JP4904686B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP4904686B2
JP4904686B2 JP2004340225A JP2004340225A JP4904686B2 JP 4904686 B2 JP4904686 B2 JP 4904686B2 JP 2004340225 A JP2004340225 A JP 2004340225A JP 2004340225 A JP2004340225 A JP 2004340225A JP 4904686 B2 JP4904686 B2 JP 4904686B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
mass
lattice
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004340225A
Other languages
Japanese (ja)
Other versions
JP2006155913A (en
Inventor
一宏 杉江
章二 堀江
省三 室地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004340225A priority Critical patent/JP4904686B2/en
Priority to TW094110275A priority patent/TWI251365B/en
Priority to US10/585,078 priority patent/US8197967B2/en
Priority to PCT/JP2005/006475 priority patent/WO2005096431A1/en
Priority to KR1020067015821A priority patent/KR101139665B1/en
Priority to EP05727619.8A priority patent/EP1742289B1/en
Publication of JP2006155913A publication Critical patent/JP2006155913A/en
Application granted granted Critical
Publication of JP4904686B2 publication Critical patent/JP4904686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、車両のエンジン始動用やバックアップ電源用などに用いられている。その中でも始動用の鉛蓄電池は、エンジン始動用セルモータへの電力供給とともに、車両に搭載された各種電気・電子機器へ電力を供給している。エンジン始動後、鉛蓄電池はオルタネータによって充電される。ここで、鉛蓄電池の充電と放電とがバランスし、鉛蓄電池のSOC(充電状態)が90〜100%に維持されるよう、オルタネータの出力電圧および出力電流が設定されている。   Lead-acid batteries are used for vehicle engine start-up and backup power supplies. Among them, the lead acid battery for start-up supplies power to various electric / electronic devices mounted on the vehicle as well as power supply to the engine start cell motor. After the engine is started, the lead storage battery is charged by an alternator. Here, the output voltage and output current of the alternator are set so that charging and discharging of the lead storage battery are balanced and the SOC (charged state) of the lead storage battery is maintained at 90 to 100%.

近年、環境保全の観点から車両の燃費向上が検討されている。例えば、車両の一時的な停車中にエンジンを停止するアイドルストップ車や、車両の減速時に車両の運動エネルギーを電気エネルギーに変換し、この電気エネルギーを蓄電することによって行う回生ブレーキシステムが実用化されている。   In recent years, improvement in fuel efficiency of vehicles has been studied from the viewpoint of environmental conservation. For example, idle stop vehicles that stop the engine while the vehicle is temporarily stopped, and regenerative braking systems that convert the vehicle's kinetic energy into electrical energy and store this electrical energy when the vehicle decelerates are put into practical use. ing.

例えば、アイドルストップシステムを搭載した車両では、アイドルストップ時に鉛蓄電池は充電されない。一方で、搭載機器へ電力供給するため、従来の車両の始動用鉛蓄電池に比較して、必然的にSOCが低い状態となる。また、回生ブレーキシステムを搭載した車両では、回生時の電気エネルギーを蓄電するために、鉛蓄電池のSOCをより低く、50〜90%程度に制御する必要がある。   For example, in a vehicle equipped with an idle stop system, the lead storage battery is not charged during idle stop. On the other hand, in order to supply electric power to the on-board equipment, the SOC is inevitably lower than that of a conventional lead-acid battery for starting a vehicle. Further, in a vehicle equipped with a regenerative brake system, it is necessary to control the SOC of the lead storage battery to be lower and about 50 to 90% in order to store electric energy during regeneration.

また、いずれのシステムにおいても、従来よりも頻繁に充電放電が繰り返されることになる。また、低SOCで充放電が行われるだけではなく、車両部品の電動化に伴う暗電流の増加により、長期間停車中に鉛蓄電池の放電が進行し、過放電をしてしまうケースが多くなってきている。   Moreover, in any system, charging / discharging is repeated more frequently than before. Moreover, not only charging / discharging is performed at a low SOC, but also due to an increase in dark current accompanying the electrification of vehicle parts, lead-acid batteries discharge during a long-term stop, resulting in overdischarge. It is coming.

従って、これらのシステムを搭載した車両に適応するため、これに用いる鉛蓄電池はSOCがより低い領域で頻繁に充放電が繰り返された時の寿命特性が要求される。このような使用モードでの鉛蓄電池の劣化要因は、鉛蓄電池の充電受入性の低下によるよる充電不足が主要因であった。   Therefore, in order to adapt to a vehicle equipped with these systems, the lead storage battery used in this system is required to have a life characteristic when charging and discharging are frequently repeated in a region where the SOC is lower. The main cause of deterioration of the lead storage battery in such a use mode is insufficient charge due to a decrease in charge acceptance of the lead storage battery.

車両の充電システムは、定電圧制御を基本としているため、負極の充電受入性低下により、充電早期に、負極電位が卑に移行し充電制御定電圧値まで電圧が上昇することで、電流が垂下する。そのため、鉛蓄電池は、充電電気量を十分確保することが出来なくなり、充電不足となり短寿命となる。   Since the vehicle charging system is based on constant voltage control, the current droops because the negative electrode potential shifts to the base and the voltage rises to the charge control constant voltage value at an early stage of charging due to the negative charge acceptability decline. To do. Therefore, the lead storage battery cannot secure a sufficient amount of charge electricity, becomes insufficiently charged and has a short life.

そこで、この劣化を抑制するため、例えば特許文献1には鉛−カルシウム−スズ合金の正極格子表面にスズおよびアンチモンを含有する鉛合金層を形成することが示されている。正極格子表面に存在するスズおよびアンチモンは活物質の劣化および活物質−格子界面での高抵抗層の形成を抑制する効果がある。   In order to suppress this deterioration, for example, Patent Document 1 shows that a lead alloy layer containing tin and antimony is formed on the surface of the positive electrode lattice of a lead-calcium-tin alloy. Tin and antimony present on the surface of the positive electrode lattice have an effect of suppressing deterioration of the active material and formation of a high resistance layer at the active material-lattice interface.

また、特に正極格子表面に配置したアンチモンは、その一部が正極活物質に捕捉されるものの、他の一部はその微量が電解液に溶出し、負極板上に析出する。負極活物質上に析出したアンチモンは負極の充電電位を貴に移行させることによって、充電電圧を低下させ、鉛蓄電池の充電受入性を向上させる作用を有している。その結果として、充放電サイクル中における充電不足と、これによる鉛蓄電池の短寿命が抑制されていた。   In particular, a part of antimony disposed on the surface of the positive electrode lattice is trapped by the positive electrode active material, but a small amount of the other part elutes in the electrolytic solution and is deposited on the negative electrode plate. The antimony deposited on the negative electrode active material has the effect of lowering the charging voltage and improving the charge acceptability of the lead storage battery by preciously shifting the charging potential of the negative electrode. As a result, insufficient charging during the charge / discharge cycle and the short life of the lead storage battery due to this were suppressed.

このような特許文献1のような構成は、SOCが90%を超えるような充電状態で用いられる始動用鉛蓄電池において非常に有効であり、寿命特性を飛躍的に改善するものであった。   Such a configuration as disclosed in Patent Document 1 is very effective in a start-up lead-acid battery used in a charged state in which the SOC exceeds 90%, and dramatically improves the life characteristics.

しかしながら、前記したようなアイドルストップ車や、回生ブレーキシステムを搭載したような車両に搭載される場合、すなわちSOCが低い領域で充放電頻度がより多い使用環境下で使用される場合に、特許文献1のような構成のみの鉛蓄電池では、充電受入性は確保できるものの、負極格子耳で腐食が進行するという問題が発生してきた。その結果、負極格子耳厚みが減少し負極における集電効率を低下させ、寿命低下するものであった。   However, when mounted on an idle stop vehicle as described above or a vehicle equipped with a regenerative braking system, that is, when used in a usage environment with a higher charge / discharge frequency in a region where the SOC is low, In the lead storage battery having only the configuration as in 1, the charge acceptability can be secured, but there has been a problem that the corrosion proceeds at the negative electrode grid ear. As a result, the thickness of the negative electrode lattice lugs was reduced, the current collection efficiency in the negative electrode was lowered, and the life was shortened.

また、負極格子耳厚みの減少は、集電効率の低下のみならず負極格子耳の強度低下を引き起こす。特に車両に搭載される電池は、車両の走行中、絶えず振動・衝撃が加わるため、負極格子耳が変形することによって負極板の位置ずれが生じて、正極板と内部短絡を引き起こす場合がある。   Moreover, the decrease in the thickness of the negative electrode grid ears causes a decrease in the strength of the negative electrode grid ears as well as a decrease in current collection efficiency. In particular, since a battery mounted on a vehicle is constantly subjected to vibration and impact while the vehicle is running, the negative electrode lattice ear may be deformed to cause a displacement of the negative electrode plate, thereby causing an internal short circuit with the positive electrode plate.

従来、負極格子耳の腐食に関しては、負極棚と負極格子耳が電解液から露出し、大気中の酸素に曝露されることによって、負極棚と負極格子耳との溶接部が腐食し、断線することが知られていた。しかしながら、負極棚および負極格子耳が電解液に浸漬した状態であっても、正極格子上に配置したSbや正極棚、正極柱および正極接続体といった鉛合金の接続部材中に含まれるSbが電解液に溶出し、負極格子耳表面に微量析出することにより、負極格子耳を腐食することがわかってきた。   Conventionally, regarding the corrosion of the negative electrode grid ear, the negative electrode shelf and the negative electrode grid ear are exposed from the electrolyte and exposed to oxygen in the atmosphere, so that the welded portion between the negative electrode shelf and the negative electrode grid ear is corroded and disconnected. It was known. However, even when the negative electrode shelf and the negative electrode grid ear are immersed in the electrolyte, Sb contained in the lead alloy connection member such as Sb arranged on the positive electrode lattice or the positive electrode shelf, the positive electrode column, and the positive electrode connector is electrolyzed. It has been found that the negative electrode lattice ear is corroded by being eluted into the liquid and deposited in a small amount on the surface of the negative electrode lattice ear.

特許文献2には、正極格子、正極接続部材や負極格子耳や負極接続部材をSbを含まないPbもしくはPb合金で構成し、負極格子骨もしくは負極活物質のいずれか一方に減液量に影響しない程度の微量のSbを含んだ鉛蓄電池が提案されている。このような構成により、正極からのSbの溶出と負極格子耳へのSbの析出を抑制し、負極活物質中にSbを含むことによって、電池の充電受入性と深放電寿命をある程度まで改善することが示されている。
特開平3−37962号公報 特開2003−346888号公報
In Patent Document 2, the positive electrode grid, the positive electrode connection member, the negative electrode grid ear, and the negative electrode connection member are made of Pb or Pb alloy that does not contain Sb, and either the negative electrode lattice bone or the negative electrode active material affects the amount of liquid reduction. A lead storage battery containing a small amount of Sb is not proposed. With such a configuration, the elution of Sb from the positive electrode and the precipitation of Sb on the negative electrode lattice ear are suppressed, and by including Sb in the negative electrode active material, the charge acceptability and deep discharge life of the battery are improved to some extent. It has been shown.
JP-A-3-37962 JP 2003-346888 A

上記のような特許文献2の構成を有した鉛蓄電池は、負極格子耳でのSb析出と、これによる負極格子耳腐食を抑制することができる。しかしながら、電池を過放電したり、SOCが低い領域で頻繁に充放電が繰り返されるような使用モードにおいて、負極活物質中のSbが電解液中に再溶出し、負極格子耳に析出し、負極格子耳を腐食させるということが判ってきた。   The lead storage battery having the configuration of Patent Document 2 as described above can suppress Sb precipitation at the negative electrode lattice ears and the negative electrode lattice ear corrosion caused thereby. However, in a use mode in which the battery is overdischarged or the charge / discharge is frequently repeated in a low SOC region, Sb in the negative electrode active material is re-eluted into the electrolyte solution and deposited in the negative electrode lattice ear. It has been found that the lattice ears are corroded.

本発明は、前記したような使用モードにおける鉛蓄電池の充電受入性を改善することによって、寿命特性を飛躍的に改善するとともに、過放電やSOCが低い領域で充放電を繰り返した場合においても負極格子耳部へのアンチモンの移動を防ぐことにより、負極格子耳部における腐食を抑制することによって、高信頼性を有したアイドルストップ車や充電制御システムや、回生ブレーキシステム搭載車等に好適な鉛蓄電池を提供することを目的とする。   The present invention drastically improves the life characteristics by improving the charge acceptance of the lead storage battery in the use mode as described above, and the negative electrode even when the overdischarge and the SOC are repeated in a low SOC region. Lead that is suitable for highly reliable idle-stop cars, charging control systems, cars with regenerative braking systems, etc., by preventing antimony migration to the grid ears and suppressing corrosion at the negative grid ears An object is to provide a storage battery.

前記した課題を解決するための、本発明の請求項1に係る発明は、負極格子耳と負極格子骨とからなる負極格子と負極格子骨に充填された負極活物質を備えた負極板と、正極格子耳と正極格子骨とからなる正極格子と正極格子骨に充填された正極活物質を備えた正極板を有し、正極格子耳を集合溶接する正極棚とこの正極棚より導出された正極柱もしくは正極接続体とからなる正極接続部材と、負極格子耳を集合溶接する負極棚とこの負極棚より導出された負極柱もしくは負極接続体とからなる負極接続部材を備えた鉛蓄電池において、前記正極格子および前記正極接続部材はSbを含有しない鉛もしくは鉛合金からなり、前記負極格子および前記負極接続部材はSbを含有しない鉛もしくは鉛合金からなり、負極活物質中にPbよりも水素過電圧が低い物質としてのSbを0.0002質量%〜0.007質量%含み、かつシリカを40質量%〜85質量%含む合成樹脂シート、もしくはシリカを10〜40質量%含む繊維マットをセパレータとして備えたことを特徴とした鉛蓄電池を示すものである。 The invention according to claim 1 of the present invention for solving the above-described problem includes a negative electrode lattice comprising a negative electrode lattice ear and a negative electrode lattice bone, and a negative electrode plate comprising a negative electrode active material filled in the negative electrode lattice bone, A positive electrode shelf comprising a positive electrode lattice comprising a positive electrode lattice ear and a positive electrode lattice bone, and a positive electrode plate comprising a positive electrode active material filled in the positive electrode lattice bone, and a positive electrode shelf that collectively welds the positive electrode lattice ear and a positive electrode derived from the positive electrode shelf In a lead storage battery comprising a negative electrode connecting member comprising a positive electrode connecting member comprising a column or a positive electrode connecting body, a negative electrode shelf for collectively welding negative electrode grid ears, and a negative electrode pillar or negative electrode connecting body derived from the negative electrode shelf, The positive electrode grid and the positive electrode connection member are made of lead or a lead alloy not containing Sb, the negative electrode grid and the negative electrode connection member are made of lead or a lead alloy not containing Sb, and hydrogen is contained in the negative electrode active material rather than Pb. Comprises Sb voltage as low material 0.0002 wt% to 0.007 wt%, and a synthetic resin sheet containing silica 40 wt% to 85 wt%, or a fiber mat containing silica from 10 to 40 wt% as a separator The lead acid battery characterized by having provided is shown.

さらに、本発明の請求項に係る発明は、請求項1の鉛蓄電池において、前記負極活物質中のSb濃度を0.0004〜0.006質量%としたことを特徴とするものである。 Further, the invention according to claim 2 of the present invention, in the lead acid battery of claim 1, is characterized in that the Sb concentration of the negative electrode active material and from 0.0004 to 0.006 wt%.

本発明の鉛蓄電池によれば、過放電したり、SOCが比較的低い領域で、より頻繁に充放電が繰り返される使用環境化において、充電受入性を改善することによって、寿命特性を飛躍的に改善するとともに、負極格子耳における腐食を抑制することによって、高信頼性を有した長寿命の鉛蓄電池を得ることができる。   According to the lead storage battery of the present invention, the life characteristics are dramatically improved by improving the charge acceptance in an environment where overdischarge or charge / discharge is repeated more frequently in a region where the SOC is relatively low. While improving and suppressing the corrosion in a negative electrode grating | lattice ear | edge, the long life lead storage battery with high reliability can be obtained.

以下、本発明を実施するための最良の形態について、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

正極板2は図2に示したように、正極格子耳22と正極格子骨23とで構成される正極格子21に正極活物質24が充填された構成を有している。一方、負極板3は図3に示したように、負極格子耳32と負極格子骨33とで構成される負極格子31に負極活物質34が充填された構成を有している。   As shown in FIG. 2, the positive electrode plate 2 has a configuration in which a positive electrode active material 24 is filled in a positive electrode lattice 21 including positive electrode lattice ears 22 and positive electrode lattice bones 23. On the other hand, as shown in FIG. 3, the negative electrode plate 3 has a configuration in which a negative electrode active material 34 is filled in a negative electrode lattice 31 composed of negative electrode lattice ears 32 and negative electrode lattice bones 33.

本発明の鉛蓄電池1ではセパレータ4と正極板2および負極板3の所定枚数を組合せ、正極格子耳22および負極格子耳32の同極性の耳部同士を集合溶接してそれぞれ正極棚5および負極棚6が形成される。正極棚5には正極柱7もしくは正極接続体(図示せず)が、負極棚6には負極接続体8もしくは負極柱(図示せず)がそれぞれ形成される。図1に示した例では正極棚5に正極柱7、負極棚6に負極接続体8を設けた例を示しているが、必要に応じ、正極柱7および負極接続体8に換えて、正極接続体および負極柱をそれぞれ正極棚5および負極棚6に接合することとなる。   In the lead storage battery 1 of the present invention, a predetermined number of separators 4, a positive electrode plate 2 and a negative electrode plate 3 are combined, and the same polarity ears of the positive electrode grid ear 22 and the negative electrode grid ear 32 are collectively welded to the positive electrode shelf 5 and the negative electrode respectively. A shelf 6 is formed. A positive pole 7 or a positive electrode connection body (not shown) is formed on the positive electrode shelf 5, and a negative electrode connection body 8 or a negative electrode pillar (not shown) is formed on the negative electrode shelf 6. In the example shown in FIG. 1, an example is shown in which the positive electrode column 5 is provided on the positive electrode shelf 5, and the negative electrode connector 8 is provided on the negative electrode shelf 6. The connection body and the negative electrode column are joined to the positive electrode shelf 5 and the negative electrode shelf 6, respectively.

例えば、6セルが直列接続された公称電圧12Vの始動用鉛蓄電池は、一般的に正極端子側から1番目の端セルを構成する極板群においては図1に示したように、正極棚5に正極柱7が接続し、負極棚6には負極接続体8が接続される。また、正極端子側から6番目の端セルを構成する極板群においては正極棚5に正極接続体が接続され、負極棚6には負極極柱が接続される。そして、これら端セル間に位置する中間セルを構成する極板群は正極棚5、負極棚6ともに、それぞれ正極および負極の接続体が接続された構成をとる。   For example, a starting lead storage battery having a nominal voltage of 12 V in which 6 cells are connected in series generally has a positive electrode shelf 5 as shown in FIG. 1 in the electrode plate group constituting the first end cell from the positive electrode terminal side. The negative pole connecting body 8 is connected to the negative pole shelf 6. In the electrode plate group constituting the sixth end cell from the positive electrode terminal side, the positive electrode connector is connected to the positive electrode shelf 5, and the negative electrode pole column is connected to the negative electrode shelf 6. And the electrode group which comprises the intermediate | middle cell located between these end cells takes the structure by which the connection body of the positive electrode and the negative electrode was connected to the positive electrode shelf 5 and the negative electrode shelf 6, respectively.

本発明において正極棚5、正極柱7および/もしくは正極接続体で構成される正極接続部材9と正極格子21はSb含まないPbもしくはPb合金で構成する。Sbを含まないPb合金としては、耐食性や機械的強度を考慮して、0.05〜3.0質量%程度のSnを含むPb−Sn合金や、0.01〜0.10質量%程度のCaを含むPb−Ca合金、あるいはこれらの三元合金(Pb−Ca−Sn合金)を用いることができる。   In the present invention, the positive electrode shelf 5, the positive electrode column 7, and / or the positive electrode connecting member 9 and the positive electrode lattice 21 configured by the positive electrode connecting body are configured by Pb or Pb alloy not containing Sb. As a Pb alloy not containing Sb, in consideration of corrosion resistance and mechanical strength, a Pb—Sn alloy containing about 0.05 to 3.0 mass% of Sn, or about 0.01 to 0.10 mass%. A Pb—Ca alloy containing Ca or a ternary alloy thereof (Pb—Ca—Sn alloy) can be used.

一方、負極に関して、負極棚6、負極接続体8および/もしくは負極極柱で構成される負極接続部材10と、負極格子31を正極と同様、実質上Sbを含まないPbもしくはPb合金で構成する。Sbを含まないPb合金としては、耐食性や機械的強度を考慮して、0.05〜3.0質量%程度のSnを含むPb−Sn合金や、0.01〜0.10質量%程度のCaを含むPb−Ca合金、あるいはこれらの三元合金(Pb−Ca−Sn合金)を用いることができる。また、負極においては、正極よりも耐酸化性が要求されないため、純Pbを用いることもできる。   On the other hand, with respect to the negative electrode, the negative electrode connection member 10 constituted by the negative electrode shelf 6, the negative electrode connection body 8, and / or the negative electrode pole column, and the negative electrode lattice 31 are made of Pb or Pb alloy substantially free of Sb, like the positive electrode. . As a Pb alloy not containing Sb, in consideration of corrosion resistance and mechanical strength, a Pb—Sn alloy containing about 0.05 to 3.0 mass% of Sn, or about 0.01 to 0.10 mass%. A Pb—Ca alloy containing Ca or a ternary alloy thereof (Pb—Ca—Sn alloy) can be used. Further, since the oxidation resistance is not required for the negative electrode as compared with the positive electrode, pure Pb can be used.

なお、0.01〜0.08質量%程度のBaや0.001〜0.05質量%Agといった元素の添加も正極格子の耐久性を向上する上で好ましい。なお、上記の組成の格子体や接続部材を製造する上で、溶融鉛合金からのCaの酸化消失を抑制するために0.001〜0.05質量%程度のAlの添加や、不可避的な不純物としての0.0005〜0.005質量%程度のBiの存在は、本発明の効果を損なうものでなく、許容しうるものである。   In addition, addition of an element such as about 0.01 to 0.08 mass% Ba or 0.001 to 0.05 mass% Ag is also preferable for improving the durability of the positive electrode grid. In addition, in manufacturing the lattice body and the connection member having the above-described composition, in order to suppress the disappearance of Ca from the molten lead alloy, the addition of about 0.001 to 0.05% by mass of Al is inevitable. The presence of about 0.0005 to 0.005 mass% Bi as an impurity does not impair the effects of the present invention and is acceptable.

そして、本発明では、負極活物質34中にPbよりも水素過電圧の低い物質を含む。Pbよりも水素過電圧が低い物質としては、Sbもしくはその化合物(アンチモン酸化物、硫酸塩およびアンチモン酸塩等の塩)とする。負極活物質中におけるSb含有濃度は、0.0002質量%〜0.007質量%、より好ましくは、0.0004〜0.006質量%とする。 In the present invention, the negative electrode active material 34 includes a material having a hydrogen overvoltage lower than that of Pb. The substance having a hydrogen overvoltage lower than that of Pb is Sb or a compound thereof (antimony oxide, sulfate, antimonate, etc.) . The Sb-containing concentration in the negative electrode active material is 0.0002 mass% to 0.007 mass%, more preferably 0.0004 to 0.006 mass% .

負極活物質中へのSbの添加は負極活物質ペースト中にSbや上記したようなSbを含む物質を加すればよい。また、負極活物質中にSbやSb化合物を直接添加する方法にかえて、負極板をSbイオンを含む電解質、たとえば硫酸アンチモンやアンチモン酸塩を含む希硫酸電解液に浸漬し、電解めっきにより、負極活物質上にSbを電析させることもできる。   The addition of Sb to the negative electrode active material may be performed by adding Sb or a material containing Sb as described above to the negative electrode active material paste. Further, instead of directly adding Sb or an Sb compound into the negative electrode active material, the negative electrode plate is immersed in an electrolyte containing Sb ions, for example, a dilute sulfuric acid electrolyte containing antimony sulfate or antimonate, and by electroplating, Sb can also be electrodeposited on the negative electrode active material.

Sbを負極活物質中に添加することにより、負極活物質の充電性が顕著に改善され、寿命特性が向上する。特に、Sbの含有濃度が0.0004質量%以上の領域で寿命特性は極めて顕著に改善される。一方、Sbの含有濃度が0.006質量%を超える領域では負極格子耳の腐食が徐々に進行しはじめるため、含有濃度を0.006質量%以下とすることがより好ましい。   By adding Sb to the negative electrode active material, the chargeability of the negative electrode active material is remarkably improved and the life characteristics are improved. In particular, the life characteristics are remarkably improved in the region where the Sb concentration is 0.0004 mass% or more. On the other hand, in the region where the Sb content concentration exceeds 0.006% by mass, the corrosion of the negative electrode lattice ears gradually begins to progress, so the content concentration is more preferably 0.006% by mass or less.

そして、本発明の鉛蓄電池では、正極および負極を隔離するセパレータとしてシリカを含有するものを使用する。このセパレータとしてシリカを含むポリエチレン等の合成樹脂シートを用いることができる。ポリエチレン樹脂シートのセパレータを用いる場合、シリカのセパレータ中の含有濃度(シリカ質量×100/シリカを含むポリエチレン樹脂シート質量)を40質量%〜85質量%とすることが好ましい。   And in the lead acid battery of this invention, what contains a silica is used as a separator which isolates a positive electrode and a negative electrode. As this separator, a synthetic resin sheet such as polyethylene containing silica can be used. When using the separator of a polyethylene resin sheet, it is preferable that the content concentration (silica mass x 100 / mass of polyethylene resin sheet containing silica) in the silica separator is 40 mass% to 85 mass%.

また、前記したポリエチレン樹脂シートに換えて、シリカを含むガラス繊維マット等の繊維マットを用いることができる。ガラス繊維マットを用いる場合、ガラス繊維マット中のシリカ含有濃度(シリカ質量×100/シリカを含む繊維マット質量)を10〜40質量%とすることが好ましい。また、シリカとしては平均孔径が20μm以下といった細孔を有した多孔質シリカを用いることができる。   Moreover, it can replace with the above-mentioned polyethylene resin sheet and can use fiber mats, such as a glass fiber mat containing a silica. When using a glass fiber mat, it is preferable that the silica content density | concentration (silica mass x100 / fiber mat mass containing a silica) in a glass fiber mat shall be 10-40 mass%. As silica, porous silica having pores with an average pore diameter of 20 μm or less can be used.

上記の極板群を用い、以降は定法に従って極板群が電解液に浸漬した状態の鉛蓄電池を組み立てることにより、本発明の鉛蓄電池を得る。なお、本発明では負極活物質中に、Sbの様なPbよりも低い水素過電圧を有する物質を含むため、制御弁式鉛蓄電池に適用するものではない。制御弁式鉛蓄電池に適用した場合、微量のガス発生により、電池内圧が増加し、長時間、制御弁が開弁した状態となる。その結果、大気が電池内に流入し、負極が酸化するためである。   The lead storage battery of the present invention is obtained by assembling a lead storage battery in which the electrode group is immersed in an electrolytic solution according to a conventional method, using the above electrode group. In the present invention, since the negative electrode active material includes a material having a hydrogen overvoltage lower than Pb, such as Sb, it is not applied to a control valve type lead-acid battery. When applied to a control valve type lead storage battery, the internal pressure of the battery increases due to the generation of a small amount of gas, and the control valve is opened for a long time. As a result, air flows into the battery and the negative electrode is oxidized.

上記の本発明の構成を有した鉛蓄電池は、負極活物質のみにSbを含むので、正極からのSbが負極に移行することなく、負極格子耳の腐食を抑制することができる。負極に含まれるSbは負極の過電圧を低下させ、充電受入性を改善し、鉛蓄電池の寿命特性を改善する。   Since the lead storage battery having the above-described configuration of the present invention contains Sb only in the negative electrode active material, corrosion of the negative electrode lattice ear can be suppressed without Sb from the positive electrode moving to the negative electrode. Sb contained in the negative electrode lowers the overvoltage of the negative electrode, improves the charge acceptance, and improves the life characteristics of the lead storage battery.

一方、鉛蓄電池を過放電したり、低SOC領域で充放電を頻繁に繰り返すことによって、負極活物質からSbが溶出した場合においても、このシリカがSbを吸着するため、Sbの負極格子耳への再析出と、これによる負極格子耳の腐食を抑制することができる。   On the other hand, even when Sb is eluted from the negative electrode active material by over-discharging the lead storage battery or by frequently repeating charge and discharge in the low SOC region, this silica adsorbs Sb, so that the Sb negative electrode lattice ear And the corrosion of the negative electrode lattice ear due to this can be suppressed.

前記したシリカの含有濃度が、ポリエチレン樹脂シートのセパレータにおいて40質量%以下、およびガラス繊維マットのセパレータにおいて10質量%以下の場合には、本発明の負極格子耳腐食抑制効果が若干低下するため、シリカの含有濃度をそれぞれ、40質量%以上および10質量%以上とすることが好ましい。また、シリカ表面にSbをより吸着させるために、用いるシリカ(SiO2)として、多孔を有することによって比表面積の大きい(一例として200m2/g)ものを用いることが好ましい。 When the content concentration of silica described above is 40% by mass or less in the separator of the polyethylene resin sheet and 10% by mass or less in the separator of the glass fiber mat, the negative electrode lattice ear corrosion inhibitory effect of the present invention is slightly reduced. The silica concentration is preferably 40% by mass or more and 10% by mass or more, respectively. Further, in order to further adsorb Sb to the silica surface, as the silica (SiO 2) using, it is preferable to use the (200m 2 / g, for example) having a large specific surface area by having a porosity.

一方、ポリエチレン樹脂シートのセパレータにおいてシリカの含有濃度が85質量%を超えた場合はセパレータが脆くなり、容易に亀裂や穴あきが発生しやすくなり、電池の内部短絡を引き起こしやすくなるため、ポリエチレン樹脂シートのセパレータではシリカの含有濃度は85質量%以下とすることが好ましい。   On the other hand, when the silica content in the separator of the polyethylene resin sheet exceeds 85% by mass, the separator becomes fragile, easily cracks or perforates, and easily causes an internal short circuit of the battery. In the sheet separator, the silica concentration is preferably 85% by mass or less.

また、ガラス繊維マットのセパレータにおいてシリカの含有濃度が40質量%を超えた場合は、ガラス繊維同士の結合力低下により、セパレータ強度が低下したり、電池内部抵抗が増大し、電池の放電電圧特性が低下する。したがって、ガラス繊維マットにおけるシリカの含有濃度は40質量%以下とすることが好ましい。   Further, when the silica content concentration exceeds 40 mass% in the separator of the glass fiber mat, the separator strength decreases or the battery internal resistance increases due to a decrease in the bonding strength between the glass fibers, and the discharge voltage characteristics of the battery Decreases. Therefore, the silica concentration in the glass fiber mat is preferably 40% by mass or less.

さらに、本発明において、正極格子骨の正極活物質と接する表面の少なくとも一部に正極格子骨よりも高濃度のSnを含む層を形成することにより、深い放電や過放電での正極の充電受入性を改善し、寿命特性を向上することができる。このSnを含む層はSnによる正極活物質−格子界面での高抵抗層の生成を抑制するものであるから、その効果を得る上で、少なくとも、正極格子母材よりも高濃度のSnを含むことが必要である。   Furthermore, in the present invention, a layer containing Sn having a higher concentration than that of the positive electrode lattice bone is formed on at least a part of the surface of the positive electrode lattice bone in contact with the positive electrode active material. The life characteristics can be improved. This Sn-containing layer suppresses the formation of a high-resistance layer at the positive electrode active material-lattice interface by Sn. Therefore, in order to obtain the effect, the Sn-containing layer contains at least a higher concentration of Sn than the positive electrode lattice base material. It is necessary.

例えば、正極格子が1.6質量%のSnを含む場合、少なくとも1.6質量%を超える濃度のSn量とし、3.0〜6.0質量%とする。正極格子母材よりも低濃度とした場合、格子表面のSn濃度はかえって低下するため、好ましくないことは明らかである。   For example, when the positive electrode lattice includes 1.6% by mass of Sn, the Sn amount is at least at a concentration exceeding 1.6% by mass, and is 3.0 to 6.0% by mass. Obviously, when the concentration is lower than that of the positive electrode lattice base material, the Sn concentration on the surface of the lattice is lowered, which is not preferable.

以下に示す正極板、負極板、セパレータ、接続部材用合金等の鉛蓄電池部材を準備し、これら部材を組み合わせることにより、本発明例および比較例による電池を作成し、寿命試験を行うことによって負極格子耳の腐食と電池寿命特性の評価を行った。   By preparing lead storage battery members such as the following positive electrode plate, negative electrode plate, separator, alloy for connecting member, etc., by combining these members, a battery according to the present invention example and a comparative example is prepared, and a life test is performed to prepare the negative electrode Evaluation of lattice ear corrosion and battery life characteristics was performed.

(1)正極板
正極格子はPb−Ca−Sn合金を用い、合金組成はPb−0.07質量%Ca−1.3質量%Snである。この合金のスラブを段階的に圧延することによって、合金シートとした後に、エキスパンド加工を行って正極格子を形成した。なお、この正極格子中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
(1) Positive electrode plate The positive electrode lattice uses a Pb-Ca-Sn alloy, and the alloy composition is Pb-0.07 mass% Ca-1.3 mass% Sn. The alloy slab was rolled in stages to form an alloy sheet, which was then expanded to form a positive grid. In addition, when Sb quantitative analysis in this positive electrode lattice was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

鉛粉(金属鉛、一酸化鉛および鉛丹の混合粉体)を水と希硫酸で混練して正極活物質ペーストを作成し、前記した正極格子に所定量充填した後、熟成乾燥することによって正極板を作製した。正極活物質中に含まれるSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。   By mixing lead powder (mixed powder of metallic lead, lead monoxide and red lead) with water and dilute sulfuric acid to make a positive electrode active material paste, filling the above-mentioned positive electrode lattice in a predetermined amount, and then aging and drying A positive electrode plate was produced. When Sb quantitative analysis contained in a positive electrode active material was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

(2)負極板
Pb−0.07質量%Ca−0.25質量%Sn合金のスラブを圧延した後、エキスパンド加工を施して負極格子体を作成した。なお、この負極格子合金中に含まれるSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
(2) Negative Electrode Plate After rolling a slab of Pb-0.07 mass% Ca-0.25 mass% Sn alloy, an expansion process was performed to create a negative electrode lattice. In addition, when Sb quantitative analysis contained in this negative electrode lattice alloy was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

鉛粉(金属鉛と一酸化鉛の混合粉体)にエキスパンダ(硫酸バリウムおよびリグニン)およびカーボンを添加し、水と希硫酸で混練することにより、負極活物質ペーストを作成した。この負極活物質ペーストを負極格子体に充填し、その後、熟成乾燥することによって負極板を得た。   An expander (barium sulfate and lignin) and carbon were added to lead powder (mixed powder of metal lead and lead monoxide) and kneaded with water and dilute sulfuric acid to prepare a negative electrode active material paste. The negative electrode active material paste was filled in a negative electrode lattice, and then aged and dried to obtain a negative electrode plate.

本実施例においては、負極活物質ペースト中にSbの硫酸塩を添加し、化成終了状態の負極活物質中のSb濃度をそれぞれ0(検出限界である0.0001質量%未満)、0.0002質量%、0.0004質量%、0.006質量%および0.007質量%とした負極板を作成した。   In this example, Sb sulfate was added to the negative electrode active material paste, and the Sb concentration in the negative electrode active material in the chemical conversion completed state was 0 (less than 0.0001% by mass, which is the detection limit), 0.0002, respectively. Negative electrode plates with mass%, 0.0004 mass%, 0.006 mass%, and 0.007 mass% were prepared.

また、本実施例では、エキスパンダとして天然リグニン(日本製紙ケミカル(株)製バニレックスN)を用いたが、天然リグニンに換えて、合成リグニンを呼ばれるビスフェノールスルホン酸系縮合物(例えば日本製紙ケミカル(株)製ビスパーズP215)を用いてもよい。   In this example, natural lignin (Vanilex N manufactured by Nippon Paper Chemicals Co., Ltd.) was used as the expander. Co., Ltd. Vispers P215) may be used.

(3)セパレータ
・合成樹脂シート製セパレータ
合成樹脂シート製のセパレータ(以下、セパレータA)として、最大孔径10〜50μm以下の微孔を有した、厚さ0.3mmのポリエチレン製シートをU字折りし、両側部を熱シールすることにより、上部のみが開口した袋状のセパレータを作製した。セパレータA中のシリカ含有濃度は0質量%、35質量%、40質量%、65質量%および85質量%とした。なお、シリカとして20μm以下の平均孔径の細孔を有した、多孔質のものを用いた。
(3) Separator-Separator made of synthetic resin sheet As a separator made of synthetic resin sheet (hereinafter referred to as separator A), a polyethylene sheet having a maximum pore diameter of 10 to 50 µm and having a thickness of 0.3 mm or less is folded in a U-shape. And the both sides were heat-sealed and the bag-shaped separator which only the upper part opened was produced. The silica-containing concentration in the separator A was 0% by mass, 35% by mass, 40% by mass, 65% by mass, and 85% by mass. As the silica, a porous one having pores with an average pore diameter of 20 μm or less was used.

・繊維マット製セパレータ
繊維マット製のセパレータ(以下、セパレータB)として、ガラス繊維マット中にシリカを担持させたものを用いた。セパレータB中に含まれるシリカ含有濃度は、0質量%、5質量%、10質量%、40質量%および50質量%とした。なお、シリカとして20μm以下の平均孔径の細孔を有した、多孔質のものを用いた。
Fiber Separator Separator A fiber mat separator (hereinafter referred to as Separator B) having silica supported in a glass fiber mat was used. The silica-containing concentration contained in the separator B was 0% by mass, 5% by mass, 10% by mass, 40% by mass, and 50% by mass. As the silica, a porous one having pores with an average pore diameter of 20 μm or less was used.

(4)正極接続部材用鉛合金および負極接続部材用合金
正極接続部材および負極接続部材用合金として、Pb−2.5質量%Sn合金(合金A)とPb−2.5質量%Sb合金(合金B)を準備した。なお、合金A中のSb定量分析を行ったところ、Sb濃度は検出限界(0.0001質量%)未満であった。
(4) Lead alloy for positive electrode connection member and alloy for negative electrode connection member As an alloy for positive electrode connection member and negative electrode connection member, Pb-2.5 mass% Sn alloy (alloy A) and Pb-2.5 mass% Sb alloy ( Alloy B) was prepared. In addition, when Sb quantitative analysis in the alloy A was performed, Sb density | concentration was less than the detection limit (0.0001 mass%).

(実施例1)
上記の正極板、負極板およびセパレータAを表1および表2に示した組み合わせで用い、表1および表2に示した組み合わせで用い、1セル当たり正極板5枚と負極板6枚から成る極板群を備え、極板面をすべて電解液中に浸漬した液式の55D23形の始動用鉛蓄電池(12V48Ah)を作製した。なお、袋状のセパレータA中に負極板を収納した構造とした。
Example 1
The positive electrode plate, the negative electrode plate, and the separator A are used in the combinations shown in Tables 1 and 2, and the combinations shown in Tables 1 and 2 are used. The electrode is composed of 5 positive plates and 6 negative plates per cell. A liquid type 55D23 type starting lead-acid battery (12V48Ah) having a plate group and having all electrode plates immersed in an electrolytic solution was produced. In addition, it was set as the structure which accommodated the negative electrode plate in the bag-shaped separator A. FIG.

Figure 0004904686
Figure 0004904686

Figure 0004904686
Figure 0004904686

表1および表2に示した各電池について、過放電後のサイクル寿命試験を行った。試験条件は以下の手順で行った。まず、25℃雰囲気下で、試験電池を10A定電流で、電池電圧が10.5Vとなるまで放電する。その後、電池端子間に12W電球を接続し、48時間放置することにより試験電池を過放電した。その後、試験電池を14.5V定電圧(最大電流25A)で8時間充電し、サイクル寿命試験を行った。   Each battery shown in Table 1 and Table 2 was subjected to a cycle life test after overdischarge. The test conditions were as follows. First, in a 25 ° C. atmosphere, the test battery is discharged at a constant current of 10 A until the battery voltage reaches 10.5V. Thereafter, a 12 W light bulb was connected between the battery terminals and left for 48 hours to overdischarge the test battery. Thereafter, the test battery was charged at a constant voltage of 14.5 V (maximum current 25 A) for 8 hours to perform a cycle life test.

サイクル寿命特性は次に示す試験条件で行った。25℃雰囲気下において、25A放電20秒と14V定電圧充電(最大充電電流25A)40秒とを7200サイクル繰り返した後に、このサイクルによる質量減(WL)を計測する。その後、300Aで30秒間放電し、30秒目の放電電圧(V30)を計測する。その後、質量減(WL)分の水を鉛蓄電池に補水する。 The cycle life characteristics were measured under the following test conditions. In an atmosphere of 25 ° C., 25A discharge for 20 seconds and 14V constant voltage charge (maximum charging current 25A) for 40 seconds are repeated for 7200 cycles, and then the mass loss (W L ) due to this cycle is measured. Thereafter, the battery is discharged at 300 A for 30 seconds, and the discharge voltage (V 30 ) at 30 seconds is measured. Thereafter, the lead storage battery is replenished with water corresponding to the mass loss (W L ).

上記の充放電7200サイクル毎のV30が7.0Vに低下するまでの充放電サイクル数を寿命サイクル数とする。なお、通常、始動用鉛蓄電池においてJIS D5301で規定される軽負荷寿命試験は、25A放電4分と、最大電流25Aとした定電圧充電10分のサイクルで構成されるが、本試験では、軽負荷寿命試験よりもSOCが低い状態で充放電が頻繁に行われる試験条件とした。 The number of charge / discharge cycles until V 30 is reduced to 7.0 V every 7200 cycles of charge / discharge is defined as the life cycle number. Normally, a light load life test defined in JIS D5301 for a start-up lead-acid battery is composed of a cycle of 25 A discharge for 4 minutes and a constant current charge of 10 minutes with a maximum current of 25 A. The test conditions were such that charging and discharging were frequently performed in a state where the SOC was lower than in the load life test.

寿命サイクル数の算出方法は以下の通りとした。n回目に計測したV30電圧(充放電サイクル数は7200×n)で、初めてV30が7.0V以下となったとき、そのV30をVnとする。そして、前回(n−1回目)のV30電圧をVn−1としたときに、縦軸をV30、横軸を充放電サイクル数のグラフにおいて、座標(7200(n−1)、Vn−1)と座標(7200n、Vn)間を直線Lで結び、この直線LとV30=7.0との交点における横軸の値を寿命サイクル数とした。 The calculation method of the life cycle number was as follows. n-th on the measured V 30 voltage (number of charge and discharge cycles 7200 × n), the first time V 30 is equal to or less than 7.0 V, to the V 30 and Vn. Then, last of V 30 voltage of (n-1 time) is taken as Vn-1, the vertical axis V 30, the horizontal axis in the graph of the number of charge and discharge cycles, the coordinates (7200 (n-1), Vn- 1) and coordinates (7200n, Vn) are connected by a straight line L, and the value on the horizontal axis at the intersection of this straight line L and V 30 = 7.0 is defined as the number of life cycles.

また、寿命試験が終了した各電池について、電池の分解調査を行い、負極の耳腐食率を求めた。なお、試験前の初期状態の負極格子耳断面積をS、寿命試験後の負極格子耳断面積をSEとし、{100×(S−SE)/S}として求めた耳断面積の減少率を耳腐食率とした。なお、試験前の初期状態における負極格子耳断面積は(幅)13.0mm×(厚み)0.7mm=9.1mm2としており、耳腐食率50%の場合、腐食によって断面積が4.55mm2減少したことに相当する。 Moreover, about each battery which the lifetime test was complete | finished, the decomposition | disassembly investigation of the battery was conducted and the ear corrosion rate of the negative electrode was calculated | required. In addition, the negative electrode lattice ear cross-sectional area in the initial state before the test is S, the negative electrode lattice ear cross-sectional area after the life test is SE, and the reduction rate of the ear cross-sectional area obtained as {100 × (S−SE) / S} is Ear corrosion rate. The cross-sectional area of the negative electrode grid ear in the initial state before the test is (width) 13.0 mm × (thickness) 0.7 mm = 9.1 mm 2. When the ear corrosion rate is 50%, the cross-sectional area is 4. This corresponds to a reduction of 55 mm 2 .

これらの過放電後のサイクル寿命試験における、負極格子耳腐食率および寿命サイクル数の結果を表3および表4に示す。   Tables 3 and 4 show the results of the negative electrode lattice ear corrosion rate and the life cycle number in the cycle life test after these overdischarges.

Figure 0004904686
Figure 0004904686

Figure 0004904686
Figure 0004904686

表4に示した結果から、正極および負極の接続部材にSbを含む鉛合金(合金B:Pb−2.5質量%Sb)を用いた電池については、負極格子耳腐食は著しい。そして、負極格子耳断面積の大幅な減少により、放電電圧の低下が著しく、20000〜30000サイクルで寿命終了となった。これは正極側や負極側の接続部材に含まれるSbが電解液中に溶出し、負極格子耳に再析出することによると考えられる。これらの試験電池を分解し、負極格子耳のSbの定量分析を行ったところ、負極格子耳に0.0006質量%程度のSbの存在が確認された。   From the results shown in Table 4, for the battery using a lead alloy containing Sb (alloy B: Pb-2.5 mass% Sb) for the positive electrode and negative electrode connecting members, the negative electrode grid ear corrosion is remarkable. Then, due to the significant decrease in the cross-sectional area of the negative electrode grid ears, the discharge voltage was remarkably lowered, and the life was completed after 20000 to 30000 cycles. This is considered to be because Sb contained in the connecting member on the positive electrode side or the negative electrode side elutes in the electrolytic solution and re-deposits on the negative electrode lattice ear. When these test batteries were disassembled and quantitative analysis of Sb in the negative electrode lattice ear was performed, the presence of about 0.0006 mass% Sb in the negative electrode lattice ear was confirmed.

表3に示した結果から、正極および負極の接続部材にSbを含まない鉛合金(合金A:Pb−2.5質量%Sn)を用い、負極活物質中にSbを含有した電池において、ポリエチレン樹脂シート製のセパレータAにおいて、シリカを含む本発明例の電池は、他の比較例の電池に比較して、負極格子耳腐食が抑制されるとともに、極めて良好な寿命サイクル数を有している。この寿命特性改善効果は負極活物質中のSbにより、負極板の充電受入性が向上することによるものと考えられる。なお、これらの試験電池を分解し、負極格子耳のSbの定量分析を行ったところ、負極格子耳から検出限界値(0.0001質量%)を超える量のSbは検出できなかった。   From the results shown in Table 3, a lead alloy containing no Sb (alloy A: Pb-2.5 mass% Sn) was used for the positive electrode and negative electrode connecting members, and in the battery containing Sb in the negative electrode active material, polyethylene was used. In the separator A made of a resin sheet, the battery of the present invention example including silica has a very good life cycle number while suppressing the negative electrode grid ear corrosion as compared with the batteries of other comparative examples. . The effect of improving the life characteristics is considered to be due to the improvement in charge acceptance of the negative electrode plate by Sb in the negative electrode active material. In addition, when these test batteries were disassembled and quantitative analysis of Sb in the negative electrode lattice ear was performed, Sb in an amount exceeding the detection limit (0.0001 mass%) could not be detected from the negative electrode lattice ear.

一方、本発明の負極格子耳抑制効果は、電解液中に溶出したSbイオンがセパレータ中に含まれるシリカに捕捉されることにより得られると推測できる。Sbイオンがシリカに捕捉される結果、Sbイオンの負極格子耳近傍への拡散が抑制され、負極格子耳への再析出が抑制されると推測できる。   On the other hand, it can be presumed that the negative electrode lattice lug suppressing effect of the present invention is obtained by capturing Sb ions eluted in the electrolyte solution in silica contained in the separator. As a result of the trapping of Sb ions by silica, it can be assumed that diffusion of Sb ions to the vicinity of the negative electrode lattice ear is suppressed, and reprecipitation to the negative electrode lattice ear is suppressed.

シリカ表面に吸着したSbイオンは、電池の充電時にセパレータ面に近接した負極活物質面に再析出することにより、負極の充電受入性改善効果が持続的に得られる。   The Sb ions adsorbed on the silica surface are re-deposited on the negative electrode active material surface close to the separator surface when the battery is charged, so that the effect of improving the charge acceptability of the negative electrode is continuously obtained.

本実施例において、セパレータA中にシリカを含まず、かつSbを負極活物質中に含む場合、負極格子耳腐食が顕著に進行し、これによる集電性の低下によって、30000サイクル未満で寿命終了した。これは寿命試験前の過放電によって負極より溶出したSbが負極格子耳に腐食し、充放電サイクルを経て負極格子耳を腐食させたものと推測できる。   In this example, when the separator A does not contain silica and Sb is contained in the negative electrode active material, the negative electrode lattice ear corrosion progresses remarkably, and due to the decrease in current collecting property, the life ends in less than 30000 cycles. did. It can be presumed that Sb eluted from the negative electrode due to overdischarge before the life test corroded on the negative electrode lattice ear and corroded the negative electrode lattice ear through the charge / discharge cycle.

一方、セパレータA中にシリカを含み、かつ負極活物質中にSbを含まない比較例の電池は、負極格子耳の腐食は殆ど進行しないものの、寿命サイクルが低下していた。寿命終了後の電池を分解調査したところ、正極板および負極板ともに放電生成物である硫酸鉛が蓄積しており、充放電サイクル中に電池の充電受入性低下と、これによる充電不足により、比較的短期間で寿命終了したと考えられる。   On the other hand, the battery of the comparative example containing the silica in the separator A and not containing Sb in the negative electrode active material had a reduced life cycle although the corrosion of the negative electrode lattice ear hardly proceeded. When the batteries after the end of their life were disassembled, lead sulfate, which is a discharge product, was accumulated on both the positive and negative plates. Comparison was made due to the decrease in battery charge acceptance during the charge / discharge cycle and the resulting lack of charge. It is thought that the life was over in a short period of time.

負極活物質中のSb濃度に関しては、0.0002質量%以上で寿命特性を改善する効果があるが、0.0004質量%以上とすることにより、より安定して高い寿命特性を得ることができる。また、Sb含有量が0.007質量%において、負極格子耳腐食率が増大するため、Sb含有量を0.006質量%以下とすることが好ましい。これらのことから、寿命特性向上効果と負極格子耳腐食抑制効果を両立する上で、負極活物質中のSb量は0.0004〜0.006質量%とすることがより好ましい。   Regarding the Sb concentration in the negative electrode active material, there is an effect of improving the life characteristics at 0.0002% by mass or more, but by setting it to 0.0004% by mass or more, high life characteristics can be obtained more stably. . In addition, when the Sb content is 0.007% by mass, the negative electrode lattice ear corrosion rate increases, so the Sb content is preferably 0.006% by mass or less. For these reasons, the Sb content in the negative electrode active material is more preferably 0.0004 to 0.006% by mass in order to achieve both the effect of improving the life characteristics and the effect of suppressing the negative electrode lattice ear corrosion.

また、セパレータA中のシリカ含有濃度に関しては、35質量%を添加した電池で、著しい寿命改善効果と負極格子耳腐食を抑制する効果が認められるが、40質量%〜85質量の領域で、極めて顕著な寿命改善効果と腐食を抑制する効果が得られた。また、シリカ含有濃度85質量%を超える場合についても、本発明の効果を得ることができるが、セパレータ強度が低下し、製造工程でのハンドリング性に劣るため、ポリエチレンセパレータを用いる場合、シリカ含有濃度は40質量%〜85質量%の範囲とすることが好ましい。   Moreover, regarding the silica content concentration in the separator A, a battery having 35% by mass added exhibits a remarkable life improvement effect and an effect of suppressing negative electrode lattice ear corrosion, but is extremely in the region of 40% by mass to 85% by mass. Significant lifetime improvement effect and corrosion suppression effect were obtained. In addition, when the silica content concentration exceeds 85% by mass, the effect of the present invention can be obtained. However, since the separator strength is lowered and the handling property in the manufacturing process is inferior, Is preferably in the range of 40% by mass to 85% by mass.

(実施例2)
上記の実施例1と同様の正極板、負極板および接続部材用合金と、セパレータとして前記したセパレータBを表5および表6に示した組み合わせで用い、実施例1と同様、1セル当たり正極板5枚と負極板6枚から成る極板群を備え、極板面がすべて電解液中に浸漬した液式の55D23形の始動用鉛蓄電池(12V48Ah)を作製した。
(Example 2)
The same positive electrode plate, negative electrode plate and connecting member alloy as in Example 1 above, and separator B described above as a separator were used in the combinations shown in Tables 5 and 6, and the positive electrode plate per cell as in Example 1. A liquid type 55D23 type lead acid battery for start-up (12V48Ah) was prepared, which was provided with an electrode plate group consisting of five sheets and six negative electrode plates, and the electrode plate surfaces were all immersed in the electrolyte.

Figure 0004904686
Figure 0004904686

Figure 0004904686
Figure 0004904686

表5および表6に示した各電池について、実施例1と同様の試験条件で、過放電後のサイクル寿命試験を行った。その結果を表7および表8に示す。   Each battery shown in Table 5 and Table 6 was subjected to a cycle life test after overdischarge under the same test conditions as in Example 1. The results are shown in Table 7 and Table 8.

Figure 0004904686
Figure 0004904686

Figure 0004904686
Figure 0004904686

表8に示した結果から、正極および負極の接合部材にSbを含む合金Bを用いた比較例の電池は30000サイクル未満程度の寿命しか有さず、負極格子耳における腐食も進行していた。これは実施例1と同様に、正極および負極の接合部材に含まれるSbが電解液中に溶出し、負極格子耳に再析出することによると考えられる。これらの試験電池を分解し、負極格子耳のSbの定量分析を行ったところ、負極格子耳に0.0005質量%程度のSbの存在が確認された。   From the results shown in Table 8, the battery of the comparative example using the alloy B containing Sb as the joining member of the positive electrode and the negative electrode had a life of less than about 30000 cycles, and the corrosion at the negative electrode lattice ear was also progressing. This is considered to be due to the fact that Sb contained in the positive electrode and negative electrode bonding members elutes into the electrolytic solution and re-deposits on the negative electrode grid edges, as in Example 1. When these test batteries were disassembled and quantitative analysis of Sb in the negative electrode lattice ear was performed, the presence of about 0.0005 mass% Sb in the negative electrode lattice ear was confirmed.

一方、本発明の、負極活物質中にSbを含み、正極および負極の接合部材および格子体にSbを含まず、かつ繊維マットセパレータにシリカを含んだ本発明の鉛蓄電池は、他の比較例の鉛蓄電池に比較して、負極格子耳腐食が抑制されるとともに、良好な寿命サイクル数を有している。なお、これらの試験電池を分解し、負極格子耳のSbの定量分析を行ったところ、負極格子耳から検出限界値(0.0001質量%)を超える量のSbは検出できなかった。   On the other hand, the lead storage battery of the present invention, which contains Sb in the negative electrode active material, does not contain Sb in the positive and negative electrode bonding members and the grid, and contains silica in the fiber mat separator, is another comparative example. Compared with the lead storage battery of this type, the negative electrode lattice ear corrosion is suppressed and it has a good life cycle number. In addition, when these test batteries were disassembled and quantitative analysis of Sb in the negative electrode lattice ear was performed, Sb in an amount exceeding the detection limit (0.0001 mass%) could not be detected from the negative electrode lattice ear.

これは前記した実施例1と同様、負極活物質中のSbにより、負極板の充電受入性が向上することにより、電池の寿命が顕著に改善するとともに、電解液中に溶出したSbイオンがセパレータ中のシリカに捕捉され、負極格子耳へのSbの再析出と、これによる負極格子耳の腐食が抑制されたと考えられる。   As in Example 1, the Sb in the negative electrode active material improves the charge acceptability of the negative electrode plate, thereby significantly improving the battery life, and the Sb ions eluted in the electrolyte are separated from the separator. It is considered that the Sb reprecipitation on the negative electrode lattice ears and the corrosion of the negative electrode lattice ears due to the trapping by the silica therein was suppressed.

本実施例において、セパレータB中のシリカを含まず、かつSbを負極活物質中に含む場合、負極格子耳腐食が著しく進行し、これによる集電性の低下によって、30000サイクル未満で寿命終了した。これは実施例1と同様、寿命試験前の過放電によって負極より溶出したSbが負極格子耳に腐食し、充放電サイクルを経て負極格子耳を腐食させたものと推測できる。   In this example, when silica in the separator B was not included and Sb was included in the negative electrode active material, the negative electrode lattice ear corrosion progressed remarkably, and due to the decrease in the current collecting property, the life ended in less than 30000 cycles. . As in Example 1, it can be inferred that Sb eluted from the negative electrode due to overdischarge before the life test corroded on the negative electrode lattice ear and corroded the negative electrode lattice ear through the charge / discharge cycle.

シリカの含有濃度は5質量%でも顕著な寿命改善効果と負極格子耳腐食効果を得ることができるが、10質量%〜40質量%以上で、極めて顕著な寿命改善効果と負極格子耳腐食効果を得ることができる。また、シリカ含有濃度50質量%の電池は、比較例の電池よりも優れた寿命特性と負極格子耳腐食抑制効果が得られるものの、若干寿命サイクル数が低下するため、シリカ含有濃度は10質量%〜40質量%の範囲とすることが最も好ましい。   Even if the concentration of silica is 5% by mass, a remarkable life improvement effect and a negative electrode lattice ear corrosion effect can be obtained. However, when the silica content is 10% by mass to 40% by mass or more, a very remarkable life improvement effect and negative electrode lattice ear corrosion effect are obtained. Obtainable. In addition, the battery having a silica-containing concentration of 50% by mass has a life characteristic superior to that of the battery of the comparative example and the effect of suppressing the negative electrode lattice ear corrosion, but the life cycle number is slightly reduced, so the silica-containing concentration is 10% by mass. Most preferably, it is in the range of ˜40 mass%.

また、前記したポリエチレンシート製のセパレータAを用いた実施例1に比べ、ガラス繊維マットのセパレータBを用いた本実施例2では、シリカの含有濃度がより低濃度であっても、負極格子耳腐食を抑制する効果が得られた。これは、ポリエチレンシート製のセパレータでは、シリカの表面がポリエチレンにより覆われてしまう部分があるのに対し、繊維マット製のセパレータでは、その繊維間にシリカ粒子が存在するため、シリカ粒子上にSbイオンを吸着可能な表面がより多く存在するためではないかと考察できる。   In addition, compared with Example 1 using the separator A made of polyethylene sheet as described above, in Example 2 using the separator B of the glass fiber mat, even if the silica concentration is lower, the negative electrode lattice ear The effect of suppressing corrosion was obtained. This is because, in the separator made of polyethylene sheet, there is a portion where the surface of the silica is covered with polyethylene, whereas in the separator made of fiber mat, silica particles exist between the fibers. It can be considered that there are more surfaces that can adsorb ions.

また、ポリエチレンシート製のセパレータAを用いた実施例1での本発明例の電池に比べ、ガラス繊維マットのセパレータBを用いた、実施例2における本発明例の電池の方が、より優れた寿命特性が得られた。一方、正極および負極の接続部材合金としてSbを含まない合金Aを用いた比較例の電池において、ポリエチレンシート製のセパレータAを用いた実施例1での比較例の電池に比べ、ガラス繊維マットのセパレータBを用いた、実施例2における比較例の電池の方が、より寿命特性が劣っていた。セパレータの差による寿命特性の差が、本発明例と比較例で反対となる要因については定かではない。   Moreover, the battery of the example of the present invention in Example 2 using the separator B of the glass fiber mat was superior to the battery of the example of the present invention in Example 1 using the separator A made of polyethylene sheet. Life characteristics were obtained. On the other hand, in the battery of the comparative example using the alloy A not containing Sb as the connecting member alloy of the positive electrode and the negative electrode, the glass fiber mat was compared with the battery of the comparative example in Example 1 using the separator A made of polyethylene sheet. The battery of the comparative example in Example 2 using the separator B had inferior life characteristics. It is not certain about the factor that the difference in the life characteristics due to the difference in the separator is opposite between the example of the present invention and the comparative example.

また、負極活物質中のSb濃度に関して、実施例1と同様、0.0002質量%以上で寿命特性を改善する効果があるが、0.0004質量%以上とすることにより、より安定して高い寿命特性を得ることができる。また、Sb含有量が0.007質量%において、負極格子耳腐食率が増大するため、Sb含有量を0.006質量%以下とすることが好ましい。これらのことから、寿命特性向上効果と負極格子耳腐食抑制効果を両立する上で、負極活物質中のSb量は0.0004〜0.006質量%とすることがより好ましい。   Further, the Sb concentration in the negative electrode active material has an effect of improving the life characteristics at 0.0002% by mass or more, as in Example 1, but is more stable and high at 0.0004% by mass or more. Lifetime characteristics can be obtained. In addition, when the Sb content is 0.007% by mass, the negative electrode lattice ear corrosion rate increases, so the Sb content is preferably 0.006% by mass or less. For these reasons, the Sb content in the negative electrode active material is more preferably 0.0004 to 0.006% by mass in order to achieve both the effect of improving the life characteristics and the effect of suppressing the negative electrode lattice ear corrosion.

以上、説明してきたように、本発明の構成による鉛蓄電池は、過放電後のサイクル寿命試験においても極めて良好な寿命特性を有し、かつ負極格子耳の腐食を顕著に抑制できることが確認できた。   As described above, it has been confirmed that the lead-acid battery according to the configuration of the present invention has extremely good life characteristics even in the cycle life test after overdischarge and can significantly suppress the corrosion of the negative electrode grid ear. .

以上、本発明の鉛蓄電池によれば、深放電における正極の劣化と負極における充電受入性を改善することによって、深放電寿命特性を飛躍的に改善するとともに、負極格子耳部における腐食を抑制することができるので、高信頼性を有したアイドルストップ車や回生ブレーキシステム搭載車等に好適である。   As described above, according to the lead-acid battery of the present invention, by improving the deterioration of the positive electrode in the deep discharge and the charge acceptability in the negative electrode, the deep discharge life characteristics are dramatically improved and the corrosion at the negative electrode grid ear is suppressed. Therefore, it is suitable for a highly reliable idle stop vehicle, a vehicle equipped with a regenerative brake system, and the like.

極板群構成を示す一部破載図Partially broken view showing electrode plate configuration 正極板を示す図Diagram showing positive electrode plate 負極板を示す図Diagram showing the negative electrode plate

符号の説明Explanation of symbols

1 鉛蓄電池
2 正極板
3 負極板
4 セパレータ
5 正極棚
6 負極棚
7 正極柱
8 負極接続体
9 正極接続部材
10 負極接続部材
21 正極格子
22 正極格子耳
23 正極格子骨
24 正極活物質
31 負極格子
32 負極格子耳
33 負極格子骨
34 負極活物質
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 3 Negative electrode plate 4 Separator 5 Positive electrode shelf 6 Negative electrode shelf 7 Positive electrode pillar 8 Negative electrode connection body 9 Positive electrode connection member 10 Negative electrode connection member 21 Positive electrode lattice 22 Positive electrode lattice ear 23 Positive electrode lattice bone 24 Positive electrode active material 31 Negative electrode lattice 32 Negative electrode lattice ear 33 Negative electrode lattice bone 34 Negative electrode active material

Claims (2)

負極格子耳と負極格子骨とからなる負極格子と負極格子骨に充填された負極活物質を備えた負極板と、正極格子耳と正極格子骨とからなる正極格子と正極格子骨に充填された正極活物質を備えた正極板を有し、正極格子耳を集合溶接する正極棚とこの正極棚より導出された正極柱もしくは正極接続体とからなる正極接続部材と、負極格子耳を集合溶接する負極棚とこの負極棚より導出された負極柱もしくは負極接続体とからなる負極接続部材を備えた鉛蓄電池において、前記正極格子および前記正極接続部材はSbを含有しない鉛もしくは鉛合金からなり、前記負極格子および前記負極接続部材はSbを含有しない鉛もしくは鉛合金からなり、負極活物質中にPbよりも水素過電圧が低い物質としてのSbを0.0002質量%〜0.007質量%含み、かつ、シリカを40質量%〜85質量%含む合成樹脂シート、もしくはシリカを10〜40質量%含む繊維マットをセパレータとして備えたことを特徴とした鉛蓄電池。 A negative electrode grid including a negative electrode lattice ear and a negative electrode lattice bone, a negative electrode plate including a negative electrode active material filled in the negative electrode lattice bone, a positive electrode lattice including a positive electrode lattice ear and a positive electrode lattice bone, and a positive electrode lattice bone A positive electrode connecting member having a positive electrode plate including a positive electrode active material and having a positive electrode shelf that collects and welds positive electrode grid ears, and a positive pole column or a positive electrode connection body derived from the positive electrode shelf, and the negative electrode grid ears are collectively welded. In a lead storage battery comprising a negative electrode connecting member comprising a negative electrode shelf and a negative electrode column or a negative electrode connecting body derived from the negative electrode shelf, the positive electrode grid and the positive electrode connecting member are made of lead or a lead alloy containing no Sb, negative electrode grid and the negative electrode connecting member is made of lead or lead alloy containing no Sb, the Sb of the hydrogen overvoltage is less material than Pb in the negative electrode active material 0.0002 wt% to 0.007 The amount% including, and lead-acid battery which is characterized by comprising a synthetic resin sheet containing silica 40 wt% to 85 wt%, or a fiber mat containing silica from 10 to 40 wt% as a separator. 前記負極活物質中のSb濃度を0.0004〜0.006質量%としたことを特徴とする請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the Sb concentration in the negative electrode active material is 0.0004 to 0.006 mass%.
JP2004340225A 2004-04-02 2004-11-25 Lead acid battery Expired - Fee Related JP4904686B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004340225A JP4904686B2 (en) 2004-11-25 2004-11-25 Lead acid battery
TW094110275A TWI251365B (en) 2004-04-02 2005-03-31 Lead-acid battery
US10/585,078 US8197967B2 (en) 2004-04-02 2005-04-01 Long life and low corrosion lead storage battery with a separator including silica and oil
PCT/JP2005/006475 WO2005096431A1 (en) 2004-04-02 2005-04-01 Lead storage battery
KR1020067015821A KR101139665B1 (en) 2004-04-02 2005-04-01 Lead storage battery
EP05727619.8A EP1742289B1 (en) 2004-04-02 2005-04-01 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340225A JP4904686B2 (en) 2004-11-25 2004-11-25 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2006155913A JP2006155913A (en) 2006-06-15
JP4904686B2 true JP4904686B2 (en) 2012-03-28

Family

ID=36633969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340225A Expired - Fee Related JP4904686B2 (en) 2004-04-02 2004-11-25 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4904686B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5044888B2 (en) * 2004-12-03 2012-10-10 パナソニック株式会社 Liquid lead-acid battery
JP5168893B2 (en) * 2006-12-01 2013-03-27 パナソニック株式会社 Lead acid battery
WO2015145800A1 (en) * 2014-03-28 2015-10-01 新神戸電機株式会社 Lead storage cell and electrode collector for lead storage cell
US10270136B2 (en) * 2014-10-15 2019-04-23 Nippon Sheet Glass Company, Limited Separator for lead-acid battery, and lead-acid battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335457A (en) * 1995-06-06 1996-12-17 Japan Storage Battery Co Ltd Retainer type sealed lead-acid battery
JPH1031991A (en) * 1996-07-12 1998-02-03 Nippon Muki Co Ltd Storage battery separator
JP2000268798A (en) * 1999-01-13 2000-09-29 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP4956858B2 (en) * 2001-03-01 2012-06-20 パナソニック株式会社 Control valve type lead acid battery
JP5020449B2 (en) * 2001-09-28 2012-09-05 日本板硝子株式会社 Sealed separator for sealed lead-acid battery
JP4501330B2 (en) * 2002-05-24 2010-07-14 パナソニック株式会社 Lead acid battery

Also Published As

Publication number Publication date
JP2006155913A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
KR101139665B1 (en) Lead storage battery
JP5596241B1 (en) Lead acid battery
JP5079324B2 (en) Lead acid battery
KR101068378B1 (en) Lead acid battery
KR101128586B1 (en) Lead storage battery
JP2006114417A (en) Lead-acid storage battery
JP2005302395A (en) Lead storage battery
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
JP4904686B2 (en) Lead acid battery
JP4892827B2 (en) Lead acid battery
JP5044888B2 (en) Liquid lead-acid battery
JP6197426B2 (en) Lead acid battery
JP4904675B2 (en) Lead acid battery
JP2006114416A (en) Lead-acid battery
JP4470381B2 (en) Lead acid battery
JP4857894B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP2019207786A (en) Lead acid battery
JP4904674B2 (en) Lead acid battery
JP4483308B2 (en) Lead acid battery
JP2006164598A (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP5504383B1 (en) Lead acid battery
JP2005302302A (en) Lead storage battery
KR20070023674A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees