JP4956858B2 - Control valve type lead acid battery - Google Patents
Control valve type lead acid battery Download PDFInfo
- Publication number
- JP4956858B2 JP4956858B2 JP2001056510A JP2001056510A JP4956858B2 JP 4956858 B2 JP4956858 B2 JP 4956858B2 JP 2001056510 A JP2001056510 A JP 2001056510A JP 2001056510 A JP2001056510 A JP 2001056510A JP 4956858 B2 JP4956858 B2 JP 4956858B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- separator
- battery
- lead
- electrode plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Cell Separators (AREA)
- Secondary Cells (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は高出力と高い信頼性が要求される自動車、ハイブリッド車用等の制御式鉛蓄電池に関するものである。
【0002】
【従来の技術】
鉛蓄電池は二次電池として安価で比較的信頼性も高く、古くから自動車のエンジン始動用電源や無停電電源、ポータブル機器の電源として広く使用されてきた。
【0003】
近年、自動車の負荷電流の増加の要望やエンジン始動特性向上の要望、また、内燃機関のアシスト用としてハイブリッド電気自動車用のメイン電源、補機用電源として更なる高出力化と共に高い信頼性ならびに搭載位置の柔軟化に対応した電池の要望がある。すなわち高出力と高い信頼性を兼ね備えた制御弁式鉛蓄電池が市場から求められている。
【0004】
このような高出力化を達成するための有効な手段の一つとして、セパレータを薄型にして電池の内部抵抗を低くする手段が採用されている。
【0005】
【発明が解決しようとする課題】
しかしながら制御弁式鉛蓄電池では、セパレータに電解液である硫酸を吸収させる構成となっており、結果として、従来の開放形の液式鉛蓄電池と比較して電解液量が著しく少なく制限されている。
【0006】
このような電解液量が少なく制限された鉛蓄電池が過放電放置されたり、充電状態(SOC:State of Charge)が低い部分充電状態で3CA〜10CA程度の大電流での放電を繰り返した場合、電解液の一部または全部が中アルカリ性になる。通常電解液が酸性では難溶性の硫酸鉛の溶解度が中アルカリ性領域では増加し、セパレータ中にも鉛イオンとして溶解する。また、鉛イオン濃度は電解液中の硫酸イオン濃度が低下することによっても増加する。
【0007】
このような状態で充電が行われると充電時に生成した硫酸により電解液は酸性になり硫酸鉛がセパレータ中に析出して更に充電されるとセパレータに析出した硫酸鉛が還元したり、鉛イオンが直接還元されて針状鉛となりセパレータを貫通しショートすることがある。この現象は特に制御弁付き鉛蓄電池の高出力化を狙った薄型セパレータを用いた構成において顕著に発生するといった課題を有していた。
【0008】
【課題を解決するための手段】
前記した課題を解決するために本発明の請求項1に記載の発明は、正極板と負極板との間にセパレータを介挿して互いに対向し合う正極板面と負極板面との間の距離を0.2mm〜1.1mmとして構成した極板群を備えた制御弁式鉛蓄電池において、前記セパレータはガラス繊維と10質量%〜20質量%の耐酸性有機繊維および10質量%〜30質量%のシリカによって構成されると共に、電解液はアルカリまたはアルカリ土類金属の硫酸塩もしくはホウ酸塩の少なくとも一種を0.2質量%〜5.0質量%含有していることを特徴とする制御弁式鉛蓄電池を示すものである。
【0009】
本発明の請求項2に記載の発明は、請求項1に記載の構成を備えた制御弁式鉛蓄電池において、前記ガラス繊維の表面官能基の一部または全部をアルカリ金属イオンまたはアルカリ土類金属イオンで置換したことを特徴とする制御弁式鉛蓄電池を示すものである。
【0010】
【発明の実施の形態】
本発明の実施の形態について説明する。
【0011】
鉛蓄電池の正極板と負極板とをセパレータを介して積層もしくは巻回して極板群を構成して電槽に収納される。本発明において電槽に収納された状態における正極板面と負極板面との間の距離は0.2mm〜1.1mmに構成される。
【0012】
セパレータはガラス繊維とシリカと耐酸性有機繊維で構成されている。ここで耐酸性有機繊維としては例えばアクリル樹脂繊維、ポリプロピレン樹脂繊維が使用でき、セパレータ全体への耐酸性有機樹脂繊維の添加量としては10質量%〜20質量%とする。特に極板間の距離が0.2mm〜1.1mmといった薄型セパレータではガラス繊維単独では厚み方向の圧縮により、容易に変形を受け、厚み寸法が減少する。このような場合には極板群圧が維持できなくなり、電池性能が低下するばかりか、正極−負極間の短絡を引き起こす場合がある。従って薄型セパレータの場合はガラス繊維の単独構成とすることなく、シリカならびに耐酸性有機樹脂繊維をガラス繊維とで構成するのがよい。
【0013】
また、セパレータ中に含有させるシリカは10質量%〜30質量%の範囲で添加する必要がある。このようなシリカは繊維および耐酸性有機樹脂繊維によって構成されるセパレータ孔の一部を塞ぐことにより針状鉛結晶の成長を抑制する。またシリカは電解液中の硫酸イオンを吸着することにより、セパレータ中に含浸された電解液中の鉛イオン濃度を低下させ、結果として針状鉛結晶の析出自体を抑制することができる。
【0014】
このようなシリカの作用効果を発揮させるために放電状態においても電解液中に硫酸イオン量を確保する必要があるので本発明の電池においては放電により消費される電解液中に含まれる硫酸とは別に硫酸塩として添加する必要がある。また硫酸塩に代えてホウ酸塩とすることも可能である。また、これらの塩は電池の自己放電特性に悪影響を与えないためにアルカリ金属もしくはアルカリ土類金属との塩とすることが必要であり、電解液質量に対して0.2質量%〜5.0質量%の範囲で添加する。
【0015】
【実施例】
以下、本発明の実施例について説明する。
【0016】
まず、以下に示すように試験電池を作製した。
【0017】
鉛−0.07質量%カルシウム−1.2質量%スズ合金からなる鋳造スラブを多段圧延して得た厚み0.8mmの圧延体を一定間隔でスリットを入れエキスパンド加工して得た正極格子に鉛と酸化鉛およびポリエステル繊維の混合物を所定量の水および希硫酸で練合したペーストを塗布して熟成乾燥することにより正極板を作製した。
【0018】
鉛−0.07質量%カルシウム−0.25質量%スズ合金からなる鋳造スラブを多段圧延して得た厚み0.5mmの圧延体を一定間隔でスリットを入れエキスパンド加工して負極格子を得た。この負極格子に、鉛、酸化鉛、ポリエステル繊維および防縮剤としての硫酸バリウムおよびリグニンの混合物を所定量の水および希硫酸で練合したペーストを塗布して熟成乾燥することにより負極板を作製した。
【0019】
これらの正極板と負極板をセパレータを介して積層した極板群を電槽に収納し、所定量の希硫酸を注液し、所定時間電流で化成を行い12V27Ah相当の電池を作製した。
【0020】
ここで電槽収納状態の極板群圧は50kg/dm2とした。これらの電池の構成を表1に示す。
【0021】
【表1】
【0022】
セパレータとして電池A,B,C,D,E,F,G,H,I,J−1,J−2,J−3およびKについては平均繊維径4μmのガラス繊維マットとし、電池組み込み状態の厚みを表1に示した通りとした。
【0023】
電池L,M,N−1,N−2,O,P−1,P−2,Q,S,T,UおよびVに用いるセパレータとしては前記したガラス繊維マットにシリカを全セパレータ質量に対して15質量%添加すると共に、アクリル樹脂繊維を全セパレータ質量に対して10質量%添加したものを用いた。電池Rに関しては電池Lで用いたセパレータのガラス繊維の官能基をナトリウムで置換したものを用いた。
【0024】
電池Wに用いるセパレータとしてはガラス繊維マットにシリカを全セパレータ質量に対して15質量%添加したもの、電池Xに用いるセパレータとしてはガラス繊維マットに全セパレータ質量に対して10質量%のアクリル樹脂繊維を添加したものを用いた。
【0025】
それぞれの電池について−15℃雰囲気中で150A放電を行い、そのときの5秒目電圧を測定しセパレータ厚みと電池特性の関係を図1に、電解液中の添加剤量と電圧特性との関係を図2および図3に示す。図1から明らかなように、セパレータ厚みを薄くするほど−15℃雰囲気中での150A放電5秒目電圧特性は向上した。なお、本発明では0.2mm未満のセパレータは製造上の課題から試験除外した。また、図2および図3から明らかなように、電解液中の硫酸ナトリウム添加量および四ホウ酸ナトリウム添加量が多いほど−15℃雰囲気中での150A放電5秒目電圧特性が低下する傾向にある。この低下傾向は硫酸ナトリウム添加よりも四ホウ酸ナトリウムの場合の方がより顕著であった。この結果からセパレータ厚みを20kg/dm2加圧時厚み0.2mm〜1.1mmとし、電解液に対する硫酸ナトリウムもしくは四ホウ酸ナトリウム添加量も最大5.0質量%とした。
【0026】
この傾向はその他のアルカリ金属の硫酸塩を添加しても、アルカリ土類金属の硫酸塩を添加しても同様の傾向にあった。
【0027】
ついで、針状鉛の生成によるショート抑制効果についての試験を行った。
【0028】
試験方法は試験電池を5.4A(5時間率放電電流)で端子電圧6Vまで放電し、その後40℃雰囲気中で電池端子間に10Wランプを接続した状態で2週間放置し、更に電池を開路状態で40℃雰囲気中で2週間放置する。その後25℃雰囲気中で電池を回復充電し、充電後電池を解体してセパレータに残るショート痕の確認を行った。なお、回復充電条件は最大充電電流を25Aに設定した15V定電圧充電を4時間行った。
【0029】
電池を解体して針状鉛結晶による正極−負極間の短絡痕があるものを×とし、解体しても短絡痕がないものを○として、その結果を表2に示す。
【0030】
【表2】
【0031】
この表2の結果によれば、セパレータ厚み(正極−負極間距離)が1.3mm以上であれば電解液中に0.2質量%以上の硫酸ナトリウムもしくは四ホウ酸ナトリウムを添加することにより、正極−負極間の短絡の発生を抑制することができる。
【0032】
しかしながら、セパレータ厚みが薄く1.1mm以下になると、硫酸ナトリウムもしくはホウ酸ナトリウムの添加のみでは正極−負極間の短絡を抑制できない。このような領域においては本発明の構成によってのみ、正極−負極間の短絡を抑制できることが確認できた。
【0033】
特にセパレータ中にアクリル樹脂繊維を含有しない表2の(a),(e)に示すものは群圧による厚み低下が著しく、試験前のセパレータ厚みに対して70%〜30%程度まで低下し、容易に短絡が発生していた。一方、(b)に示すアクリル樹脂繊維をシリカならびにガラス繊維に添加したセパレータを使用した電池についてはセパレータ厚みの変化は10%以内と変化も少なく、結果として正極−負極間の距離は初期状態にほぼ保たれていた。
【0034】
このような短絡を抑制する効果はセパレータのみを対象とすることなく、セパレータと電解液の両方を対象として本発明の請求項1に示す構成とすることによって達成することができる。また、ガラス繊維の表面の官能基をナトリウムに置換したものに代えて、硫酸ナトリウムやアルカリ金属硫酸塩,アルカリ土類金属塩を添加したものも同様の効果が得られた。
【0035】
【発明の効果】
以上説明したように本発明の構成によれば、特に正極−負極間を1.1mm以下に構成した制御弁式鉛蓄電池において高出力を達成し、かつ過放電放置の使用条件により発生する針状鉛生成による正極−負極間の短絡を抑制できるという顕著な効果を得ることができるものであり、その工業的価値は極めて大きい。
【図面の簡単な説明】
【図1】正極−負極間距離と放電電圧との関係を示す図
【図2】電解液中の硫酸ナトリウム添加量と放電電圧との関係を示す図
【図3】電解液中の四ホウ酸ナトリウム添加量と放電電圧との関係を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a controlled lead-acid battery for automobiles, hybrid vehicles, and the like that requires high output and high reliability.
[0002]
[Prior art]
Lead-acid batteries are inexpensive and relatively reliable as secondary batteries, and have long been widely used as power sources for starting automobile engines, uninterruptible power supplies, and portable devices.
[0003]
In recent years, there has been a demand for an increase in the load current of automobiles, a demand for improved engine starting characteristics, a main power source for hybrid electric vehicles for assisting internal combustion engines, and a higher reliability as well as higher output for power supplies for auxiliary machinery. There is a demand for a battery that can accommodate a flexible position. That is, a control valve type lead-acid battery having both high output and high reliability is demanded from the market.
[0004]
As an effective means for achieving such high output, means for reducing the internal resistance of the battery by reducing the thickness of the separator is employed.
[0005]
[Problems to be solved by the invention]
However, in the control valve type lead acid battery, the separator is configured to absorb the sulfuric acid, which is the electrolyte, and as a result, the amount of the electrolyte is significantly limited compared to the conventional open type liquid lead acid battery. .
[0006]
When a lead storage battery with a small amount of electrolyte solution is left overdischarged or when discharging with a large current of about 3 CA to 10 CA is repeated in a partially charged state where the state of charge (SOC) is low, A part or all of the electrolytic solution becomes medium alkaline. Usually, when the electrolyte is acidic, the solubility of poorly soluble lead sulfate increases in the medium alkaline region, and dissolves as lead ions in the separator. The lead ion concentration also increases as the sulfate ion concentration in the electrolyte decreases.
[0007]
When charging is performed in such a state, the electrolytic solution becomes acidic due to the sulfuric acid generated during charging, and lead sulfate is precipitated in the separator and further charged. It may be reduced directly and become acicular lead, penetrating the separator and short-circuiting. This phenomenon has a problem that it occurs remarkably particularly in a configuration using a thin separator aiming at high output of a lead storage battery with a control valve.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problem, the invention according to claim 1 of the present invention provides a distance between a positive electrode plate surface and a negative electrode plate surface that face each other with a separator interposed between the positive electrode plate and the negative electrode plate. In the control valve-type lead-acid battery including the electrode plate group configured as 0.2 mm to 1.1 mm, the separator includes glass fiber, 10% by mass to 20% by mass of acid-resistant organic fiber, and 10% by mass to 30% by mass. A control valve characterized in that the electrolyte contains 0.2 mass% to 5.0 mass% of at least one of an alkali or alkaline earth metal sulfate or borate. The type lead acid battery is shown.
[0009]
According to a second aspect of the present invention, there is provided a control valve type lead-acid battery having the structure according to the first aspect, wherein a part or all of the surface functional groups of the glass fiber are alkali metal ions or alkaline earth metals. The control valve type lead acid battery characterized by having substituted by ion is shown.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described.
[0011]
A positive electrode plate and a negative electrode plate of a lead storage battery are stacked or wound with a separator interposed therebetween to constitute an electrode plate group, which is stored in a battery case. In the present invention, the distance between the positive electrode plate surface and the negative electrode plate surface in the state accommodated in the battery case is configured to be 0.2 mm to 1.1 mm.
[0012]
The separator is composed of glass fiber, silica, and acid-resistant organic fiber. Here, as the acid resistant organic fiber, for example, acrylic resin fiber and polypropylene resin fiber can be used, and the addition amount of the acid resistant organic resin fiber to the whole separator is 10% by mass to 20% by mass. In particular, in a thin separator having a distance between electrode plates of 0.2 mm to 1.1 mm, the glass fiber alone is easily deformed by the compression in the thickness direction, and the thickness dimension decreases. In such a case, the electrode plate group pressure cannot be maintained, and not only the battery performance is deteriorated, but also a short circuit between the positive electrode and the negative electrode may be caused. Therefore, in the case of a thin separator, it is preferable that the silica and the acid-resistant organic resin fiber are made of glass fiber without using the glass fiber alone.
[0013]
Moreover, it is necessary to add the silica contained in a separator in 10 mass%-30 mass%. Such silica suppresses the growth of acicular lead crystals by closing a part of the separator hole constituted by the fibers and the acid-resistant organic resin fibers. Further, silica adsorbs sulfate ions in the electrolytic solution, thereby reducing the lead ion concentration in the electrolytic solution impregnated in the separator, and as a result, it is possible to suppress the precipitation of acicular lead crystals.
[0014]
Since it is necessary to ensure the amount of sulfate ions in the electrolyte even in the discharge state in order to exert the action effect of such silica, in the battery of the present invention, the sulfuric acid contained in the electrolyte consumed by the discharge is It must be added separately as sulfate. It is also possible to use borate instead of sulfate. Further, these salts need to be made into a salt with an alkali metal or alkaline earth metal so as not to adversely affect the self-discharge characteristics of the battery, and are 0.2 mass% to 5. Add in the range of 0% by weight.
[0015]
【Example】
Examples of the present invention will be described below.
[0016]
First, a test battery was produced as shown below.
[0017]
A positive grid obtained by expanding a 0.8 mm-thick rolled body obtained by multi-rolling a cast slab made of lead-0.07 mass% calcium-1.2 mass% tin alloy with slits formed at regular intervals. A positive electrode plate was prepared by applying a paste prepared by kneading a mixture of lead, lead oxide and polyester fiber with a predetermined amount of water and dilute sulfuric acid, followed by aging and drying.
[0018]
A negative electrode grid was obtained by slitting a rolled body having a thickness of 0.5 mm obtained by multi-stage rolling a cast slab made of lead-0.07 mass% calcium-0.25 mass% tin alloy with slits at regular intervals. . A negative electrode plate was prepared by applying a paste obtained by kneading a mixture of lead, lead oxide, polyester fiber and barium sulfate and lignin as a shrinkage preventive agent with a predetermined amount of water and dilute sulfuric acid to this negative electrode lattice, followed by aging and drying. .
[0019]
An electrode plate group in which these positive electrode plates and negative electrode plates were laminated via a separator was housed in a battery case, a predetermined amount of dilute sulfuric acid was injected, and chemical conversion was carried out with a current for a predetermined time to produce a battery corresponding to 12V27Ah.
[0020]
Here, the electrode plate group pressure in the battery case storage state was 50 kg / dm 2 . Table 1 shows the structure of these batteries.
[0021]
[Table 1]
[0022]
As separators, batteries A, B, C, D, E, F, G, H, I, J-1, J-2, J-3, and K are glass fiber mats having an average fiber diameter of 4 μm, and the battery is in a built-in state. The thickness was as shown in Table 1.
[0023]
As separators used for batteries L, M, N-1, N-2, O, P-1, P-2, Q, S, T, U, and V, silica is added to the above glass fiber mat with respect to the total mass of the separator. In addition, 15% by mass was added, and 10% by mass of acrylic resin fiber was added to the total mass of the separator. Regarding the battery R, the one in which the functional group of the glass fiber of the separator used in the battery L was replaced with sodium was used.
[0024]
The separator used for the battery W is a glass fiber mat added with 15% by mass of silica relative to the total mass of the separator. The separator used for the battery X is a glass fiber mat with 10% by mass acrylic resin fiber based on the total mass of the separator. The one to which was added was used.
[0025]
Each battery was discharged at 150 A in an atmosphere of −15 ° C., the voltage at the time of 5 seconds was measured, the relationship between the separator thickness and the battery characteristics was shown in FIG. 1, and the relationship between the additive amount in the electrolyte and the voltage characteristics. Is shown in FIG. 2 and FIG. As is apparent from FIG. 1, the 150 A discharge 5 second voltage characteristics in the -15 ° C. atmosphere improved as the separator thickness was reduced. In the present invention, separators of less than 0.2 mm were excluded from the test due to manufacturing problems. Further, as apparent from FIGS. 2 and 3, as the amount of sodium sulfate and sodium tetraborate added in the electrolytic solution increases, the voltage characteristics at 150 A discharge in the -15 ° C. atmosphere tend to decrease. is there. This decreasing tendency was more remarkable in the case of sodium tetraborate than in the case of adding sodium sulfate. From this result, the separator thickness was 20 mm / dm 2 and the thickness was 0.2 mm to 1.1 mm, and the amount of sodium sulfate or sodium tetraborate added to the electrolyte was also 5.0% by mass at maximum.
[0026]
This tendency was similar even when other alkaline metal sulfates were added or alkaline earth metal sulfates were added.
[0027]
Next, a test was conducted on the short-circuit suppressing effect due to the formation of acicular lead.
[0028]
The test method was to discharge the test battery at 5.4 A (5 hour rate discharge current) to a terminal voltage of 6 V, and then leave it in a 40 ° C atmosphere with a 10 W lamp connected between the battery terminals for 2 weeks, and then open the battery. Leave in a 40 ° C. atmosphere for 2 weeks. Thereafter, the battery was recovered and charged in an atmosphere of 25 ° C., and after charging, the battery was disassembled to check for short marks remaining on the separator. The recovery charging condition was 15V constant voltage charging with the maximum charging current set at 25A for 4 hours.
[0029]
Table 2 shows the results of disassembling the battery and indicating that there is a short circuit trace between the positive electrode and the negative electrode due to needle-shaped lead crystals, and ◯ indicating that there is no short circuit trace after disassembly.
[0030]
[Table 2]
[0031]
According to the results of Table 2, when the separator thickness (positive electrode-negative electrode distance) is 1.3 mm or more, 0.2% by mass or more of sodium sulfate or sodium tetraborate is added to the electrolyte solution. Occurrence of a short circuit between the positive electrode and the negative electrode can be suppressed.
[0032]
However, when the separator thickness is 1.1 mm or less, short-circuit between the positive electrode and the negative electrode cannot be suppressed only by adding sodium sulfate or sodium borate. In such a region, it was confirmed that the short circuit between the positive electrode and the negative electrode can be suppressed only by the configuration of the present invention.
[0033]
In particular, those shown in Table 2 (a) and (e) that do not contain acrylic resin fibers in the separator are markedly reduced in thickness due to group pressure, and are reduced to about 70% to 30% with respect to the separator thickness before the test, A short circuit occurred easily. On the other hand, for the battery using the separator in which the acrylic resin fiber shown in (b) is added to silica and glass fiber, the change in the separator thickness is less than 10%, and as a result, the distance between the positive electrode and the negative electrode is in the initial state. It was almost kept.
[0034]
The effect of suppressing such a short circuit can be achieved by adopting the configuration shown in claim 1 of the present invention for both the separator and the electrolytic solution without targeting only the separator. In addition, the same effect was obtained when sodium sulfate, alkali metal sulfate, or alkaline earth metal salt was added instead of the functional group on the surface of the glass fiber replaced with sodium.
[0035]
【Effect of the invention】
As described above, according to the configuration of the present invention, a needle-shaped needle is generated particularly in a control valve type lead storage battery in which the distance between the positive electrode and the negative electrode is 1.1 mm or less, and is generated due to overdischarge standing conditions. The remarkable effect that the short circuit between the positive electrode and the negative electrode due to lead generation can be suppressed can be obtained, and its industrial value is extremely large.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the positive electrode-negative electrode distance and the discharge voltage. FIG. 2 is a diagram showing the relationship between the amount of sodium sulfate added in the electrolyte and the discharge voltage. FIG. 3 is tetraboric acid in the electrolyte. Diagram showing the relationship between the amount of sodium added and the discharge voltage
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001056510A JP4956858B2 (en) | 2001-03-01 | 2001-03-01 | Control valve type lead acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001056510A JP4956858B2 (en) | 2001-03-01 | 2001-03-01 | Control valve type lead acid battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002260714A JP2002260714A (en) | 2002-09-13 |
JP4956858B2 true JP4956858B2 (en) | 2012-06-20 |
Family
ID=18916527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001056510A Expired - Fee Related JP4956858B2 (en) | 2001-03-01 | 2001-03-01 | Control valve type lead acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4956858B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070092799A1 (en) * | 2003-12-11 | 2007-04-26 | Shinji Naruse | Heat resistant separators and electrical and electronic parts using the same |
JP4904686B2 (en) * | 2004-11-25 | 2012-03-28 | パナソニック株式会社 | Lead acid battery |
JP5044888B2 (en) * | 2004-12-03 | 2012-10-10 | パナソニック株式会社 | Liquid lead-acid battery |
JP5182467B2 (en) * | 2007-02-16 | 2013-04-17 | 株式会社Gsユアサ | Control valve type lead storage battery manufacturing method |
JP5012105B2 (en) * | 2007-03-14 | 2012-08-29 | パナソニック株式会社 | Control valve type lead acid battery |
KR20130033349A (en) | 2010-03-02 | 2013-04-03 | 신코베덴키 가부시키가이샤 | Lead storage battery |
MX2012012944A (en) | 2010-05-10 | 2012-12-17 | Shin Kobe Electric Machinery | Lead storage battery. |
US9553335B2 (en) | 2010-12-21 | 2017-01-24 | Hitachi Chemical Company, Ltd. | Lead-acid battery |
JP5500315B2 (en) | 2011-05-13 | 2014-05-21 | 新神戸電機株式会社 | Lead acid battery |
CN103296234B (en) * | 2012-03-01 | 2016-09-07 | 松下蓄电池(沈阳)有限公司 | Valve-regulated lead-acid battery |
JP6136342B2 (en) * | 2013-02-20 | 2017-05-31 | 株式会社Gsユアサ | Control valve type lead acid battery |
EP2960978B1 (en) * | 2013-02-22 | 2018-01-10 | GS Yuasa International Ltd. | Flooded lead-acid battery |
JP6066109B2 (en) * | 2013-09-12 | 2017-01-25 | 株式会社Gsユアサ | Control valve type lead-acid battery and motorcycle |
CN108701795B (en) | 2016-02-29 | 2021-10-01 | 旭化成株式会社 | Nonwoven fabric separator for lead-acid battery and lead-acid battery using same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2797634B2 (en) * | 1990-04-26 | 1998-09-17 | 日本板硝子株式会社 | Storage battery separator |
JP3091240B2 (en) * | 1991-02-21 | 2000-09-25 | バブコック日立株式会社 | Heat- and acid-resistant glass fiber, method for producing the same, and method for producing glass fiber plate catalyst |
JP3374518B2 (en) * | 1994-05-17 | 2003-02-04 | 松下電器産業株式会社 | Sealed lead-acid battery |
JPH08264202A (en) * | 1995-03-24 | 1996-10-11 | Japan Storage Battery Co Ltd | Lead-acid battery |
-
2001
- 2001-03-01 JP JP2001056510A patent/JP4956858B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002260714A (en) | 2002-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4956858B2 (en) | Control valve type lead acid battery | |
JP2008243487A (en) | Lead acid battery | |
WO2014162674A1 (en) | Lead acid storage battery | |
JP6045329B2 (en) | Lead acid battery | |
JP2007335360A (en) | Lithium secondary cell | |
JP2008130516A (en) | Liquid lead-acid storage battery | |
JP2011181436A (en) | Lead acid battery | |
JP2005302395A (en) | Lead storage battery | |
JP2016042473A (en) | Grid for lead storage battery and lead storage battery | |
JP5531746B2 (en) | Lead acid battery | |
JP2006185678A (en) | Lead-acid storage battery | |
JP5061460B2 (en) | Control valve type lead acid battery manufacturing method and control valve type lead acid battery | |
JP2006210059A (en) | Lead acid storage battery | |
WO2014097516A1 (en) | Lead storage battery | |
JPWO2011027383A1 (en) | Lead acid battery | |
JP2009266514A (en) | Lead-acid battery | |
JP2007035339A (en) | Control valve type lead-acid storage battery | |
JP2003338312A (en) | Control valve type lead-acid battery | |
JP6921037B2 (en) | Lead-acid battery | |
JP6197426B2 (en) | Lead acid battery | |
JP2006155901A (en) | Control valve type lead-acid storage battery | |
JP2013145664A (en) | Control valve type lead storage battery | |
JP2005294142A (en) | Lead storage battery | |
JP2013143262A (en) | Lithium ion secondary battery | |
JP2005183238A (en) | Control valve type lead storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080222 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080312 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091119 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120221 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120305 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150330 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |