JP4501330B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4501330B2
JP4501330B2 JP2002150321A JP2002150321A JP4501330B2 JP 4501330 B2 JP4501330 B2 JP 4501330B2 JP 2002150321 A JP2002150321 A JP 2002150321A JP 2002150321 A JP2002150321 A JP 2002150321A JP 4501330 B2 JP4501330 B2 JP 4501330B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
lattice
lead
shelf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002150321A
Other languages
Japanese (ja)
Other versions
JP2003346888A (en
Inventor
浩一 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002150321A priority Critical patent/JP4501330B2/en
Publication of JP2003346888A publication Critical patent/JP2003346888A/en
Application granted granted Critical
Publication of JP4501330B2 publication Critical patent/JP4501330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に正極を構成する部材にはアンチモン(Sb)を含まない鉛蓄電池に関するものである。
【0002】
【従来の技術】
従来の鉛蓄電池の正極格子体にはPb−Sb合金が用いられていたが、減液が多く保存特性に優れないなどの問題があった。この理由として、鉛蓄電池を充放電すると、徐々に正極格子体に含まれているSbが溶出して負極に析出し、析出したSbによって負極における水素過電圧が低下して水素ガスが発生しやすくなることが原因である。さらに電池の充放電を継続して行うと、すると負極上のSb析出量が増加し、さらに減液が進行する。減液が進行しても補水を怠った場合には、負極棚および負極耳部が電解液から露出する。一旦これらの負極部材が電解液から露出すると急激に腐食が進行し、短寿命に至る問題があった。
【0003】
【発明が解決しようとする課題】
近年、このような腐食とこれによる短寿命を抑制するために、正極格子体には実質上Sbを含まないPb−Ca−Sn合金を用いた、優れたメンテナンスフリー性を持つ電池が一般化している。しかし、正極板を集合溶接する正極棚や棚から導出した正極柱もしくは正極接続体にはSbを含むPb−Sb合金を用いることが一般的に行われてきた。
【0004】
正極格子体にSbを含まないPb合金を用いた蓄電池はPb−Sb合金を用いた蓄電池に比較して大幅に減液量は低下するものの、蓄電池の寿命末期において正極の棚、極柱および接続体に含まれるSbが負極耳部を中心とする部分に偏析する傾向があることがわかってきた。このようなSbが偏析した負極耳部が電解液から露出した場合、負極耳部の表面で腐食が進行して厚みが薄くなることによって、耳部の強度が低下してしまうという課題があった。
【0005】
前記した課題を解決するために、本発明の請求項1の発明は格子耳部と格子骨部からなる負極格子を備えた負極板と格子耳部と格子骨部からなる正極格子を備えた正極板を有し、同極性の極板耳部を集合溶接する棚およびこの棚より導出された極柱もしくは接続体を備えた鉛蓄電池において、正極格子と正極棚と正極極柱および正極接続体で構成される正極部材は実質上Sbを含有しない鉛もしくは鉛合金からなり、負極格子と負極棚と負極極柱および負極接続体で構成される負極部材のうち負極格子骨部を除く部位は実質上Sbを含有しない鉛もしくは鉛合金からなり、負極格子骨部はSbを含み、前記Sbの負極活物質量に対する含有量が0.001〜0.1質量%であるとともに、正極格子の正極活物質と接する表面の少なくとも一部に、Snを2%以上含有する鉛合金層を備えることを特徴とする鉛蓄電池を示すものである。
【0007】
【発明の実施の形態】
本発明の実施の形態による鉛蓄電池を図面を用いて説明する。
【0008】
図1は本発明の鉛蓄電池を構成する極板群1を示す破載図である。正極板(図示せず)は正極耳部1と正極格子骨(図示せず)とで構成される正極格子体に活物質が充填された構成を有している。この正極板と負極板2がセパレータ3を介して互いに対向している。
【0009】
負極板2は負極耳部5と負極格子骨4とで構成される負極格子体6を有している。同極性の耳部同士を集合溶接してそれぞれ正極棚8および負極棚7が形成され、それぞれの棚に極柱もしくは接続体が形成される。図1に示した例では正極、負極ともにそれぞれ棚に正極接続体8および負極接続体9を設けた例を示している。
【0010】
本発明において正極耳部1、正極格子骨、正極棚8、正極接続体8および正極極柱(これらを総称して正極部材)は実質上Sbを含まないPbもしくはPb合金で構成する。ただし、数ppm程度の不純物として含まれるSbは除く。正極においては酸化腐食が進行するため、Pb−Sn合金を用いることが好ましい。
【0011】
一方、負極に関しては負極耳部5、負極棚7、負極接続体9および負極極柱を正極部材と同様、実質上Sbを含まないPbもしくはPb合金で構成する。ただし、負極格子骨4にSbを含むよう構成する。負極格子骨にSbを含有させる場合、特にメンテナンスフリー電池において負極格子体6をPb−Ca合金で構成する場合にはPb−Ca合金表面にSbを含む層、具体的にはPb−Sb合金層を配置する。
【0012】
本発明においては負極格子骨4に添加するSb量を負極活物質量に対して0.001質量%〜0.1質量%の範囲に限定する。このような極板群を用い、定法に従って組み立てることにより本発明の鉛蓄電池を得ることができる。
【0013】
さらに、正極格子体の正極活物質と接触する表面の少なくとも一部に2質量%以上のSnを含むPb−Sn合金層を配置する。
【0014】
この本発明の構成による電池は、上述した課題である寿命サイクル時の減液の増加を抑制して、かつ負極における腐食を解消し、優れた寿命性能を寄与するものである。
【0015】
【実施例】
本発明例および従来例による電池を作成し、過充電試験および過放電試験を行うことによって減液量、負極耳部の腐食の有無および充電受け入れ性の評価を行った。
【0016】
本発明の鉛蓄電池の正極格子体にはPb−Ca−Sn合金を用い、合金組成はPb−0.07質量%Ca−1.3質量%Snである。この合金(シート1)を段階的に圧延した後にエキスパンド加工を行って格子体を形成し、活物質ペーストを充填して正極板(P1)を作製した。また、シート1に厚さ約0.2mmのPb−7質量%Sn合金(シート2)を重ね合わせて段階的に圧延し、以後同様の過程を経て正極板(P2)を作製した。一方、負極板はPb−0.07質量%Ca−0.25質量%Sn合金(シート3)を、正極と同様に圧延した後エキスパンド加工を経て格子体を作成した。その後、活物質量に対してSbを0.010質量%添加した活物質ペーストを格子体に充填して負極板(N1)を得た。また、シート4に厚さ約0.2mmのPb−2質量%Sb合金(シート4)を重ね合わせて段階的に圧延し、以後同様の過程を経て負極板(N2)を作製した。セパレータには、厚さ約0.3mmの微孔性ポリエチレン製シートを用いて、正極板を包み込む形の袋状セパレータを作製した。
【0017】
上記の2種類の正極板と2種類の負極板を用いて、1セル当たり正極板5枚と負極板6枚から成る極板群を用いて55D23形の自動車用鉛蓄電池(12V48Ah)を作製した。また、極板群を形成する際、正極における極板を接続する棚及びセル間を接合する接続体にはSbを含有しない合金を用いて正極全体にSbを含有しない構成とした。
【0018】
また、比較のために(従来の製造法による)、シート1に厚さ約0.2mmのPb−7質量%Sb合金(シート5)を重ね合わせて段階的に圧延し、以後同様の過程を経て正極板を作製した(P0)。負極板はシート3を段階的に圧延して同様の過程を経て作製した(N0)。この格子体を用いた構成の電池を従来例の電池とした。詳細な電池構成の条件を表1に示す。
【0019】
【表1】

Figure 0004501330
【0020】
≪試験1≫
各々異なる構成の電池について、課題である減液特性と負極における腐食を評価するために次のようなパターンの寿命試験を実施した。この寿命試験は過充電傾向の使われ方を想定した試験パターンであり、75℃雰囲気中で13.8V定電圧充電を連続で120時間行うサイクルを繰り返した。また、減液が進行して極板上部が電解液から露出した状態を想定するために、電解液を下限水準に減らした状態で試験を行った。その後、負極耳表面に生成した腐食生成物を除去、負極耳厚みの測定を行い、初期状態の耳厚みに対する試験終了後の耳厚みの比率を百分率で求めた。
【0021】
この試験結果を表1に示す。表内の寿命試験評価は、従来の構成からなる電池Aの減液量及び腐食度を100として各々の構成からなる電池を比較した。従来例の電池Aは、正極において図1に示すような箇所の接続体、棚、格子体表面にSbを含有し、負極にはSbを含まない構成である。これに対してB1〜C2は各電池とも正極にSbを含まず、負極にSbを含有する構成の電池である。従来例の電池Aに対してB1〜C2は減液量が約7〜8割程度と少ない結果であった。特に従来例Aは、初期における減液は少なかったものの、サイクルが進行すると徐々に減液が増大する傾向が見られた。これは、サイクルが進行するに従って正極に含有しているSbが溶出して負極に析出し、水素過電圧が低下して水素ガスが発生することに起因していると考えられる。初期は正極から負極へのSb析出量も少ないが、サイクル進行に伴い徐々にSb析出量も増加して減液が増大したと考えられる。これに対してB1〜C2は、正極のSbを排除してあらかじめ負極に微量なSbを付与することで、サイクル進行に伴う減液の増大を解消し適度な減液量に抑制している結果と想定できる。また、B1とB2においてはややB1の減液量が多かった。この理由は明確ではないが、B1は負極活物質上にSbが存在しているために、Sb上での反応表面積がB2より広範囲であることが考えられる。
【0022】
また、従来例Aは負極棚部及び耳部において腐食の進行が見られたが、B1〜C2においては全く腐食が見られず初期と同じ状態であった。この理由としては、従来例Aの正極に含有されているSbが起因していると推察できる。前述したように正極のSbは、サイクル進行に伴って溶出して負極に析出するが、極板内でも反応利用度が高いと考えられる上部に多く析出する。特に活物質で覆われていない棚部や極板耳部及び上枠骨にSbが偏析すると推定される(図2に負極板の耳部及び上枠骨を示す)。サイクル進行に従って、Sbが偏析した箇所は露出して、表面は薄い液膜に覆われてpHが増大すると考えられる。その後、pH増大によってPbの溶解が起こりやすくなり、Sb上では水素ガスが発生し、Pb上ではPbが溶解して硫酸鉛が生成する局部電池を形成して、腐食が進行していると推察される。これに対して、B1〜C2は正極にSbを含んでいないために、電解液へ溶出して負極上部に析出することもなく、電解液が減少して負極上部が露出しても局部電池を形成しないために腐食が進行しなかったと考えられ、腐食を防止しているといえる。また、B1〜C2において腐食に差異は見られなかった。このことからも腐食は正極のSbが溶出して負極上部へ析出していることが原因であることが言え、正極にSbが含有されてない電池では差が見られなかったと考えられる。
【0023】
≪試験2≫
次に、前記した過充電傾向を想定した寿命試験とは別に過放電放置を想定した試験を行った。この試験条件は、9.6Aで5時間定電流放電を実施した後に、40℃雰囲気中で10Wの負荷を接続して14日間放電し、負荷を取り外して開路状態にして引き続き40℃雰囲気中で14日間放置した。その後、15.0Vで4時間回復充電を実施した後、5時間率放電によって容量を評価した。この試験結果を(表1)に示す。表内の試験評価は、従来の構成からなる従来例Aの回復容量を100として各々の構成からなる電池を比較した。従来例Aと比較して、B1とB2は著しく容量が低下していた。ところで、従来例Aの正極格子表面のSb層は、先に述べてきた充電受け入れ性を向上させる効果と共に、過放電放置後に格子体と活物質との界面に生成する不導態膜の影響を緩和する効果が知られている。よって、B1とB2は過放電放置によって生成した界面の不導体膜の影響を受け、充電しても回復できずに容量が低下したと考えられる。これに対して、C1と本発明例C2は従来例Aと同等の容量が得られた。これは、C1と本発明例C2における正極格子体表面のSn層が従来例AのSb層と同様の効果が考えられ、生成した界面の不導体膜の影響を緩和していることが推定できる
【0024】
以上のように、本発明の鉛蓄電池は、課題である負極棚部および負極耳部の腐食を抑制することができる。また、過放電放置の場合も想定して、正極格子体表面の少なくとも一部に、Snを2質量%以上含有する鉛合金層を形成する正極板を用いることにより、過放電放置後の充電受入れ性を改善できる。
【0025】
以上、本発明の鉛蓄電池は、負極棚部および負極耳部の腐食が抑制できる。さらに、正極格子体表面の少なくとも一部に、Snを2質量%以上含有する鉛合金層を形成する正極板を用いるため、本発明の鉛蓄電池は過放電した場合も容量低下を防ぎ安定した特性を得ることができる。
【図面の簡単な説明】
【図1】極板群構成を示す一部破載図
【符号の説明】
1 極板群
2 正極耳部
3 セパレータ
4 負極格子骨
5 負極耳部
6 負極格子体
7 負極棚
8 正極接続体
9 負極接続体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-acid battery that does not contain antimony (Sb) in the member constituting the positive electrode.
[0002]
[Prior art]
A Pb—Sb alloy was used for the positive electrode grid of a conventional lead storage battery, but there were problems such as a large amount of liquid reduction and poor storage characteristics. The reason for this is that when the lead-acid battery is charged and discharged, Sb contained in the positive electrode grid gradually elutes and precipitates on the negative electrode, and the hydrogen overvoltage at the negative electrode is lowered by the deposited Sb, and hydrogen gas is easily generated. Is the cause. If the battery is continuously charged and discharged, the amount of Sb deposited on the negative electrode increases, and the liquid reduction proceeds. If water replenishment is neglected even if the liquid reduction proceeds, the negative electrode shelf and the negative electrode ear are exposed from the electrolyte. Once these negative electrode members are exposed from the electrolyte, there is a problem that the corrosion rapidly proceeds and the life is shortened.
[0003]
[Problems to be solved by the invention]
In recent years, in order to suppress such corrosion and the short life due thereto, a battery having an excellent maintenance-free property using a Pb—Ca—Sn alloy containing substantially no Sb in the positive electrode grid has been generalized. Yes. However, it has been generally performed to use a Pb—Sb alloy containing Sb for the positive electrode shelf for collective welding of the positive electrode plates, the positive electrode column derived from the shelf, or the positive electrode connector.
[0004]
The storage battery using a Pb alloy that does not contain Sb in the positive electrode lattice body has a significantly reduced liquid reduction compared to the storage battery using the Pb-Sb alloy, but at the end of the storage battery life, the positive electrode shelf, the pole column, and the connection It has been found that Sb contained in the body tends to segregate in a portion centering on the negative electrode ear. When the negative electrode ear portion where such Sb is segregated is exposed from the electrolytic solution, there is a problem that the strength of the ear portion is reduced due to the progress of corrosion on the surface of the negative electrode ear portion to reduce the thickness. .
[0005]
In order to solve the above-described problems, the invention of claim 1 of the present invention is a positive electrode including a negative electrode plate including a negative electrode lattice including a lattice ear portion and a lattice bone portion, and a positive electrode lattice including a lattice ear portion and a lattice bone portion. In a lead-acid battery having a plate and a shelf for collective welding of electrode plate ears of the same polarity and a pole column or connection body derived from this shelf, a positive grid, a positive shelf, a positive pole column, and a positive electrode connection body The constructed positive electrode member is made of lead or a lead alloy substantially containing no Sb, and the negative electrode member composed of the negative electrode lattice, the negative electrode shelf, the negative electrode pole column, and the negative electrode connecting body is substantially free from the portion of the negative electrode lattice. It is made of lead or lead alloy not containing Sb, the negative electrode lattice bone part contains Sb, the content of the Sb with respect to the negative electrode active material amount is 0.001 to 0.1% by mass, and the positive electrode active material of the positive electrode lattice At least part of the surface in contact with Shows the lead-acid battery, characterized in that it comprises a lead alloy layer containing Sn 2% or more.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The lead acid battery by embodiment of this invention is demonstrated using drawing.
[0008]
FIG. 1 is a broken view showing an electrode plate group 1 constituting the lead storage battery of the present invention. The positive electrode plate (not shown) has a configuration in which an active material is filled in a positive electrode lattice body composed of a positive electrode ear 1 and a positive electrode lattice bone (not shown). The positive electrode plate and the negative electrode plate 2 face each other with the separator 3 interposed therebetween.
[0009]
The negative electrode plate 2 has a negative electrode lattice body 6 composed of a negative electrode ear portion 5 and a negative electrode lattice bone 4. The positive polarity shelves 8 and the negative electrode shelves 7 are formed by collective welding of the ears of the same polarity, and pole poles or connectors are formed on the respective shelves. In the example shown in FIG. 1, the positive electrode connecting body 8 and the negative electrode connecting body 9 are provided on the shelves for both the positive electrode and the negative electrode.
[0010]
In the present invention, the positive electrode ear 1, the positive electrode lattice bone, the positive electrode shelf 8, the positive electrode connector 8, and the positive electrode pole column (collectively referred to as a positive electrode member) are made of Pb or Pb alloy substantially free of Sb. However, Sb contained as an impurity of about several ppm is excluded. Since oxidative corrosion proceeds in the positive electrode, it is preferable to use a Pb—Sn alloy.
[0011]
On the other hand, with respect to the negative electrode, the negative electrode ear 5, the negative electrode shelf 7, the negative electrode connector 9, and the negative electrode pole column are made of Pb or Pb alloy substantially free of Sb, like the positive electrode member. However, the negative electrode lattice bone 4 is configured to include Sb . When Sb is contained in the negative electrode lattice bone, particularly in the case of a maintenance-free battery, when the negative electrode lattice body 6 is made of a Pb—Ca alloy, a layer containing Sb on the surface of the Pb—Ca alloy, specifically a Pb—Sb alloy layer Place.
[0012]
In the present invention, the amount of Sb added to the negative electrode lattice 4 is limited to a range of 0.001% by mass to 0.1% by mass with respect to the amount of the negative electrode active material. The lead storage battery of the present invention can be obtained by assembling according to a conventional method using such an electrode plate group.
[0013]
Furthermore, a Pb—Sn alloy layer containing 2% by mass or more of Sn is disposed on at least a part of the surface of the positive electrode lattice body that contacts the positive electrode active material .
[0014]
The battery according to the configuration of the present invention suppresses the increase in liquid reduction during the life cycle, which is the problem described above, and eliminates corrosion in the negative electrode, thereby contributing to excellent life performance.
[0015]
【Example】
The batteries according to the examples of the present invention and the conventional examples were prepared, and the amount of liquid reduction, the presence or absence of corrosion of the negative electrode ears, and the charge acceptance were evaluated by performing an overcharge test and an overdischarge test.
[0016]
A Pb—Ca—Sn alloy is used for the positive electrode lattice of the lead storage battery of the present invention, and the alloy composition is Pb—0.07 mass% Ca—1.3 mass% Sn. This alloy (sheet 1) was rolled in stages and then expanded to form a lattice, and filled with an active material paste to produce a positive electrode plate (P1). Further, a Pb-7 mass% Sn alloy (sheet 2) having a thickness of about 0.2 mm was superposed on the sheet 1 and rolled in a stepwise manner, and thereafter, a positive electrode plate (P2) was produced through the same process. On the other hand, the negative electrode plate was rolled with a Pb-0.07 mass% Ca-0.25 mass% Sn alloy (sheet 3) in the same manner as the positive electrode and then expanded to form a lattice. Thereafter, an active material paste to which 0.010% by mass of Sb was added with respect to the amount of the active material was filled in the lattice body to obtain a negative electrode plate (N1). Further, a Pb-2 mass% Sb alloy (sheet 4) having a thickness of about 0.2 mm was superposed on the sheet 4 and rolled stepwise, and thereafter the negative electrode plate (N2) was produced through the same process. As a separator, a microporous polyethylene sheet having a thickness of about 0.3 mm was used to produce a bag-shaped separator that encloses the positive electrode plate.
[0017]
Using the above-mentioned two types of positive electrode plates and two types of negative electrode plates, a 55D23 type automotive lead acid battery (12V48Ah) was prepared using an electrode plate group consisting of 5 positive plates and 6 negative plates per cell. . Further, when forming the electrode plate group, the whole positive electrode was made to contain no Sb by using an alloy containing no Sb for the connecting body that connects the cells and the shelves connecting the electrode plates in the positive electrode.
[0018]
For comparison (according to a conventional manufacturing method), a Pb-7 mass% Sb alloy (sheet 5) having a thickness of about 0.2 mm is superimposed on the sheet 1 and rolled stepwise, and the same process is performed thereafter. After that, a positive electrode plate was produced (P0). The negative electrode plate was produced through a similar process by rolling the sheet 3 stepwise (N0). A battery having a structure using this lattice was used as a conventional battery. Table 1 shows the detailed battery configuration conditions.
[0019]
[Table 1]
Figure 0004501330
[0020]
≪Test 1≫
Each battery having a different configuration was subjected to a life test with the following pattern in order to evaluate the liquid reduction characteristics and the corrosion of the negative electrode, which are problems. This life test is a test pattern that assumes how the overcharge tendency is used, and a cycle in which 13.8 V constant voltage charge is continuously performed for 120 hours in a 75 ° C. atmosphere was repeated. Moreover, in order to assume the state where the liquid reduction progressed and the upper part of the electrode plate was exposed from the electrolytic solution, the test was performed with the electrolytic solution reduced to the lower limit level. Then, the corrosion product produced | generated on the negative electrode ear surface was removed, the negative electrode ear thickness was measured, and the ratio of the ear thickness after completion | finish of a test with respect to the ear thickness of an initial state was calculated | required in percentage.
[0021]
The test results are shown in Table 1. The life test evaluation in the table was made by comparing the batteries having the respective configurations with the liquid reduction amount and the corrosion degree of the battery A having the conventional configuration being 100. The battery A of the conventional example has a configuration in which Sb is contained on the surface of the connecting body, the shelf, and the lattice body in the positive electrode as shown in FIG. 1, and the negative electrode does not contain Sb. On the other hand , B1 to C2 are batteries each having a configuration in which Sb is not included in the positive electrode and Sb is included in the negative electrode. Compared to the battery A of the conventional example, B1 to C2 had a small liquid reduction amount of about 70 to 80%. In particular, in the conventional example A, although the liquid reduction at the initial stage was small, there was a tendency that the liquid reduction gradually increased as the cycle progressed. This is considered to be caused by the fact that Sb contained in the positive electrode is eluted and deposited on the negative electrode as the cycle progresses, and the hydrogen overvoltage is reduced to generate hydrogen gas. Initially, the amount of Sb deposited from the positive electrode to the negative electrode is small, but it is considered that the amount of Sb deposited gradually increased as the cycle progressed, and the liquid reduction increased. On the other hand , B1 to C2 eliminates the positive electrode Sb and gives a small amount of Sb to the negative electrode in advance, thereby eliminating the increase in liquid reduction accompanying the progress of the cycle and suppressing it to an appropriate liquid reduction amount. Can be assumed. Moreover, in B1 and B2, the amount of liquid reduction of B1 was somewhat large. The reason for this is not clear, but since Bb has Sb on the negative electrode active material, it is considered that the reaction surface area on Sb is wider than that of B2.
[0022]
Further, in the conventional example A, the progress of corrosion was observed in the negative electrode shelf portion and the ear portion, but in B1 to C2 , no corrosion was observed and the state was the same as the initial state. As this reason, it can be inferred that Sb contained in the positive electrode of Conventional Example A is caused. As described above, Sb of the positive electrode elutes with the progress of the cycle and deposits on the negative electrode. However, a large amount of Sb is deposited on the upper portion of the electrode plate, which is considered to have high reaction utilization. In particular, it is estimated that Sb segregates on the shelf portion, the electrode plate ear portion, and the upper frame bone that are not covered with the active material (the ear portion and the upper frame bone of the negative electrode plate are shown in FIG. 2). As the cycle progresses, the portion where Sb segregates is exposed, and the surface is covered with a thin liquid film, which is thought to increase the pH. Thereafter, Pb is easily dissolved by pH increase, and hydrogen gas is generated on Sb, and Pb dissolves on Pb to form a local battery in which lead sulfate is generated. Is done. On the other hand, since B1 to C2 do not contain Sb in the positive electrode, it does not elute into the electrolyte and deposit on the upper part of the negative electrode. It is considered that the corrosion did not proceed because it was not formed, and it can be said that the corrosion was prevented. Further , no difference was observed in corrosion between B1 and C2 . From this, it can be said that the corrosion is caused by the elution of Sb of the positive electrode and precipitating on the upper part of the negative electrode, and it is considered that no difference was observed in the batteries in which the positive electrode did not contain Sb.
[0023]
≪Test 2≫
Next, in addition to the above-described life test assuming an overcharge tendency, a test assuming overdischarge was performed. The test conditions were as follows: after conducting a constant current discharge at 9.6 A for 5 hours, a 10 W load was connected in a 40 ° C. atmosphere and discharged for 14 days; Left for 14 days. Then, after carrying out recovery charging at 15.0 V for 4 hours, the capacity was evaluated by 5-hour rate discharge. The test results are shown in (Table 1). In the test evaluation in the table, the recovery capacity of the conventional example A having the conventional configuration was set to 100, and the batteries having the respective configurations were compared. Compared to Conventional Example A, the capacities of B1 and B2 were significantly reduced. By the way, the Sb layer on the surface of the positive electrode lattice in Conventional Example A has the effect of improving the charge acceptability described above and the influence of the non-conductive film generated at the interface between the lattice body and the active material after being left overdischarged. The mitigating effect is known. Therefore, it is considered that B1 and B2 are affected by the non-conductive film at the interface generated by being left overdischarged, and cannot be recovered even after charging, and the capacity is reduced. On the other hand, C1 and Example C2 of the present invention have the same capacity as Conventional Example A. This is because the Sn layer on the surface of the positive electrode grid in C1 and Invention Example C2 is considered to have the same effect as the Sb layer in Conventional Example A, and it can be estimated that the influence of the generated non-conductive film on the interface is mitigated. [0024]
As described above, the lead storage battery of the present invention can suppress the corrosion of the negative electrode shelf and the negative electrode ear , which are problems . In addition, assuming the case of overdischarge leaving, by using a positive electrode plate that forms a lead alloy layer containing 2 mass% or more of Sn on at least a part of the surface of the positive electrode grid body, accepting charge after being left overdischarged. Can improve sex.
[0025]
As mentioned above, the lead acid battery of this invention can suppress corrosion of a negative electrode shelf part and a negative electrode ear | edge part. Furthermore, since the positive electrode plate which forms the lead alloy layer containing 2% by mass or more of Sn on at least a part of the surface of the positive electrode lattice body is used, the lead storage battery of the present invention has stable characteristics that prevent a decrease in capacity even when overdischarged. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a partially broken view showing the configuration of an electrode plate group.
DESCRIPTION OF SYMBOLS 1 Electrode plate group 2 Positive electrode ear | edge part 3 Separator 4 Negative electrode lattice bone 5 Negative electrode ear | edge part 6 Negative electrode lattice body 7 Negative electrode shelf 8 Positive electrode connection body 9 Negative electrode connection body

Claims (1)

格子耳部と格子骨部からなる負極格子を備えた負極板と格子耳部と格子骨部からなる正極格子を備えた正極板を有し、同極性の極板耳部を集合溶接する棚およびこの棚より導出された極柱もしくは接続体を備えた鉛蓄電池において、正極格子と正極棚と正極極柱および正極接続体で構成される正極部材は実質上Sbを含有しない鉛もしくは鉛合金からなり、負極格子と負極棚と負極極柱および負極接続体で構成される負極部材のうち負極格子骨部を除く部位は実質上Sbを含有しない鉛もしくは鉛合金からなり、負極格子骨はSbを含み、前記Sbの負極活物質量に対する含有量が0.001〜0.1質量%であるとともに、前記正極格子の正極活物質と接する表面の少なくとも一部に、Snを2%以上含有する鉛合金層を備えることを特徴とする鉛蓄電池。A shelf having a negative electrode plate having a negative electrode grid composed of a lattice ear portion and a lattice bone portion, and a positive electrode plate comprising a positive electrode lattice composed of a lattice ear portion and a lattice bone portion, In the lead storage battery including the pole column or connection body derived from the shelf, the positive electrode member constituted by the positive electrode grid, the positive electrode shelf, the positive electrode pole column, and the positive electrode connection body is substantially composed of lead or a lead alloy containing no Sb. Of the negative electrode member composed of the negative electrode lattice, the negative electrode shelf, the negative electrode pole column, and the negative electrode connector, the portion excluding the negative electrode lattice portion is substantially composed of lead or lead alloy containing no Sb, and the negative electrode lattice bone includes Sb. A lead alloy containing 0.001 to 0.1% by mass of Sb with respect to the amount of the negative electrode active material and containing 2% or more of Sn on at least a part of the surface of the positive electrode grid in contact with the positive electrode active material characterized in that it comprises a layer Lead-acid batteries to be.
JP2002150321A 2002-05-24 2002-05-24 Lead acid battery Expired - Fee Related JP4501330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150321A JP4501330B2 (en) 2002-05-24 2002-05-24 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150321A JP4501330B2 (en) 2002-05-24 2002-05-24 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2003346888A JP2003346888A (en) 2003-12-05
JP4501330B2 true JP4501330B2 (en) 2010-07-14

Family

ID=29768208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150321A Expired - Fee Related JP4501330B2 (en) 2002-05-24 2002-05-24 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4501330B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114417A (en) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP4892827B2 (en) * 2004-11-12 2012-03-07 パナソニック株式会社 Lead acid battery
JP4896392B2 (en) * 2004-11-12 2012-03-14 パナソニック株式会社 Lead acid battery
JP2005302302A (en) * 2004-04-06 2005-10-27 Matsushita Electric Ind Co Ltd Lead storage battery
JP4904686B2 (en) * 2004-11-25 2012-03-28 パナソニック株式会社 Lead acid battery
JP2006114416A (en) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd Lead-acid battery
TWI251365B (en) * 2004-04-02 2006-03-11 Matsushita Electric Ind Co Ltd Lead-acid battery
JP4904674B2 (en) * 2004-08-27 2012-03-28 パナソニック株式会社 Lead acid battery
EP1737062B1 (en) 2004-04-08 2008-09-17 Matsushita Electric Industrial Co., Ltd. Lead storage battery
JP5044888B2 (en) * 2004-12-03 2012-10-10 パナソニック株式会社 Liquid lead-acid battery
JP2006164598A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Lead acid battery
DE602005023126D1 (en) * 2004-04-28 2010-10-07 Panasonic Corp lead-acid battery
TWI333290B (en) * 2004-06-16 2010-11-11 Panasonic Corp Lead-acid battery
CN108630900B (en) * 2010-05-10 2021-11-09 新神户电机株式会社 Lead-acid battery
DE112013000779T5 (en) * 2012-01-31 2014-10-30 Panasonic Corporation Lead-acid battery
JP6197426B2 (en) * 2013-07-16 2017-09-20 株式会社Gsユアサ Lead acid battery
CN114284583A (en) * 2021-12-27 2022-04-05 河南超威正效电源有限公司 Method for reducing EFB power-on and power-off pool water loss

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189859A (en) * 1988-01-22 1989-07-31 Japan Storage Battery Co Ltd Lead-acid battery
JPH0574464A (en) * 1991-09-12 1993-03-26 Matsushita Electric Ind Co Ltd Sealed lead-acid storage battery
JPH07211306A (en) * 1994-01-20 1995-08-11 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH09283137A (en) * 1996-04-11 1997-10-31 Japan Storage Battery Co Ltd Lead-acid battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646374A (en) * 1987-06-29 1989-01-10 Matsushita Electric Ind Co Ltd Lead storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01189859A (en) * 1988-01-22 1989-07-31 Japan Storage Battery Co Ltd Lead-acid battery
JPH0574464A (en) * 1991-09-12 1993-03-26 Matsushita Electric Ind Co Ltd Sealed lead-acid storage battery
JPH07211306A (en) * 1994-01-20 1995-08-11 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH09283137A (en) * 1996-04-11 1997-10-31 Japan Storage Battery Co Ltd Lead-acid battery

Also Published As

Publication number Publication date
JP2003346888A (en) 2003-12-05

Similar Documents

Publication Publication Date Title
JP4501330B2 (en) Lead acid battery
JP5522444B2 (en) Lead acid battery
WO2014162674A1 (en) Lead acid storage battery
JP5061451B2 (en) Anode current collector for lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP2002164080A (en) Lead-acid battery
US7223499B2 (en) Lead battery
JP4892827B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP6921037B2 (en) Lead-acid battery
JP4292666B2 (en) Sealed lead acid battery
JP4904686B2 (en) Lead acid battery
JP3094423B2 (en) Lead storage battery
JP3637603B2 (en) Lead acid battery
JP4678117B2 (en) Lead acid battery
JP4066496B2 (en) Manufacturing method of electrode plate for lead acid battery and lead acid battery using the electrode plate
JPH10294113A (en) Positive electrode plate for sealed lead-acid battery
JP4765190B2 (en) Control valve type lead acid battery
JP3163509B2 (en) Manufacturing method of hybrid bipolar plate
JPH0770321B2 (en) Sealed lead acid battery
JPS61198574A (en) Lead storage battery
JP4802903B2 (en) Lead acid battery
JP4556250B2 (en) Lead acid battery
JP2001185131A (en) Sealed lead acid battery
JPS61128465A (en) Electrode plate for lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees