starting and backup power supply. Among them, the lead acid battery for starting supplies power to various electric / electronic devices mounted on the vehicle as well as supplying power to the cell motor for starting the engine. After the engine is started, the lead storage battery is charged by an alternator. Here, the output voltage and output current of the alternator are set so that charging and discharging of the lead storage battery are balanced and the SOC (charged state) of the lead storage battery is maintained at 90 to 100%.

近年、環境保全の観点から、車両の燃費向上が検討されている。例えば、車両の一時的な停車中にエンジンを停止するアイドルストップ車や、車両の減速による運動エネルギーを電気エネルギーに変換し、この電気エネルギーを蓄電することによって行う回生ブレーキシステムが実用化されている。   In recent years, improvement in fuel efficiency of vehicles has been studied from the viewpoint of environmental conservation. For example, idle stop vehicles that stop the engine while the vehicle is temporarily stopped, and regenerative braking systems that convert kinetic energy resulting from vehicle deceleration into electrical energy and store this electrical energy have been put into practical use. .

前記したような、アイドルストップ車ではエンジン停止中、鉛蓄電池は充電されない一方で、搭載機器へは、電力供給をしつづける必要があるため、必然的に放電深度は深くなる。また、回生ブレーキシステムを搭載した車両では、回生時の電気エネルギーを蓄電するために、鉛蓄電池のSOCを従来よりも低い50〜90%程度に制御する必要がある。   In the idling stop vehicle as described above, the lead storage battery is not charged while the engine is stopped. On the other hand, it is necessary to continue to supply power to the on-board equipment, so the depth of discharge inevitably increases. Further, in a vehicle equipped with a regenerative braking system, it is necessary to control the SOC of the lead storage battery to about 50 to 90% lower than that in the past in order to store electric energy during regeneration.

従って、これらのシステムを搭載した車両において、鉛蓄電池はより深い放電深度、低いSOCで使用されることになり、このような車両に適用するために、鉛蓄電池は深い放電が行われた時の寿命特性が要求される。このような深放電寿命における鉛蓄電池の劣化要因は深放電による正極における活物質の劣化と活物質−格子界面の高抵抗層の形成によるインピーダンスの増加および負極活物質の充電受入性の低下が主であった。   Therefore, in a vehicle equipped with these systems, the lead storage battery is used at a deeper discharge depth and lower SOC, and for application to such a vehicle, the lead storage battery is used when a deep discharge is performed. Life characteristics are required. The main causes of deterioration of lead-acid batteries in such a deep discharge life are the deterioration of the active material in the positive electrode due to deep discharge, the increase in impedance due to the formation of a high resistance layer at the active material-lattice interface, and the decrease in charge acceptance of the negative electrode active material. Met.

また、負極活物質における充電受入性が低下すると、負極の充電電位が卑に移行し、充電電圧の上昇を招く。鉛蓄電池内でのガス発生を抑制するために、1セル当たりの最高充電電圧を2.3〜2.5V程度に制御する、いわゆる定電圧充電制御が行われている。従って、前記したような負極の充電電位の移行によって、充電早期に充電電圧値が充電制御電圧値まで上昇し、充電電流が垂下する。   Moreover, if the charge acceptance property in a negative electrode active material falls, the charge potential of a negative electrode will shift to a base, and will raise a charge voltage. In order to suppress gas generation in the lead storage battery, so-called constant voltage charging control is performed in which the maximum charging voltage per cell is controlled to about 2.3 to 2.5V. Therefore, due to the transition of the negative electrode charging potential as described above, the charging voltage value rises to the charging control voltage value at an early stage of charging, and the charging current drops.

このような充電電流の垂下により、鉛蓄電池への充電電気量が確保できず、鉛蓄電池は充電不足状態となる。特に、正極において、充電不足状態が繰返して行われた場合、正極活物質同士の結合が損なわれ、早期に容量劣化が進行し、鉛蓄電池は短寿命となる。   Due to such drooping of the charging current, the amount of charge electricity to the lead storage battery cannot be secured, and the lead storage battery is in an insufficiently charged state. In particular, when the insufficient charging state is repeatedly performed in the positive electrode, the bonding between the positive electrode active materials is impaired, the capacity deterioration progresses at an early stage, and the lead-acid battery has a short life.

鉛蓄電池の深放電による正極の劣化を抑制するために、例えば特許文献1には鉛−カルシウム−スズ合金の正極格子表面にスズおよびアンチモンを含有する鉛合金層を形成することが示されている。正極格子表面に存在するスズおよびアンチモンは活物質の劣化および活物質−格子界面での高抵抗層の形成を抑制する効果がある。   In order to suppress the deterioration of the positive electrode due to the deep discharge of the lead storage battery, for example, Patent Document 1 discloses that a lead alloy layer containing tin and antimony is formed on the surface of the positive electrode lattice of a lead-calcium-tin alloy. . Tin and antimony present on the surface of the positive electrode lattice have an effect of suppressing deterioration of the active material and formation of a high resistance layer at the active material-lattice interface.

また、特に正極格子表面に配置したアンチモンは、その一部が正極活物質に捕捉されるものの、他の一部はその微量が電解液に溶出し、負極板上に析出する。負極活物質上に析出したアンチモンは負極の充電電位を貴に移行させることによって、充電電圧を低下させる作用を有している。前記したような、定電圧充電制御における充電電圧の低下は充電電流を増大させる。その結果として、正極における充電電気量は確保され、充電不足を要因
とする正極の劣化とこれによる蓄電池の短寿命は抑制されていた。
In particular, a part of antimony disposed on the surface of the positive electrode lattice is trapped by the positive electrode active material, but a small amount of the other part elutes in the electrolytic solution and is deposited on the negative electrode plate. Antimony deposited on the negative electrode active material has a function of lowering the charging voltage by preciously shifting the charging potential of the negative electrode. As described above, the reduction of the charging voltage in the constant voltage charging control increases the charging current. As a result, the amount of charged electricity in the positive electrode was secured, and the deterioration of the positive electrode due to insufficient charging and the short life of the storage battery due to this were suppressed.

このような特許文献1のような構成は、SOCが90%を超えるような充電状態で用いられる従来の始動用鉛蓄電池において非常に有効であり、寿命特性を飛躍的に改善するものであった。
特開平3−37962号公報
Such a configuration as disclosed in Patent Document 1 is very effective in a conventional lead-acid battery for starting that is used in a charged state in which the SOC exceeds 90%, and dramatically improves the life characteristics. .
JP-A-3-37962

しかしながら、前記したようなアイドルストップ車や回生ブレーキシステムを搭載したような車両、すなわち放電深度がより深く、SOCがより低い状態で用いられる頻度が高い場合、特許文献1のような構成のみの鉛蓄電池では、正極における寿命は確保できるものの、寿命末期において電解液中の水分減少速度が急激に増加するという課題があった。   However, if the vehicle is equipped with an idle stop vehicle or a regenerative braking system as described above, that is, when the discharge depth is deeper and the SOC is lower, the lead having only the configuration as in Patent Document 1 is used. In the storage battery, although the life of the positive electrode can be secured, there has been a problem that the rate of water decrease in the electrolytic solution increases rapidly at the end of the life.

このような電解液中の水分減少速度の急激な増加は、鉛蓄電池の使用者が予期しえない短期間で極板群、特に負極棚部の電解液からの露出を招く。その結果、負極棚部や負極耳部で腐食が進行し、断線に到る可能性があった。   Such a rapid increase in the rate of water reduction in the electrolyte causes exposure of the electrode plate group, particularly the negative electrode shelf, from the electrolyte in a short period of time that a lead-acid battery user cannot expect. As a result, corrosion progressed at the negative electrode shelf and the negative electrode ear, which could lead to disconnection.

また、負極棚部および負極耳部が電解液に浸漬した状態であっても、負極耳部に微量析出したアンチモンが要因となり、負極耳部を腐食させて、負極耳厚みが減少し負極における集電効率を低下させてしまうといった課題があった。   Even when the negative electrode shelf and the negative electrode ear are immersed in the electrolyte, a small amount of antimony deposited on the negative electrode ear causes the negative electrode ear to corrode, reducing the negative electrode ear thickness and reducing the concentration at the negative electrode. There was a problem of reducing the electric efficiency.

本発明は、前記したような深放電における正極の劣化と負極における充電受入性を改善することによって、深放電寿命特性を飛躍的に改善するとともに、寿命末期においても電解液中の水分減少速度の増加を抑制することでメンテナンスフリー性に優れるとともに、負極耳部における腐食を抑制することによって、高信頼性を有したアイドルストップ車や回生ブレーキシステム搭載車等に好適な鉛蓄電池を提供することを目的とする。   The present invention drastically improves the deep discharge life characteristics by improving the deterioration of the positive electrode in the deep discharge and the charge acceptability in the negative electrode as described above, and also reduces the rate of water decrease in the electrolyte at the end of the life. By suppressing the increase, it is excellent in maintenance-free properties, and by suppressing corrosion at the negative electrode ear, it is possible to provide a lead storage battery suitable for an idle stop vehicle or a vehicle equipped with a regenerative brake system having high reliability. Objective.

上記目的を達成するために本発明の鉛蓄電池は、Sbを含まない負極格子と負極活物質とからなる負極板と、Sbを含まない正極格子と正極活物質で構成され正極活物質と接する表面の少なくとも一部に正極活物質量の0.01〜0.15wt%のSbを含む層を有する正極板と、前記正極・負極板間に介挿されたセパレータとを備え、前記正極・負極板の極板面全面が電解液に浸漬されており、負極活物質中にBiを負極活物質量に対して0.02〜0.10wt%含むことを特徴とするものである。 Lead-acid battery of the present invention in order to achieve the above object, the surface in contact with the negative electrode plate comprising a negative electrode grid and the anode active material containing no Sb, the positive electrode active material is composed of a positive grid and positive active material containing no Sb A positive electrode plate having a layer containing 0.01 to 0.15 wt% of Sb in the amount of the positive electrode active material, and a separator interposed between the positive electrode and the negative electrode plate. The entire surface of the electrode plate is immersed in an electrolyte solution, and Bi is contained in the negative electrode active material in an amount of 0.02 to 0.10 wt% with respect to the amount of the negative electrode active material.

これにより、深放電における正極の劣化と負極における充電受入性を改善することができ、深放電寿命特性を飛躍的に改善することができる。また、寿命末期においても電解液中の水分減少速度の増加を抑制することでメンテナンスフリー性に優れるとともに、負極耳部における腐食を抑制することによって、高信頼性を有したアイドルストップ車や回生ブレーキシステム搭載車等に好適な鉛蓄電池を提供することができる。   Thereby, the deterioration of the positive electrode in the deep discharge and the charge acceptability in the negative electrode can be improved, and the deep discharge life characteristics can be drastically improved. In addition, at the end of the service life, it is excellent in maintenance-free by suppressing the increase in the rate of water decrease in the electrolyte, and also highly reliable idle stop cars and regenerative brakes by suppressing corrosion at the negative electrode ear. A lead-acid battery suitable for a system-equipped vehicle or the like can be provided.

本発明の鉛蓄電池によれば、深放電における正極の劣化と負極における充電受入性を改善することができ、深放電寿命特性を飛躍的に改善することができる。また、寿命末期においても電解液中の水分減少速度の増加を抑制することでメンテナンスフリー性に優れるとともに、負極耳部における腐食を抑制することによって、高信頼性を有したアイドルス
トップ車や回生ブレーキシステム搭載車等に好適な鉛蓄電池を提供することができる。
According to the lead storage battery of the present invention, the deterioration of the positive electrode in the deep discharge and the charge acceptability in the negative electrode can be improved, and the deep discharge life characteristics can be dramatically improved. In addition, at the end of the service life, it is excellent in maintenance-free by suppressing the increase in the rate of water decrease in the electrolyte, and also highly reliable idle stop cars and regenerative brakes by suppressing corrosion at the negative electrode ear. A lead-acid battery suitable for a system-equipped vehicle or the like can be provided.

以下、本発明を実施するための最良の形態について説明する。本発明の鉛蓄電池に用いる正極格子の母材は実質上Sbを含まない鉛合金により作成される。Sbを含まない鉛合金としては、強度および耐腐食性の面でPb−Ca−Sn合金を用いる。正極格子中のCaの量としては格子強度の観点から、0.03〜0.10質量%、Snの量としては格子強度および耐腐食性の観点より、0.60〜1.80質量%、好ましくは1.20〜1.80質量%が適切である。なお、本発明において、正極格子中に実質上Sbを含まないとは、0.002質量%以下を意味する。この程度の含有量のSbが正極格子に含まれたとしても、負極には移行せず、結果として負極における自己放電量や、電解液の減液といった鉛蓄電池のメンテナンスフリー性能に影響を与えることはない。   Hereinafter, the best mode for carrying out the present invention will be described. The base material of the positive electrode lattice used in the lead storage battery of the present invention is made of a lead alloy substantially free of Sb. As a lead alloy not containing Sb, a Pb—Ca—Sn alloy is used in terms of strength and corrosion resistance. The amount of Ca in the positive electrode lattice is 0.03 to 0.10% by mass from the viewpoint of lattice strength, and the amount of Sn is 0.60 to 1.80% by mass from the viewpoint of lattice strength and corrosion resistance. Preferably it is 1.20-1.80 mass%. In the present invention, the fact that Sb is not substantially contained in the positive electrode lattice means 0.002 mass% or less. Even if this amount of Sb is contained in the positive electrode grid, it does not migrate to the negative electrode, and as a result, it affects the self-discharge amount in the negative electrode and the maintenance-free performance of the lead storage battery, such as the reduction of the electrolyte. There is no.

また、本発明においてはこのSbを含まない正極格子の正極活物質と接する表面の少なくとも一部にPb−Sb合金等のSbを含む層を形成し、この層中に含まれるSb量を正極活物質量に対して0.01〜0.15wt%の範囲とする。 In the present invention, a layer containing Sb such as a Pb—Sb alloy is formed on at least a part of the surface of the positive electrode lattice not containing Sb in contact with the positive electrode active material, and the amount of Sb contained in this layer is determined based on the amount of Sb contained in this layer. The range is 0.01 to 0.15 wt% with respect to the amount of substance .

格子の作成方法としては、従来から知られている鋳造格子、連続鋳造格子あるいは上記鉛合金の圧延体にパンチング加工やエキスパンド加工を施した格子体を用いることができる。   As a method for creating a lattice, a conventionally known cast lattice, continuous cast lattice, or a lattice body obtained by subjecting a rolled body of the lead alloy to punching or expanding can be used.

また、正極の過放電に対する耐久性を考慮し、正極格子表面のSbを含む層中に2.0〜7.0質量%程度のSnを含むことも好ましい。   In consideration of durability against overdischarge of the positive electrode, it is also preferable that Sn of about 2.0 to 7.0% by mass is contained in the layer containing Sb on the surface of the positive electrode lattice.

上記の正極格子体に正極活物質ペーストを充填後、熟成乾燥することにより、未化成状態の正極板を得る。なお、正極活物質ペーストとしては、従来から知られているように、鉛酸化物および金属鉛を成分とする鉛粉を水と希硫酸で練合して得ることができる。   The positive electrode grid is filled with a positive electrode active material paste and then aged and dried to obtain an unformed positive electrode plate. As known in the art, the positive electrode active material paste can be obtained by kneading lead powder containing lead oxide and metal lead as components with water and dilute sulfuric acid.

次に、負極格子も正極格子と同様、実質上Sbを含まない鉛合金により作成される。正極格子と同様、Pb−Ca−Sn合金を用いることができるが、負極格子では正極に比較して腐食の影響を受けないので、Snの添加は必ずしも必要ではない。但し、Snは前述のように、格子強度を向上したり、鋳造格子作成時の溶融鉛の湯流れ性を向上するので、0.2質量%〜0.6質量%程度添加してもよい。なお、負極格子中のCa量は正極と同様、格子強度を確保することを主目的として0.03〜0.10質量%添加する。なお、負極格子におけるSbの存在は直接負極の自己放電と電解液の減液に影響を及ぼすので、0.001質量%以下とする。また、負極格子の製造方法は、正極格子と同様の方法により得ることができる。   Next, similarly to the positive electrode lattice, the negative electrode lattice is made of a lead alloy substantially not containing Sb. As with the positive electrode lattice, a Pb—Ca—Sn alloy can be used. However, since the negative electrode lattice is not affected by corrosion as compared with the positive electrode, the addition of Sn is not always necessary. However, Sn, as described above, may improve the lattice strength or improve the molten lead flowability of the molten lead at the time of forming the cast lattice, so it may be added in an amount of about 0.2% to 0.6% by mass. The amount of Ca in the negative electrode lattice is 0.03 to 0.10% by mass for the main purpose of securing the lattice strength, as in the positive electrode. Note that the presence of Sb in the negative electrode lattice directly affects the self-discharge of the negative electrode and the reduction of the electrolyte solution, so the content is made 0.001% by mass or less. Moreover, the manufacturing method of a negative electrode grating | lattice can be obtained by the method similar to a positive electrode grating | lattice.

上述により得た負極格子に負極活物質ペーストを充填し、熟成乾燥して未化成状態の負極板を作成する。本発明においては、化成後の負極活物質中に負極活物質量に対して0.02〜0.10wt%のBiを含有させる。   The negative electrode grid obtained as described above is filled with a negative electrode active material paste and aged and dried to prepare an unformed negative electrode plate. In the present invention, 0.02 to 0.10 wt% Bi is contained in the negative electrode active material after chemical conversion with respect to the amount of the negative electrode active material.

負極活物質中のBiの添加方法として、負極活物質ペーストの練合時に酸化ビスマス、硫酸ビスマス等のビスマス化合物として添加することができる。また、他の方法としては、化成充電工程の以前に希硫酸電解液中に上述のビスマス化合物を添加し、化成充電を行うことにより、負極活物質にBiを電析させることも極めて有効な方法である。   As a method for adding Bi in the negative electrode active material, it can be added as a bismuth compound such as bismuth oxide or bismuth sulfate during kneading of the negative electrode active material paste. As another method, it is also an extremely effective method to deposit Bi on the negative electrode active material by adding the above-described bismuth compound to the dilute sulfuric acid electrolyte before the chemical charging step and performing chemical charging. It is.

この負極板および上述の正極板とをガラス繊維やポリプロピレン樹脂繊維等の耐酸性繊維で構成したマットセパレータもしくはポリエチレンセパレータとを組み合わせて極板群
を構成する。この極板群を用いて鉛蓄電池を構成することにより、本発明の鉛蓄電池を得ることができる。
The negative electrode plate and the positive electrode plate described above are combined with a mat separator or polyethylene separator made of acid-resistant fibers such as glass fibers and polypropylene resin fibers to constitute an electrode plate group. The lead storage battery of this invention can be obtained by comprising a lead storage battery using this electrode group.

本発明の鉛蓄電池を、通常の公称電圧12Vの自動車用鉛蓄電池とする場合、上述の極板群の6個を電槽に収納し、極板群間を直列に接続した後、電槽開口部を蓋で覆うとともに、直列接続において両端に位置する極板群から導出した極柱を蓋にインサート成形された端子ブッシングに挿通し、端子ブッシングと極柱先端を溶接すれば良い。その後、蓋に設けた注液口より希硫酸電解液を注液して、化成充電を行えば良い。   When the lead-acid battery of the present invention is a normal lead-acid battery for automobiles having a nominal voltage of 12 V, six of the electrode plate groups described above are housed in a battery case, and the electrode plate groups are connected in series, and then the battery case opening The part may be covered with a lid, and pole columns derived from the electrode plate groups located at both ends in series connection may be inserted into a terminal bushing that is insert-molded into the lid, and the terminal bushing and the tip of the pole column may be welded. Thereafter, dilute sulfuric acid electrolyte may be injected from a liquid inlet provided on the lid, and chemical conversion charging may be performed.

なお、化成充電後において、本発明の鉛蓄電池は極板群を構成する正極板および負極板の少なくとも充放電反応に寄与する極板表面がすべて電解液に浸漬した構成を有する。   In addition, after chemical conversion, the lead storage battery of the present invention has a configuration in which at least the electrode plate surfaces contributing to the charge / discharge reaction of the positive electrode plate and the negative electrode plate constituting the electrode plate group are all immersed in the electrolytic solution.

上述した構成を有した本発明の鉛蓄電池は、Sbを正極活物質に捕捉させ、電解液に流出して負極に析出しない程度に抑制して耳細りを防止できるとともに、Sbが負極に析出しないことによる負極の充電受入性低下はBi添加により補償することで、長寿命かつ高信頼性を得ることができる。   The lead-acid battery according to the present invention having the above-described configuration can prevent Sb from being deposited on the negative electrode while trapping Sb in the positive electrode active material and suppressing it to the extent that it does not flow out into the electrolyte and deposit on the negative electrode. By compensating for the decrease in charge acceptability of the negative electrode due to the addition of Bi, a long life and high reliability can be obtained.

また、正極格子母材中に含まれるSnの量が0.80〜1.80wt%である場合、正極格子腐食は抑制されるため、極めて長寿命であり、結果として長期間使用される。本発明の課題は使用期間が長くなるにつれて発生する新規なものであり、このような長寿命の鉛蓄電池において、本発明の構成を適用することが最も好ましい。   Further, when the amount of Sn contained in the positive electrode lattice base material is 0.80 to 1.80 wt%, the positive electrode lattice corrosion is suppressed, so that the life is extremely long, and as a result, it is used for a long time. The problem of the present invention is a new problem that occurs as the usage period becomes longer, and it is most preferable to apply the configuration of the present invention to such a long-life lead-acid battery.

図1にSbを含む層である正極表面層と、正極活物質質量に対する正極表面層中のSb量(wt%)と、負極活物質質量に対する負極活物質中のBi量(wt%)とをパラメータとして鉛蓄電池を作成した時のサイクル寿命特性、耳腐食量、減液量を示す。   FIG. 1 shows a positive electrode surface layer which is a layer containing Sb, an Sb amount (wt%) in the positive electrode surface layer with respect to the positive electrode active material mass, and an Bi amount (wt%) in the negative electrode active material with respect to the negative electrode active material mass. The cycle life characteristics, ear corrosion amount, and liquid reduction amount when a lead storage battery is created as parameters are shown.

試験電池形式はJIS D5301「始動用鉛蓄電池」に規定する55D23形鉛蓄電池とした。   The test battery type was a 55D23 type lead acid battery defined in JIS D5301 “Starting Lead Acid Battery”.

サイクル寿命特性はJIS D5301「軽負荷寿命」の4分放電を5分放電に変更して75度気相中で実施した。すなわち、25A放電5分と14.8V定電圧(最大電流25A)10分とを480サイクル繰り返す毎に356A30秒間の判定放電を行い、放電末期電圧が7.2V以下となると寿命と判定することにより行った。   The cycle life characteristics were measured in the gas phase of 75 degrees by changing the 4-minute discharge of JIS D5301 “light load life” to the 5-minute discharge. That is, every time 480 cycles of 25A discharge for 5 minutes and 14.8V constant voltage (maximum current 25A) are repeated for 480 cycles, determination discharge for 356A for 30 seconds is performed, and when the end-of-discharge voltage becomes 7.2V or less, the life is determined. went.

耳腐食量(%)は、25A放電60秒と15V定電圧充電60秒とを150サイクル繰り返した後に、14.5Vの定電圧充電を1時間行い、6週間保存した後に、試験前後の耳部断面積の減少割合を比較している。   The amount of ear corrosion (%) was determined by repeating 25A discharge 60 seconds and 15V constant voltage charge 60 seconds for 150 cycles, followed by 14.5V constant voltage charge for 1 hour and storing for 6 weeks. The rate of decrease in cross-sectional area is compared.

減液量(%)は、48A放電60秒と14.5V充電(最大電流48A)90秒とを500サイクル繰り返した後に、試験前後の電解液重量減量(%)を比較している。   The amount of liquid reduction (%) is a comparison of the weight loss (%) of the electrolyte before and after the test after repeating 500 cycles of 48 A discharge 60 seconds and 14.5 V charge (maximum current 48 A) 90 seconds.

同図の電池A1〜A5は、正極表面層にSbを含む層を有していない。この場合は耳腐食量及び減液量については、正極表面層にSbを含む層と同レベルであるが、サイクル寿命特性の面でかなり劣っていることがわかる。   The batteries A1 to A5 in the figure do not have a layer containing Sb in the positive electrode surface layer. In this case, the ear corrosion amount and the liquid reduction amount are the same level as the layer containing Sb in the positive electrode surface layer, but it is understood that the cycle life characteristics are considerably inferior.

同図の電池B1〜B5は、正極表面層にSbを正極活物質量の0.005wt%含んでいる。この場合においては、耳腐食量及び減液量については電池Aと同レベルである。またサイクル寿命特性については、電池Aよりは若干改善効果が見られるが、充分な効果とは言い難い。   The batteries B1 to B5 in the figure contain Sb in the positive electrode surface layer in an amount of 0.005 wt% of the positive electrode active material amount. In this case, the ear corrosion amount and the liquid reduction amount are the same as those of the battery A. In addition, the cycle life characteristics are slightly improved compared to the battery A, but are not sufficiently effective.

同図の電池C、D、E、Fは正極表面層にSbをそれぞれ正極活物質量の0.01、0.1、0.15、0.2wt%含んでいる。この場合においては、負極活物質中にBiを負極活物質量に対して0.02〜0.10wt%含んでいる電池C2〜C4、D2〜D4、E2〜E4、F2〜F4については、サイクル寿命特性、耳腐食量、減液量の全てのパラメータにおいて良好な結果が得られている。特に、Sb量が正極活物質量の0.01〜0.15wt%かつBi量が負極活物質量の0.02〜0.10wt%含む電池C2〜C4、D2〜D4、E2〜E4は、Sb量が0.2wt%の電池Fに比べて耳腐食量及び減液量の面で優れていることがわかる。しかしながら、負極活物質中のBiが少ないC1、D1、E1、F1については、サイクル寿命特性が充分に延びていない。一方、負極活物質中のBiが多いC5、D5、E5、F5については、サイクル寿命特性は向上しているが、減液量が多くなるので実用的ではない。 Batteries C, D, E, and F in the same figure contain 0.01 wt%, 0.1 wt%, 0.15 wt%, and 0.2 wt% of Sb in the positive electrode surface layer, respectively. In this case, for batteries C2 to C4, D2 to D4, E2 to E4, and F2 to F4 containing 0.02 to 0.10 wt% of Bi in the negative electrode active material, the cycle is Good results have been obtained for all parameters of life characteristics, ear corrosion amount, and liquid reduction amount. In particular, the batteries C2 to C4, D2 to D4, and E2 to E4, in which the Sb amount is 0.01 to 0.15 wt% of the positive electrode active material amount and the Bi amount is 0.02 to 0.10 wt% of the negative electrode active material amount, It can be seen that the amount of ear corrosion and the amount of liquid reduction are superior to those of the battery F having an Sb content of 0.2 wt%. However, the cycle life characteristics are not sufficiently extended for C1, D1, E1, and F1 with a small amount of Bi in the negative electrode active material. On the other hand, although C5, D5, E5, and F5 with a large amount of Bi in the negative electrode active material have improved cycle life characteristics, they are not practical because the amount of liquid reduction increases.

また正極表面層のSb量を正極活物質量の0.25wt%まで増加すると(電池G)、耳腐食量及び減液量の面で極めて悪い結果となることがわかる。   It can also be seen that when the Sb amount of the positive electrode surface layer is increased to 0.25 wt% of the positive electrode active material amount (battery G), extremely bad results are obtained in terms of ear corrosion amount and liquid reduction amount.

さらに正極表面層に適度のSnを含む電池Hを見ると、Snを含まない場合(電池D)に比べて、サイクル寿命特性の面でより良好な結果が得られていることがわかり、このような電池に本発明を用いるとより有効であることがわかる。   Further, when the battery H containing moderate Sn in the positive electrode surface layer is seen, it can be seen that better results are obtained in terms of cycle life characteristics than in the case of not containing Sn (battery D). It can be seen that the present invention is more effective when the present invention is used.

本発明によれば、深放電における正極の劣化と負極における充電受入性を改善することで深放電寿命特性を飛躍的に改善することができ、また、寿命末期においても電解液中の水分減少速度の増加を抑制することでメンテナンスフリー性に優れるとともに、負極耳部における腐食を抑制することによって、長寿命で信頼性の高い鉛蓄電池を提供することができることから、アイドルストップ車や回生ブレーキシステム搭載車等に用いられるような低SOC領域で用いられる頻度が高い自動車用鉛蓄電池において有用である。   According to the present invention, it is possible to dramatically improve the deep discharge life characteristics by improving the deterioration of the positive electrode in the deep discharge and the charge acceptability in the negative electrode, and also the rate of water decrease in the electrolyte at the end of the life. It is possible to provide a lead-acid battery with a long service life and high reliability by suppressing corrosion at the negative electrode ear, and is equipped with an idle stop vehicle and a regenerative brake system. It is useful in a lead acid battery for automobiles that is frequently used in a low SOC region such as that used in cars.

本発明と比較例とを示す特性図Characteristic diagram showing the present invention and a comparative example

Claims (1)

Sbを含まない負極格子と負極活物質とからなる負極板と、Sbを含まない正極格子と正極活物質で構成され正極活物質と接する表面の少なくとも一部に正極活物質量の0.01〜0.15wt%のSbを含む層を有する正極板と、前記正極・負極板間に介挿されたセパレータとを備え、前記正極・負極板の極板面全面が電解液に浸漬されており、負極活物質中にBiを負極活物質量に対して0.02〜0.10wt%含むことを特徴とする鉛蓄電池 A negative electrode plate composed of a negative electrode lattice not containing Sb and a negative electrode active material , a positive electrode active material amount of 0.01 to at least part of a surface composed of a positive electrode lattice not containing Sb and a positive electrode active material and in contact with the positive electrode active material A positive electrode plate having a layer containing 0.15 wt% Sb, and a separator interposed between the positive electrode and the negative electrode plate, and the entire surface of the electrode plate of the positive electrode / negative electrode plate is immersed in an electrolyte solution; A lead-acid battery characterized in that the negative electrode active material contains Bi in an amount of 0.02 to 0.10 wt% with respect to the amount of the negative electrode active material .
JP2004263624A 2004-09-10 2004-09-10 Lead acid battery Expired - Fee Related JP4904675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004263624A JP4904675B2 (en) 2004-09-10 2004-09-10 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004263624A JP4904675B2 (en) 2004-09-10 2004-09-10 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2006079973A JP2006079973A (en) 2006-03-23
JP4904675B2 true JP4904675B2 (en) 2012-03-28

Family

ID=36159245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004263624A Expired - Fee Related JP4904675B2 (en) 2004-09-10 2004-09-10 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4904675B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375049B2 (en) * 2008-11-28 2013-12-25 パナソニック株式会社 Lead acid battery
JP5471039B2 (en) * 2009-05-28 2014-04-16 株式会社Gsユアサ Positive electrode plate for lead acid battery and lead acid battery
CN117296183A (en) * 2021-04-20 2023-12-26 株式会社杰士汤浅国际 Lead storage battery
WO2024071017A1 (en) * 2022-09-27 2024-04-04 株式会社Gsユアサ Lead acid storage battery
WO2024071058A1 (en) * 2022-09-27 2024-04-04 株式会社Gsユアサ Lead storage battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286866A (en) * 1991-03-18 1992-10-12 Matsushita Electric Ind Co Ltd Seal type lead-acid battery
JPH10112324A (en) * 1996-10-08 1998-04-28 Japan Storage Battery Co Ltd Lead-acid battery
JP4374626B2 (en) * 1997-07-03 2009-12-02 株式会社ジーエス・ユアサコーポレーション Lead acid battery
JP3936157B2 (en) * 2001-08-07 2007-06-27 古河電池株式会社 Manufacturing method for sealed lead-acid batteries

Also Published As

Publication number Publication date
JP2006079973A (en) 2006-03-23

Similar Documents

Publication Publication Date Title
JP4960702B2 (en) High performance energy storage device
Yahmadi et al. Failures analysis and improvement lifetime of lead acid battery in different applications
JP2005302395A (en) Lead storage battery
JP2008243489A (en) Lead acid storage battery
JP4904675B2 (en) Lead acid battery
JP4647722B1 (en) Lead acid battery
JP5116331B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP4892827B2 (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP4904686B2 (en) Lead acid battery
JP5044888B2 (en) Liquid lead-acid battery
JP4483308B2 (en) Lead acid battery
JP2006318658A (en) Lead-acid battery
JP2019207786A (en) Lead acid battery
JP4904674B2 (en) Lead acid battery
JP2005302302A (en) Lead storage battery
JP4923399B2 (en) Lead acid battery
JP2005268061A (en) Lead storage cell
JP4742424B2 (en) Control valve type lead acid battery
JP2006164598A (en) Lead acid battery
JP2005353516A (en) Lead-acid storage battery
JP2005327491A (en) Lead-acid battery
JP2006066254A (en) Lead-acid storage battery
JP5375049B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070829

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees