JP4904674B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4904674B2
JP4904674B2 JP2004248061A JP2004248061A JP4904674B2 JP 4904674 B2 JP4904674 B2 JP 4904674B2 JP 2004248061 A JP2004248061 A JP 2004248061A JP 2004248061 A JP2004248061 A JP 2004248061A JP 4904674 B2 JP4904674 B2 JP 4904674B2
Authority
JP
Japan
Prior art keywords
negative electrode
lattice
positive electrode
lead
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004248061A
Other languages
Japanese (ja)
Other versions
JP2006066252A (en
Inventor
一宏 杉江
一彦 下田
真一 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004248061A priority Critical patent/JP4904674B2/en
Priority to TW094110275A priority patent/TWI251365B/en
Priority to US10/585,078 priority patent/US8197967B2/en
Priority to KR1020067015821A priority patent/KR101139665B1/en
Priority to EP05727619.8A priority patent/EP1742289B1/en
Priority to PCT/JP2005/006475 priority patent/WO2005096431A1/en
Publication of JP2006066252A publication Critical patent/JP2006066252A/en
Application granted granted Critical
Publication of JP4904674B2 publication Critical patent/JP4904674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

車両のエンジン始動用やバックアップ電源用といった様々な用途に鉛蓄電池が用いられている。その中でも始動用の鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給する。エンジン始動後、鉛蓄電池はオルタネータによって充電される。ここで、鉛蓄電池の充電と放電とがバランスし、鉛蓄電池のSOC(充電状態)が90〜100%に維持されるよう、オルタネータの出力電圧および出力電流が設定されている。   Lead-acid batteries are used for various purposes such as vehicle engine starting and backup power supply. Among them, the lead acid battery for starting supplies power to various electric / electronic devices mounted on the vehicle as well as supplying power to the cell motor for starting the engine. After the engine is started, the lead storage battery is charged by an alternator. Here, the output voltage and output current of the alternator are set so that charging and discharging of the lead storage battery are balanced and the SOC (charged state) of the lead storage battery is maintained at 90 to 100%.

近年、環境保全の観点から、車両の燃費向上が検討されている。例えば、車両の一時的な停車中にエンジンを停止するアイドルストップ車や、車両の減速を車両の運動エネルギーを電気エネルギーに変換し、この電気エネルギーを蓄電することによって行う回生ブレーキシステムが実用化されている。   In recent years, improvement in fuel efficiency of vehicles has been studied from the viewpoint of environmental conservation. For example, idle-stop cars that stop the engine while the vehicle is temporarily stopped, and regenerative braking systems that convert the vehicle's kinetic energy into electrical energy and store this electrical energy are put into practical use. ing.

前記したような、アイドルストップ車ではエンジン停止中、鉛蓄電池は充電されない一方で、搭載機器へは電力供給をし続ける必要があるため、必然的に放電深度は深くなる。また、回生ブレーキシステムを搭載した車両では、回生時の電気エネルギーを蓄電するために、鉛蓄電池のSOCを従来より低く、50〜90%程度に制御する必要がある。   In the idling stop vehicle as described above, the lead storage battery is not charged while the engine is stopped. On the other hand, it is necessary to continue to supply power to the on-board equipment, which inevitably increases the depth of discharge. In addition, in a vehicle equipped with a regenerative braking system, it is necessary to control the SOC of the lead storage battery to about 50 to 90%, which is lower than before, in order to store electric energy during regeneration.

従って、これらのシステムを搭載した車両において、鉛蓄電池はより深い放電深度、低いSOCで使用されることになり、このような車両に適用するために、鉛蓄電池は深い放電が行われた時の寿命特性が要求される。このような深放電寿命における鉛蓄電池の劣化要因は深放電による負極活物質の充電受入性の低下とこれにより発生する正極の充電不足によって引き起こされる正極活物質の劣化が主であった。   Therefore, in a vehicle equipped with these systems, the lead storage battery is used at a deeper discharge depth and lower SOC, and for application to such a vehicle, the lead storage battery is used when a deep discharge is performed. Life characteristics are required. The main causes of deterioration of the lead-acid battery in such a deep discharge life are deterioration of the positive electrode active material caused by a decrease in charge acceptability of the negative electrode active material due to deep discharge and insufficient charge of the positive electrode generated thereby.

鉛蓄電池の深放電による正極の劣化を抑制するために、例えば特許文献1には鉛−カルシウム−スズ合金の正極格子表面にスズおよびアンチモンを含有する鉛合金層を形成することが示されている。正極格子表面に存在するスズおよびアンチモンは活物質の劣化および活物質−格子界面での高抵抗層の形成を抑制する効果がある。このような特許文献1のような構成は、従来のSOCが90%を超えるような充電状態で用いられる始動用鉛蓄電池において非常に有効であり、寿命特性を飛躍的に改善するものであった。
特開平3−37962号公報
In order to suppress the deterioration of the positive electrode due to the deep discharge of the lead storage battery, for example, Patent Document 1 discloses that a lead alloy layer containing tin and antimony is formed on the surface of the positive electrode lattice of a lead-calcium-tin alloy. . Tin and antimony present on the surface of the positive electrode lattice have an effect of suppressing deterioration of the active material and formation of a high resistance layer at the active material-lattice interface. Such a configuration as disclosed in Patent Document 1 is very effective in a start-up lead-acid battery used in a charged state in which the conventional SOC exceeds 90%, and dramatically improves the life characteristics. .
JP-A-3-37962

しかしながら、前記したようなアイドルストップ車や回生ブレーキシステムを搭載したような車両、すなわち、放電深度がより深く、SOCがより低い状態で用いられる頻度が高い場合、特許文献1のような構成のみの電池では、その寿命特性は十分なものとは言えなかった。   However, if the vehicle is equipped with an idle stop vehicle or a regenerative braking system as described above, that is, when the discharge depth is deeper and the SOC is lower, the configuration as in Patent Document 1 is only used. In the case of a battery, the life characteristics were not sufficient.

このような深放電寿命の劣化現象は、極板群にすべての電解液を含浸させることによって、極板群から遊離した遊離電解液を有さない、制御弁式鉛蓄電池においてはそれほど顕著ではない。このような制御弁式鉛蓄電池では、電池内部のガス吸収反応による充電電流が発生するため、前記したような負極の充電受入性の低下が進行したとしても、正極の充電電気量の低下はそれほど深刻なものではない。ところが、極板群がすべて電解液に浸漬
した、開放式の液式鉛蓄電池では、ガス吸収反応が起こらないため、ガス吸収反応に基づく充電電流は見込めず、負極の充電受入性低下が即、充電電流の低下に直結し、正極における充電電気量の確保がより困難となっていた。
そして、充電電気量の低下によって正極に放電生成物である硫酸鉛が蓄積していく。正極において蓄積した硫酸鉛は、負極に蓄積した硫酸鉛と比較して、充電によって回復し難い。また、正極における充電不足が繰り返して行われた場合、ある時点で正極の容量が急激に低下する。一旦、急激な容量低下が発生した正極では、正極活物質間の結合が損なわれ、充電によっても回復がより困難な状態となる。従って、このような正極の充電不足による容量低下を抑制するために、負極の充電受入性を保持し、充電電気量を確保する必要があった。
負極の充電受入性を確保するために、負極にSb等のPbよりも低い水素過電圧を有する金属を添加することができる。これにより、充電時の負極電位はより貴に移行するので、蓄電池の充電電圧は低下する。従って、一般に鉛蓄電池において用いられる定電圧充電時における充電電流は増加し、正極における充電不足による劣化を抑制することができる。
Such a deterioration phenomenon of the deep discharge life is not so remarkable in a control valve type lead-acid battery which does not have a free electrolytic solution released from the electrode plate group by impregnating the electrode plate group with all the electrolyte solution. . In such a valve-regulated lead-acid battery, a charging current is generated due to a gas absorption reaction inside the battery. Therefore, even if the above-described decrease in the charge acceptability of the negative electrode proceeds, the decrease in the amount of charge in the positive electrode is not much. Not serious. However, in an open-type liquid lead-acid battery in which all electrode plates are immersed in an electrolyte, a gas absorption reaction does not occur, so a charging current based on the gas absorption reaction cannot be expected, and a negative charge acceptability decrease immediately occurs. Directly connected to a decrease in charging current, it was more difficult to secure the amount of charge electricity at the positive electrode.
And the lead sulfate which is a discharge product accumulates on a positive electrode by the fall of the amount of charge electricity. The lead sulfate accumulated in the positive electrode is less likely to recover by charging than the lead sulfate accumulated in the negative electrode. Further, when insufficient charging at the positive electrode is repeatedly performed, the capacity of the positive electrode rapidly decreases at a certain point. In the positive electrode in which a sudden capacity drop has occurred, the bonding between the positive electrode active materials is impaired, and recovery becomes more difficult even after charging. Therefore, in order to suppress the capacity decrease due to insufficient charging of the positive electrode, it is necessary to maintain the charge acceptability of the negative electrode and to secure the amount of charge electricity.
In order to ensure charge acceptability of the negative electrode, a metal having a hydrogen overvoltage lower than Pb, such as Sb, can be added to the negative electrode. Thereby, since the negative electrode potential at the time of charging shifts more preciously, the charging voltage of the storage battery decreases. Therefore, the charging current at the time of constant voltage charging generally used in a lead storage battery increases, and deterioration due to insufficient charging at the positive electrode can be suppressed.

ところが、負極におけるSbの添加は充電受入性を改善するものの、充放電サイクルを繰り返す過程で負極活物質の脱落が促進され、脱落活物質により、正極−負極間が短絡するという、新たな課題が発生した。この負極活物質の脱落現象は、図2に示すような特に負極格子周囲全てに枠骨を有していないエキスパンド格子体において顕著であった。図3に示すような鋳造格子体の場合、負極格子体の全周囲を枠骨で構成することは通常行われていることであるが、鋳造格子体はエキスパンド格子体に比較して生産性が低く、蓄電池の製造原価低減の面では好ましくないという課題があった。   However, although the addition of Sb in the negative electrode improves the charge acceptability, the negative electrode active material is promoted in the process of repeating the charge / discharge cycle, and the new active material has a new problem that the positive electrode and the negative electrode are short-circuited. Occurred. This falling off phenomenon of the negative electrode active material was remarkable particularly in an expanded lattice body having no frame around the negative electrode lattice as shown in FIG. In the case of a cast lattice body as shown in FIG. 3, it is a common practice to form the entire periphery of the negative electrode lattice body with a frame bone, but the cast lattice body is more productive than the expanded lattice body. There was the subject that it was low and was unpreferable at the surface of manufacturing cost reduction of a storage battery.

本発明は、前記したような負極における充電受入性を改善することによって、深放電寿命特性を飛躍的に改善したアイドルストップ車や回生ブレーキシステム搭載車等に好適な鉛蓄電池を提供することにあり、特に負極格子体にエキスパンド格子体の適用を可能とすることにより、かかる鉛蓄電池をより安価に提供することを目的とする。   It is an object of the present invention to provide a lead storage battery suitable for an idle stop vehicle, a vehicle equipped with a regenerative brake system, or the like that has drastically improved the deep discharge life characteristics by improving the charge acceptance in the negative electrode as described above. In particular, an object of the present invention is to provide such a lead storage battery at a lower cost by making it possible to apply an expanded lattice to the negative electrode lattice.

上記目的を達成するために本発明の鉛蓄電池は、アイドルストップ車あるいは回生ブレーキシステム搭載車両に用いられるものであって、Sbを含まない正極格子及び負極格子からなる正極・負極板と、前記負極板を被覆する袋状マットセパレータとを備え、前記正極・負極板の極板面全面が電解液に浸漬されており、負極格子体としてエキスパンド格子体を用い、負極のみ活物質中にSbを1〜30ppm含むことを特徴とするものである。 In order to achieve the above object, a lead storage battery according to the present invention is used in an idle stop vehicle or a vehicle equipped with a regenerative brake system, and comprises a positive electrode / negative electrode plate comprising a positive electrode grid and a negative electrode grid not containing Sb, and the negative electrode And a bag-like mat separator for covering the plate, the entire electrode plate surface of the positive electrode / negative electrode plate is immersed in an electrolyte solution, an expanded lattice is used as the negative electrode lattice, and only 1b of Sb is contained in the active material of the negative electrode. It is characterized by containing -30 ppm.

これにより、アイドルストップ車や回生ブレーキシステム搭載車等に用いられるような低SOC領域で用いられる頻度が高い自動車用鉛蓄電池において、鉛蓄電池の充放電サイクルにおける負極における充電受入性を改善することによって、深放電寿命特性を飛躍的に改善したアイドルストップ車や回生ブレーキシステム搭載車等に好適な鉛蓄電池を提供することができる。   As a result, by improving the charge acceptability at the negative electrode in the charge / discharge cycle of the lead storage battery in the lead storage battery for automobiles that is frequently used in the low SOC region, such as used in idle stop cars and cars equipped with a regenerative brake system, etc. In addition, it is possible to provide a lead-acid battery suitable for an idle stop vehicle, a vehicle equipped with a regenerative brake system, or the like that has drastically improved deep discharge life characteristics.

好ましくは、負極活物質中に含むSbを1〜10ppmとすると、更に好適な鉛蓄電池を提供することができる。   Preferably, when the Sb contained in the negative electrode active material is 1 to 10 ppm, a more preferable lead storage battery can be provided.

本発明によれば、鉛蓄電池の充放電サイクルにおける負極における充電受入性を改善することによって、負極のみならず、正極の充電不足による劣化を抑制することから、寿命特性を顕著に改善する効果を奏し、工業上、極めて有用である。   According to the present invention, by improving the charge acceptance in the negative electrode in the charge / discharge cycle of the lead-acid battery, the deterioration due to insufficient charging of not only the negative electrode but also the positive electrode is suppressed, and thus the effect of remarkably improving the life characteristics is obtained. It is very useful in industry.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。本発明の鉛蓄電池に用いる正極格子体は実質上Sbを含まない鉛合金により作成される。Sbを含まない鉛合金としては、強度および耐腐食性の面でPb−Ca−Sn合金を用いる。正極格子中のCaの量としては格子強度の観点から、0.03〜0.10質量%、Snの量としては格子強度および耐腐食性の観点より、0.60〜1.80質量%が適切である。   The best mode for carrying out the present invention will be described below with reference to the drawings. The positive grid used in the lead storage battery of the present invention is made of a lead alloy substantially free of Sb. As a lead alloy not containing Sb, a Pb—Ca—Sn alloy is used in terms of strength and corrosion resistance. The amount of Ca in the positive electrode lattice is 0.03 to 0.10% by mass from the viewpoint of lattice strength, and the amount of Sn is 0.60 to 1.80% by mass from the viewpoint of lattice strength and corrosion resistance. Is appropriate.

なお、本発明において、正極格子中に、実質上Sbを含まないとは、0.002質量%以下を意味する。この程度の含有量のSbが正極格子に含まれたとしても、負極には移行せず、結果として負極における自己放電量や、電解液の減液といった電池のメンテナンスフリー性能に影響を与えることはない。   In the present invention, the fact that the positive electrode lattice does not substantially contain Sb means 0.002 mass% or less. Even if this amount of Sb is included in the positive electrode grid, it does not migrate to the negative electrode, and as a result, it affects the battery's maintenance-free performance such as the amount of self-discharge in the negative electrode and the reduction of the electrolyte. Absent.

また、格子の作成方法としては、従来から知られている鋳造格子、連続鋳造格子あるいは、上記鉛合金の圧延体にパンチング加工やエキスパンド加工を施した格子体を用いることができる。   In addition, as a method of creating a lattice, a conventionally known cast lattice, continuous cast lattice, or a lattice body obtained by subjecting a rolled body of the lead alloy to punching or expanding can be used.

また、正極の過放電に対する耐久性を考慮し、正極格子表面の一部に2.0〜7.0質量%程度のSnを含むPb−Sn合金層や1.0〜7.0wt%のPb−Sb合金層を形成することもできる。また、上記したような濃度のSnとSbを含むPb−Sb−Sn合金層を形成することも、もちろん可能である。   In consideration of durability against overdischarge of the positive electrode, a Pb—Sn alloy layer containing about 2.0 to 7.0% by mass of Sn on a part of the positive electrode lattice surface and 1.0 to 7.0 wt% of Pb. A -Sb alloy layer can also be formed. It is of course possible to form a Pb—Sb—Sn alloy layer containing Sn and Sb at the concentrations described above.

上記の正極格子に正極活物質ペーストを充填後、熟成乾燥することにより、未化成状態の正極板を得る。なお、正極活物質ペーストとしては、従来から知られているように、鉛酸化物および金属鉛を成分とする鉛粉を水と希硫酸で練合して得ることができる。   After filling the positive electrode grid with the positive electrode active material paste, the positive electrode plate in an unformed state is obtained by aging and drying. As known in the art, the positive electrode active material paste can be obtained by kneading lead powder containing lead oxide and metal lead as components with water and dilute sulfuric acid.

次に、負極格子は母材合金として、正極格子と同様、実質上Sbを含まない鉛合金により作成される。正極格子と同様、Pb−Ca−Sn合金を用いることができるが、負極格子では正極に比較して腐食の影響を受けないので、Snの添加は必ずしも必要ではない。但し、Snは前述のように、格子強度を向上したり、鋳造格子作成時の溶融鉛の湯流れ性を向上するので、0.2質量%〜0.6質量%程度添加してもよい。   Next, the negative electrode lattice is made of a lead alloy substantially free of Sb as a base material alloy, like the positive electrode lattice. As with the positive electrode lattice, a Pb—Ca—Sn alloy can be used. However, since the negative electrode lattice is not affected by corrosion as compared with the positive electrode, the addition of Sn is not always necessary. However, Sn, as described above, may improve the lattice strength or improve the molten lead flowability of the molten lead at the time of forming the cast lattice, so it may be added in an amount of about 0.2% to 0.6% by mass.

なお、負極格子中のCa量は正極と同様、格子強度を確保することを主目的として0.03〜0.10質量%添加する。なお、負極格子におけるSbの存在は直接負極の自己放電と電解液の減液に影響を及ぼすので、0.001質量%以下とする。また、負極格子は、正極格子と同様の方法により、得ることができるエキスパンド格子体を用いることが好ましい。 The amount of Ca in the negative electrode lattice is 0.03 to 0.10% by mass for the main purpose of securing the lattice strength, as in the positive electrode. Note that the presence of Sb in the negative electrode lattice directly affects the self-discharge of the negative electrode and the reduction of the electrolyte solution, so the content is made 0.001% by mass or less. Further, Fukyokukaku child is by the same method as the positive electrode grid, it is preferable to use a Rue Kisupando grid can be obtained.

上述により得た負極格子に負極活物質ペーストを充填し、熟成乾燥して未化成状態の負極板を作成する。   The negative electrode grid obtained as described above is filled with a negative electrode active material paste and aged and dried to prepare an unformed negative electrode plate.

本発明においては、化成後の負極活物質中にSbを1〜30ppm含む。負極活物質中のSbの添加方法として、負極活物質ペーストの練合時に硫酸アンチモン、アンチモン酸塩といった、アンチモン酸化物やその塩といったアンチモン化合物として添加することができる。また、他の方法としては、化成充電工程の以前に希硫酸電解液中に上述のアンチモン化合物を添加し、化成充電を行うことにより、負極活物質にSbを電析させることも極めて有効な方法である。なお、電解液中にSbを添加する場合、10ppm程度のSbが電解液中に残存する。   In this invention, 1-30 ppm of Sb is contained in the negative electrode active material after chemical conversion. As a method for adding Sb in the negative electrode active material, it can be added as an antimony compound such as antimony oxide or its salt such as antimony sulfate or antimonate during kneading of the negative electrode active material paste. In addition, as another method, it is also an extremely effective method to deposit Sb on the negative electrode active material by adding the above-described antimony compound to the dilute sulfuric acid electrolyte before the chemical charging step and performing chemical charging. It is. When Sb is added to the electrolytic solution, about 10 ppm of Sb remains in the electrolytic solution.

この負極板を袋状セパレータに収納し、これらと正極板とを組み合わせて極板群を構成する。なお、セパレータ素材として、ガラス繊維あるいはポリプロピレン繊維等の耐酸性繊維で構成されたマットを用いることができる。負極活物質の脱落をより抑制する目的において、マットセパレータを用いることが好ましい。 This negative electrode plate is accommodated in a bag-shaped separator, and these and the positive electrode plate are combined to constitute an electrode plate group. Incidentally, as a separator material, it is possible to use a mat formed of acid resistant fibers such as glass fibers or polypropylene fibers. In the negative electrode active more purpose of suppressing falling of the material, it is good preferable to use a mat separator.

上記の極板群を所定数用いて本発明の鉛蓄電池を得る。但し、本発明の鉛蓄電池においては、正極板および負極板の反応面は実質上、電解液に浸漬された状態である。   The lead storage battery of the present invention is obtained by using a predetermined number of the above electrode plate groups. However, in the lead storage battery of the present invention, the reaction surfaces of the positive electrode plate and the negative electrode plate are substantially immersed in the electrolytic solution.

なお、本発明の鉛蓄電池を、通常の公称電圧12Vの自動車用鉛蓄電池とする場合、上述の極板群の6個を電槽に収納し、極板群間を直列に接続した後、電槽開口部を蓋で覆うとともに、直列接続において両端に位置する極板群から導出した極柱を蓋にインサート成形された端子ブッシングに挿通し、端子ブッシングと極柱先端を溶接すれば良い。その後、蓋に設けた注液口より希硫酸電解液を注液して、化成充電を行えば良い。   When the lead storage battery of the present invention is an automotive lead storage battery having a normal nominal voltage of 12 V, six of the above-described electrode plate groups are housed in a battery case and the electrode plate groups are connected in series, The tank opening may be covered with a lid, and pole columns derived from the electrode plate groups located at both ends in series connection may be inserted into a terminal bushing that is insert-molded into the lid, and the terminal bushing and the tip of the pole column may be welded. Thereafter, dilute sulfuric acid electrolyte may be injected from a liquid inlet provided on the lid, and chemical conversion charging may be performed.

なお、化成充電後において、本発明の鉛蓄電池は極板群を構成する正極板および負極板の少なくとも充放電反応に寄与する極板表面がすべて電解液に浸漬した構成を有する。   In addition, after chemical conversion, the lead storage battery of the present invention has a configuration in which at least the electrode plate surfaces contributing to the charge / discharge reaction of the positive electrode plate and the negative electrode plate constituting the electrode plate group are all immersed in the electrolytic solution.

上述した実施形態において、負極活物質中におけるSb量、負極格子体、セパレータ等の構成を種々変化させることによって、図1に示す本発明例による電池と比較例による電池を作成した。   In the embodiment described above, the battery according to the example of the present invention and the battery according to the comparative example shown in FIG. 1 were prepared by variously changing the configuration of the amount of Sb in the negative electrode active material, the negative electrode lattice, the separator and the like.

試験電池形式はJIS D5301 12V48Ahに規定する55D23形鉛蓄電池とした。   The test battery type was a 55D23 type lead acid battery defined in JIS D5301 12V48Ah.

寿命サイクル数試験は、40度環境下における1CA放電1分と14.5V定電圧充電(最大充電電流4.8A)90秒とを500サイクル繰り返す毎に300A判定放電を行い、5秒目電圧が8V以下となると寿命と判定することにより行った。   In the life cycle number test, 1A CA discharge in a 40 degree environment and 14.5V constant voltage charge (maximum charge current 4.8A) 90 seconds are repeated every 500 cycles for 300A judgment discharge, and the voltage at the 5th second is It was determined by determining that the life was 8 V or less.

短絡発生率は、サンプル数n=10として、短絡が発生した比率を示している。0%は短絡が1つも発生しなかった時であり、100%は10個全てが短絡した場合である。なお、本発明における短絡は、過充電で発生するような正極板の変形による短絡ではなく、負極活物質の膨張・脱落によるものであった。短絡が発生した場合、セル電圧の低下とともに、短絡部位における活物質の色調の変化となってあらわれた。特に正極活物質は通常、暗茶色を呈しているが、短絡により硫酸鉛化するため短絡部位の周辺が灰白色となっていた。   The short-circuit occurrence rate indicates the rate at which a short-circuit occurred, assuming that the number of samples n = 10. 0% is when no short circuit occurred, and 100% is when all 10 are short-circuited. In addition, the short circuit in the present invention is not a short circuit due to deformation of the positive electrode plate that occurs due to overcharge, but is due to expansion / dropping of the negative electrode active material. When a short circuit occurred, a change in the color tone of the active material at the short circuit site occurred as the cell voltage decreased. In particular, although the positive electrode active material usually has a dark brown color, the area around the short-circuited portion was grayish white because it was converted to lead sulfate by a short-circuit.

同図において、ガラスマット板状は平板状のセパレータである。ガラスマット−U字はセパレータを二つ折りとし中側に−板を配置しており、ガラスマット+U字はセパレータを二つ折りとし中側に+板を配置している。ガラスマット−袋はセパレータを二つ折りとしてU字とし、重ね合された側縁部同士を接合することにより、上部のみが開口した袋を構成し、この袋の中に−板を配置している。ガラスマット+袋は上記の袋の中に+板を配置したものである。ポリエチレンシート−袋もガラスマット−袋と同様である。   In the figure, the glass mat plate shape is a flat plate separator. The glass mat -U has a separator folded in half and a -plate arranged on the inside, and the glass mat + U has a separator folded in half and a + plate placed on the inside. The glass mat-bag is formed in a U-shape by folding the separator in half, and the overlapped side edges are joined together to form a bag with only the upper part opened, and a plate is placed in this bag. . Glass mat + bag is a bag in which a + plate is placed in the above bag. The polyethylene sheet-bag is the same as the glass mat-bag.

袋の作成方法としては、ポリエチレンシートの場合は、熱溶着性素材であるため、加熱しながらメカニカルシールを行う。マットセパレータの場合、ポリプロピレン繊維とした場合はこれも熱溶着性素材であるため、ポリエチレンンシートと同様の方法となる。ガラス繊維の場合、ポリプロピレン樹脂系のホットメルト剤で接合するか、ガラス繊維中に熱溶着性のポリプロピレン繊維を混抄することにより、ポリエチレンシートと同様の方法に
より袋を作成することができる。
As a method for producing the bag, in the case of a polyethylene sheet, since it is a heat-welding material, mechanical sealing is performed while heating. In the case of a mat separator, when a polypropylene fiber is used, since this is also a heat-weldable material, the method is the same as that for a polyethylene sheet. In the case of glass fiber, a bag can be produced by the same method as that for a polyethylene sheet by bonding with a polypropylene resin-based hot melt agent or by mixing heat-weldable polypropylene fiber in glass fiber.

図1において、セパレータ形状が板状であるA−1〜A−5は、Sb量に関わらず、サイクル寿命、短絡発生率ともに明らかに劣っている。また、セパレータ形状が−U字状であるD1〜D5とE−1〜E−5は、A−1〜A−5よりはSbの添加効果が見られるが、充分なサイクル寿命、短絡発生率とはなっていない。   In FIG. 1, A-1 to A-5 whose separator shape is plate-like are clearly inferior in both cycle life and short-circuit occurrence rate regardless of the amount of Sb. In addition, D1 to D5 and E-1 to E-5 whose separator shapes are -U-shaped are more effective in adding Sb than A-1 to A-5, but have a sufficient cycle life and a short-circuit occurrence rate. It is not.

一方、袋状セパレータを用いたB、Cを見ると、Sb量が1〜30ppmの場合においては、サイクル寿命、短絡発生率共に良好な値となっている。特にSb量が1〜10ppmの場合においては、サイクル寿命が4万サイクルを超え、かつ短絡発生率0%という好ましい値が得られている。   On the other hand, when B and C using a bag-shaped separator are seen, when the Sb amount is 1 to 30 ppm, both the cycle life and the short-circuit occurrence rate are good values. In particular, when the Sb content is 1 to 10 ppm, the cycle life exceeds 40,000 cycles, and a preferable value of 0% short-circuit occurrence rate is obtained.

また、負極格子体として鋳造格子を用いたF、Gを見ると、エキスパンド格子体を用いたものと同様の傾向が得られた。すなわち袋状セパレータを用いて、Sb量が1〜30ppmの範囲にあるG−2のみが良好な値を示した。   Further, when F and G using a cast lattice as a negative electrode lattice body were observed, the same tendency as that using an expanded lattice body was obtained. That is, using a bag-shaped separator, only G-2 having a Sb content in the range of 1 to 30 ppm showed a good value.

さらにセパレータとして袋状のポリエチレンシート−袋を用いた場合、サイクル寿命特性がガラスマットを用いた際より劣るものの、Sb量が1〜30ppmの範囲にあれば総じて良好な値を示すことが読み取れる。 Furthermore bag-like polyethylene sheet as a separator - If using the bag, although Ru Riretsu by when the cycle life characteristics using a glass mat, the amount of Sb exhibits generally good value if the range of 1~30ppm Can be read.

以上を総括すると、本発明は、特許請求の範囲に示す通りに、Sbを含まない正極格子及び負極格子からなる正極・負極板と、前記負極板を被覆する袋状マットセパレータとを備え、前記正極・負極板の極板面全面が電解液に浸漬された鉛蓄電池に対して効果があるものであり、負極格子体としてエキスパンド格子体を用い、負極活物質中にSbを1〜30ppm含むことで、生産性が高い鉛蓄電池の寿命特性を顕著に改善する効果を奏する。 Summarizing the above, the present invention comprises, as shown in the claims, a positive electrode / negative electrode plate composed of a positive electrode lattice and a negative electrode lattice not containing Sb, and a bag-like mat separator covering the negative electrode plate, It has an effect on a lead storage battery in which the entire surface of the positive electrode / negative electrode plate is immersed in an electrolytic solution, uses an expanded lattice as the negative electrode lattice , and contains 1 to 30 ppm of Sb in the negative electrode active material. in an effect that significantly improves the life characteristics of high productivity lead-acid battery.

本発明の鉛蓄電池によれば、鉛蓄電池の充放電サイクルにおける負極の充電受入性を改善することによって、寿命特性を顕著に改善する効果を奏することから、工業上極めて有用であり、高信頼性を求められるアイドルストップ車や回生ブレーキシステム搭載車等に好適である。   According to the lead acid battery of the present invention, it has an effect of remarkably improving the life characteristics by improving the charge acceptability of the negative electrode in the charge / discharge cycle of the lead acid battery, so that it is extremely useful industrially and highly reliable. This is suitable for an idle stop vehicle or a vehicle equipped with a regenerative brake system.

本発明と比較例とを示す特性図Characteristic diagram showing the present invention and a comparative example 一般的なエキスパンドを示す図Diagram showing a typical expansion 一般的な鋳造格子を示す図Diagram showing a typical casting grid

Claims (2)

Sbを含まない正極格子及び負極格子からなる正極・負極板と、前記負極板を被覆する袋状マットセパレータとを備え、前記正極・負極板の極板面全面が電解液に浸漬されており、負極格子体としてエキスパンド格子体を用い、負極のみ活物質中にSbを1〜30ppm含むことを特徴とする、アイドルストップ車あるいは回生ブレーキシステム搭載車両に用いられる鉛蓄電池。 A positive electrode / negative electrode plate composed of a positive electrode lattice and a negative electrode lattice not containing Sb, and a bag-like mat separator covering the negative electrode plate, and the entire electrode plate surface of the positive electrode / negative electrode plate is immersed in an electrolyte; A lead-acid battery for use in an idle stop vehicle or a vehicle equipped with a regenerative brake system , wherein an expanded lattice is used as the negative electrode lattice, and only the negative electrode contains 1 to 30 ppm of Sb in the active material. 負極活物質中に含むSbを1〜10ppmとすることを特徴とする請求項1記載の鉛蓄電池。   The lead acid battery according to claim 1, wherein Sb contained in the negative electrode active material is 1 to 10 ppm.
JP2004248061A 2004-04-02 2004-08-27 Lead acid battery Expired - Fee Related JP4904674B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004248061A JP4904674B2 (en) 2004-08-27 2004-08-27 Lead acid battery
TW094110275A TWI251365B (en) 2004-04-02 2005-03-31 Lead-acid battery
US10/585,078 US8197967B2 (en) 2004-04-02 2005-04-01 Long life and low corrosion lead storage battery with a separator including silica and oil
KR1020067015821A KR101139665B1 (en) 2004-04-02 2005-04-01 Lead storage battery
EP05727619.8A EP1742289B1 (en) 2004-04-02 2005-04-01 Lead storage battery
PCT/JP2005/006475 WO2005096431A1 (en) 2004-04-02 2005-04-01 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004248061A JP4904674B2 (en) 2004-08-27 2004-08-27 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2006066252A JP2006066252A (en) 2006-03-09
JP4904674B2 true JP4904674B2 (en) 2012-03-28

Family

ID=36112559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004248061A Expired - Fee Related JP4904674B2 (en) 2004-04-02 2004-08-27 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4904674B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618008B2 (en) * 2011-09-01 2014-11-05 新神戸電機株式会社 Lead acid battery
JP7459669B2 (en) 2020-06-05 2024-04-02 株式会社Gsユアサ Lead-acid battery
CN114256515A (en) * 2021-11-02 2022-03-29 浙江长兴绿色电池科技有限公司 Research method for dynamic charge acceptance of exhaust type start-stop lead-acid storage battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128465A (en) * 1984-11-26 1986-06-16 Shin Kobe Electric Mach Co Ltd Electrode plate for lead-acid battery
JP3876931B2 (en) * 1996-04-11 2007-02-07 株式会社ジーエス・ユアサコーポレーション Lead acid battery
JP2000195541A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Sealed lead-acid storage battery
JP2001229959A (en) * 2000-02-21 2001-08-24 Shin Kobe Electric Mach Co Ltd Lead-acid storage battery
JP4140277B2 (en) * 2002-05-21 2008-08-27 松下電器産業株式会社 Control valve type lead acid battery
JP2003346913A (en) * 2002-05-24 2003-12-05 Japan Storage Battery Co Ltd Control method for lead storage battery
JP4501330B2 (en) * 2002-05-24 2010-07-14 パナソニック株式会社 Lead acid battery
JP2004178834A (en) * 2002-11-25 2004-06-24 Shin Kobe Electric Mach Co Ltd Lead-acid battery

Also Published As

Publication number Publication date
JP2006066252A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
JP4953600B2 (en) Lead acid battery
EP1742289B1 (en) Lead storage battery
WO2014162674A1 (en) Lead acid storage battery
EP1737062B1 (en) Lead storage battery
JP2008243493A (en) Lead acid storage battery
JP2005302395A (en) Lead storage battery
WO2013114822A1 (en) Lead-acid battery
JP2004281197A (en) Lead acid storage battery
JP4904674B2 (en) Lead acid battery
JP5116331B2 (en) Lead acid battery
JP5573785B2 (en) Lead acid battery
JP2002164080A (en) Lead-acid battery
JP4904675B2 (en) Lead acid battery
JP5044888B2 (en) Liquid lead-acid battery
JP4529707B2 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP4904686B2 (en) Lead acid battery
JP4470381B2 (en) Lead acid battery
JP4857894B2 (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP2021111445A (en) Lead-acid battery
JP2019207786A (en) Lead acid battery
JP4483308B2 (en) Lead acid battery
JP2011159551A (en) Lead-acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070912

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees