JP2005183238A - Control valve type lead storage battery - Google Patents

Control valve type lead storage battery Download PDF

Info

Publication number
JP2005183238A
JP2005183238A JP2003423934A JP2003423934A JP2005183238A JP 2005183238 A JP2005183238 A JP 2005183238A JP 2003423934 A JP2003423934 A JP 2003423934A JP 2003423934 A JP2003423934 A JP 2003423934A JP 2005183238 A JP2005183238 A JP 2005183238A
Authority
JP
Japan
Prior art keywords
control valve
electrode plate
negative electrode
type lead
valve type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003423934A
Other languages
Japanese (ja)
Inventor
Toshio Shibahara
敏夫 柴原
Satoshi Minoura
敏 箕浦
Nobukazu Tanaka
伸和 田中
Takafumi Kondo
隆文 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2003423934A priority Critical patent/JP2005183238A/en
Publication of JP2005183238A publication Critical patent/JP2005183238A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control valve type lead storage battery having both weight reduction and output incrementation, easy to manufacture and hard to short-circuit. <P>SOLUTION: The control valve type lead storage battery with a positive electrode plate insulated from a negative electrode plate through a separator, has paste paper including Silica on the negative electrode surface. Furthermore, an electrolyte solution with magnesium borate added is used. The control valve type lead storage battery is manufactured by making a battery case with an electrode group using the negative electrode plate and the electrolyte solution. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、軽量化と高出力化の両方が要求される制御弁式鉛蓄電池に関するものである。   The present invention relates to a control valve type lead-acid battery that requires both weight reduction and high output.

制御弁式鉛蓄電池は、安価で信頼性が高いという特徴を有するために、無停電電源装置や電力貯蔵用、自動車用バッテリーなどにおいて広く使用されている。最近、軽量化と高出力化の両方を備えている制御弁式鉛蓄電池が強く求められている。   Control valve-type lead-acid batteries are widely used in uninterruptible power supplies, power storage, automobile batteries, and the like because they have the feature of being inexpensive and highly reliable. Recently, there has been a strong demand for a valve-regulated lead-acid battery that has both light weight and high output.

ここで、軽量化と高出力化の両方を達成するためには、正極板、負極板及びセパレータを薄型化をして、それぞれの枚数を増やしたり、捲回式の構造を用いる手法が有力な手法であることが一般に知られている。すなわち、正極板や負極板を薄くすると、活物質への電解液中の硫酸イオンの拡散が良好となり、活物質利用率が向上し、高出力化と軽量化とを図ることができる。   Here, in order to achieve both weight reduction and high output, it is effective to thin the positive electrode plate, the negative electrode plate, and the separator to increase the number of each, or to use a wound type structure. It is generally known that this is a technique. That is, when the positive electrode plate or the negative electrode plate is thinned, the diffusion of sulfate ions in the electrolytic solution into the active material becomes good, the active material utilization rate is improved, and high output and light weight can be achieved.

また、正極板、負極板及びセパレータを薄型化して対向面積を増加させると、制御弁式鉛蓄電池の内部抵抗が下がり、その結果、電圧特性が改善されることによって高出力化を達成することができる。そこで、最近では、帯状の正極板と負極板とを捲回する捲回式の構造を用いることによって、高出力化をすることも検討されている。しかしながら、セパレータを薄型化をした場合には、短絡しやすくなるという問題点がある。特に、一旦、過放電がされた後の回復充電時に正極板と負極板とが短絡しやすくなる。   Moreover, if the positive electrode plate, the negative electrode plate, and the separator are made thinner and the facing area is increased, the internal resistance of the control valve type lead-acid battery is lowered, and as a result, the voltage characteristics are improved to achieve high output. it can. Thus, recently, it has been studied to increase the output by using a winding structure in which a belt-like positive electrode plate and a negative electrode plate are wound. However, when the separator is thinned, there is a problem that short-circuiting easily occurs. In particular, the positive electrode plate and the negative electrode plate are easily short-circuited at the time of recovery charge after being once overdischarged.

ここで、正極板と負極板とが短絡しやすくなる理由は、次のように理解されている。すなわち、上記した正極板、負極板及びセパレータを薄型化をしたものを積層したり、捲回式の構造を用いて対向面積を増加させたりすると、正極活物質量や負極活物質量に対して電解液中の硫酸イオンの量が相対的に少なくなるために、過放電された場合に電解液の比重が下がりやすくなるとともに、pHが高くなりやすい。そして、過放電時には電解液のpHは中性から弱アルカリ性になる場合もある。   Here, the reason why the positive electrode plate and the negative electrode plate are easily short-circuited is understood as follows. That is, when the thinned positive electrode plate, negative electrode plate and separator are laminated or the facing area is increased using a wound structure, the positive electrode active material amount and the negative electrode active material amount are reduced. Since the amount of sulfate ions in the electrolytic solution is relatively small, the specific gravity of the electrolytic solution tends to decrease and the pH tends to increase when overdischarge occurs. And at the time of overdischarge, pH of electrolyte solution may become weak alkaline from neutrality.

この状態で長期間放置された際には、放電により電極板中に生成した硫酸鉛が電解液中に溶解する。この状態から充電をすると、負極側でデンドライト状の鉛結晶が生成したり、充電により比重が上がるとセパレータ中に硫酸鉛が析出する。これらのデンドライト状の鉛結晶や硫酸鉛がさらに充電されると、それぞれPb或いはPbOに還元又は酸化され、セパレータを貫通して正極板と負極板とが短絡する。 When left in this state for a long time, lead sulfate generated in the electrode plate by discharge dissolves in the electrolyte. When charging is performed from this state, dendritic lead crystals are formed on the negative electrode side, or lead sulfate is deposited in the separator when the specific gravity is increased by charging. When these dendritic lead crystal or lead sulfate is further charged, it is reduced or oxidized to Pb or PbO 2, respectively, through the separator and the positive and negative electrode plates are short-circuited.

ここで、正極板と負極板との短絡を防止する手法として、セパレータにシリカを添加する手法が検討されている(例えば、特許文献1参照。)。さらに、ガラス繊維と有機繊維とシリカとで構成されたセパレータを用い、電解液にアルカリ金属またはアルカリ土類金属の硫酸塩もしくはホウ酸塩を0.2〜5質量%添加する技術が検討されている(例えば、特許文献2参照。)。   Here, as a method for preventing a short circuit between the positive electrode plate and the negative electrode plate, a method of adding silica to the separator has been studied (for example, see Patent Document 1). Furthermore, using a separator composed of glass fiber, organic fiber, and silica, a technique for adding 0.2 to 5% by mass of an alkali metal or alkaline earth metal sulfate or borate to an electrolytic solution has been studied. (For example, refer to Patent Document 2).

特許第2743438号Japanese Patent No. 2743438 特開2002−260714号JP 2002-260714 A

しかしながら、ガラス繊維を主成分とするセパレータ中に多量のシリカを添加すると、保持される電解液量が少なくなるという問題点や、セパレータ自身が硬くなるために、積層しにくくなったり、捲回しにくくなったりして、製造が困難になるという問題点が認められている。また、電解液にアルカリ金属またはアルカリ土類金属の硫酸塩もしくはホウ酸塩を0.2〜5質量%添加する技術のみでは、短絡防止効果は十分ではないという問題点も認められている。   However, if a large amount of silica is added to a separator mainly composed of glass fiber, the amount of electrolyte retained is reduced, and the separator itself becomes hard, making it difficult to stack or wind. The problem that manufacturing becomes difficult is recognized. Moreover, the problem that a short-circuit prevention effect is not enough only by the technique which adds 0.2-5 mass% of sulfates or borates of an alkali metal or alkaline-earth metal to electrolyte solution is also recognized.

本発明は上記した問題点に鑑みたものであり、軽量化と高出力化の両方を備えている制御弁式鉛蓄電池において、製造が容易であるとともに、短絡防止効果の優れた制御弁式鉛蓄電池の提供を目的としている。   The present invention has been made in view of the above-described problems, and is a control valve type lead-acid storage battery having both weight reduction and high output, and is easy to manufacture and has a control valve type lead having an excellent short-circuit prevention effect. The purpose is to provide storage batteries.

上記した課題を解決するために、本発明に係わる制御弁式鉛蓄電池は、電解液にホウ酸マグネシウムを添加したり、負極板の表面にシリカ層を存在させることによって、短絡を防止するものである。   In order to solve the above-described problems, the control valve type lead-acid battery according to the present invention prevents a short circuit by adding magnesium borate to the electrolyte or by causing a silica layer to exist on the surface of the negative electrode plate. is there.

すなわち、請求項1記載の発明は、正極板と負極板とがガラス繊維を主成分とするセパレータを介して絶縁されている制御弁式鉛蓄電池において、電解液にホウ酸マグネシウムが添加されていることを特徴としている。   That is, the invention according to claim 1 is a control valve type lead-acid battery in which the positive electrode plate and the negative electrode plate are insulated via a separator mainly composed of glass fiber, and magnesium borate is added to the electrolyte. It is characterized by that.

請求項2記載の発明は、請求項1記載の発明において、負極板の表面には、シリカ層が存在することを特徴としている。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, a silica layer is present on the surface of the negative electrode plate.

請求項3記載の発明は、請求項1記載の発明において、負極板の表面には、シリカを含有するペースト紙が存在することを特徴としている。   The invention described in claim 3 is characterized in that, in the invention described in claim 1, paste paper containing silica is present on the surface of the negative electrode plate.

本発明に係わる制御弁式鉛蓄電池では、希硫酸電解液にホウ酸マグネシウムを添加している。ホウ酸マグネシウムは、上述した特許文献2に記載されている四ホウ酸ナトリウムとは異なり、電解液に良く溶解するという特徴がある。そして、電解液に溶解したホウ酸マグネシウムは、過放電時には電解液中に溶解した鉛イオンと反応して、難溶性のホウ酸鉛を形成する。その結果、電解液の比重が低下した場合にも鉛イオンの溶解量を適度に減らし、鉛のデンドライトの発生を抑制することができる。   In the control valve type lead acid battery according to the present invention, magnesium borate is added to the dilute sulfuric acid electrolyte. Unlike sodium tetraborate described in Patent Document 2 described above, magnesium borate has a feature that it dissolves well in an electrolytic solution. The magnesium borate dissolved in the electrolytic solution reacts with lead ions dissolved in the electrolytic solution at the time of overdischarge to form hardly soluble lead borate. As a result, even when the specific gravity of the electrolytic solution decreases, the amount of lead ions dissolved can be appropriately reduced, and the generation of lead dendrites can be suppressed.

本発明に係わる制御弁式鉛蓄電池では、さらに負極板の表面付近にシリカを偏在して存在するようにした。例えば、負極板の表面にシリカを含有するペースト紙を存在させるようにした。この結果、セパレータへのシリカの添加量を低減できるとともに、セパレータに電解液を保持できる十分な容積を確保することができ、セパレータ自身が硬くなるという問題点もなく、制御弁式鉛蓄電池の製造を容易にすることができる。   In the control valve-type lead-acid battery according to the present invention, silica is further unevenly distributed near the surface of the negative electrode plate. For example, paste paper containing silica is present on the surface of the negative electrode plate. As a result, the amount of silica added to the separator can be reduced, and a sufficient volume that can hold the electrolytic solution in the separator can be secured, and there is no problem that the separator itself is hardened. Can be made easier.

すなわち、本発明を用いると、製造が容易であり、短絡防止効果の優れた制御弁式鉛蓄電池の提供することができるために、工業上優れたものである。   That is, when this invention is used, since manufacture is easy and the control valve type lead acid battery excellent in the short circuit prevention effect can be provided, it is industrially excellent.

1.制御弁式鉛蓄電池の製造
以下の実施例では、積層式の制御弁式鉛蓄電池を製造して検討した。なお、正極板や負極板及び制御弁式鉛蓄電池は従来の手法で製造した。
1. Manufacture of Control Valve Type Lead Acid Battery In the following examples, a stacked type control valve type lead acid battery was manufactured and examined. In addition, the positive electrode plate, the negative electrode plate, and the control valve type lead acid battery were manufactured by the conventional method.

すなわち、酸化鉛と鉛を主成分とするボールミル式鉛粉を所定量の水と希硫酸とで混練して正極用ペースト状活物質を作製する。作製した正極用ペースト状活物質を、幅が43mm、長さが67mm、厚さが2.7mmの鉛−カルシウム−錫合金製の集電体に充填した。そして、40℃、湿度95%の大気中で24h放置して熟成した後に、50℃で16h乾燥して未化成のペースト式正負極板を作製した。   That is, a ball mill type lead powder mainly composed of lead oxide and lead is kneaded with a predetermined amount of water and dilute sulfuric acid to prepare a positive electrode paste-like active material. The produced positive electrode paste-like active material was filled into a lead-calcium-tin alloy current collector having a width of 43 mm, a length of 67 mm, and a thickness of 2.7 mm. Then, after aging for 24 hours in the atmosphere of 40 ° C. and 95% humidity, it was dried at 50 ° C. for 16 hours to produce an unformed paste type positive and negative electrode plate.

酸化鉛と鉛を主成分とするボールミル式鉛粉を所定量の水と希硫酸とで混練して負極用ペースト状活物質を作製する。作製した負極用ペースト状活物質を、幅が43mm、長さが67mm、厚さが1.6mmの鉛−カルシウム−錫合金製の集電体に充填してペースト式負極板を作製した。   A ball mill type lead powder mainly composed of lead oxide and lead is kneaded with a predetermined amount of water and dilute sulfuric acid to prepare a paste active material for a negative electrode. The prepared paste-form active material for negative electrode was filled into a current collector made of lead-calcium-tin alloy having a width of 43 mm, a length of 67 mm, and a thickness of 1.6 mm to prepare a paste-type negative electrode plate.

後述するように、本発明に係わる実施例2では、厚さが0.2mmのペースト紙にシリカゾル(商品名:スノーテックスST−40、日産化学(株))を含浸させたものを負極板の表面に貼り付けた。   As described later, in Example 2 according to the present invention, a paste paper having a thickness of 0.2 mm impregnated with silica sol (trade name: Snowtex ST-40, Nissan Chemical Co., Ltd.) was used for the negative electrode plate. Affixed to the surface.

作製したペースト式正極板が4枚とペースト式負極板が5枚とを、厚みが0.4mmのガラス繊維を主成分とする不織布からなるセパレータを介して積層し、溶接して電極群とし、20kg/dmの群加圧となるようABS製の電槽に組み込んだ。 4 paste type positive electrode plates and 5 paste type negative electrode plates were laminated via a separator made of nonwoven fabric mainly composed of glass fiber having a thickness of 0.4 mm, and welded to form an electrode group. incorporated in ABS-made battery container so that the group pressure of 20 kg / dm 2.

後述するように、本発明に係わる実施例1及び実施例2では、ホウ酸マグネシウムを添加した電解液を注入した。そして、周囲温度が約25℃、課電量が250%、化成時間が48hの条件で電槽化成を行い、公称容量が9Ah−12Vの制御弁式鉛蓄電池を作製した。
2.制御弁式鉛蓄電池の短絡試験
上記した電槽化成の後に、周囲温度が25℃で満充電状態にした制御弁式鉛蓄電池を、0.2CA(1.8A)で終止電圧が10.5V(1.75V/セル)まで放電して初期の放電容量を確認する。続いて、制御弁式鉛蓄電池の正極端子と負極端子との間に、30Ω、10Wのホーロー抵抗を取り付け、周囲温度が40℃雰囲気で2週間放置して完全放電をする。次に、周囲温度が25℃で14.7V(2.45V/セル)、制限電流が2.7Aの定電圧充電を16h行う。そして、充電状態で制御弁式鉛蓄電池を解体して、セパレータに残る短絡痕があるか否か、及び、実際に正極板と負極板とが短絡をしているか否かを確認した。なお、上記した短絡試験試験方法は、いわゆる加速試験方法である。
As will be described later, in Examples 1 and 2 according to the present invention, an electrolytic solution to which magnesium borate was added was injected. Then, the battery case was formed under the conditions of an ambient temperature of about 25 ° C., an applied amount of 250%, and a formation time of 48 hours, to produce a control valve type lead storage battery having a nominal capacity of 9 Ah-12V.
2. Control valve type lead-acid battery short-circuit test After the above-mentioned battery formation, a control valve-type lead acid battery that has been fully charged at an ambient temperature of 25 ° C. is 0.2 CA (1.8 A) with a final voltage of 10.5 V ( 1.75 V / cell) to confirm the initial discharge capacity. Subsequently, a 30Ω, 10 W enamel resistor is attached between the positive electrode terminal and the negative electrode terminal of the control valve type lead-acid battery, and it is left for 2 weeks in an atmosphere of 40 ° C. for complete discharge. Next, constant voltage charging is performed for 16 hours at 14.7 V (2.45 V / cell) at an ambient temperature of 25 ° C. and a limiting current of 2.7 A. Then, the control valve type lead storage battery was disassembled in a charged state, and it was confirmed whether or not there was a short-circuit trace remaining on the separator and whether or not the positive electrode plate and the negative electrode plate were actually short-circuited. The short-circuit test method described above is a so-called accelerated test method.

以下に、本発明に係わる実施例について詳細に説明する。
(実施例1)
正極板及び負極板として従来から使用しているものを用いた。ここで、実施例1として、ホウ酸マグネシウムを2.5質量%添加した電解液を用いた。その他の制御弁式鉛蓄電池の製造方法や短絡試験方法は上記したものである。
(実施例2)
正極板として従来から使用しているものを用いた。ここで、実施例2として、上述した負極板の表面にシリカゾルを含浸したペースト紙を貼り付けた。ここで、ペースト紙は、正極板と負極板とを絶縁するセパレータとしての役割もはたしている。
Hereinafter, embodiments according to the present invention will be described in detail.
(Example 1)
Conventionally used positive electrode plates and negative electrode plates were used. Here, as Example 1, an electrolytic solution to which 2.5% by mass of magnesium borate was added was used. Other control valve type lead storage battery manufacturing methods and short circuit test methods are as described above.
(Example 2)
The positive electrode plate used heretofore has been used. Here, as Example 2, paste paper impregnated with silica sol was attached to the surface of the negative electrode plate described above. Here, the paste paper also serves as a separator that insulates the positive electrode plate and the negative electrode plate.

さらに、実施例1と同様に、ホウ酸マグネシウムを2.5質量%添加した電解液を用いた。その他の制御弁式鉛蓄電池の製造方法や短絡試験方法は上記したものである。
(比較例1)
正極板、負極板及び電解液として従来から使用しているものを用いた。その他の制御弁式鉛蓄電池の製造方法や短絡試験方法は上記したものである。
(比較例2)
正極板及び負極板として従来から使用しているものを用いた。ここで、比較例2として、厚みが0.4mmのガラス繊維製の不織布に、シリカを30質量%含有するものを用いた。その他の制御弁式鉛蓄電池の製造方法や短絡試験方法は上記したものである。
(比較例3)
正極板及び負極板として従来から使用しているものを用いた。ここで、比較例3として、厚みが0.4mmのガラス繊維製の不織布に、シリカを30質量%含有するものを用いるとともに、硫酸ナトリウムを2.5質量%添加した電解液を用いた。その他の制御弁式鉛蓄電池の製造方法や短絡試験方法は上記したものである。
Further, as in Example 1, an electrolytic solution to which 2.5% by mass of magnesium borate was added was used. Other control valve type lead storage battery manufacturing methods and short circuit test methods are as described above.
(Comparative Example 1)
Conventionally used positive electrode plates, negative electrode plates and electrolytes were used. Other control valve type lead storage battery manufacturing methods and short circuit test methods are as described above.
(Comparative Example 2)
Conventionally used positive electrode plates and negative electrode plates were used. Here, as Comparative Example 2, a non-woven fabric made of glass fiber having a thickness of 0.4 mm containing 30% by mass of silica was used. Other control valve type lead storage battery manufacturing methods and short circuit test methods are as described above.
(Comparative Example 3)
Conventionally used positive electrode plates and negative electrode plates were used. Here, as Comparative Example 3, an electrolyte solution containing 30% by mass of silica and 2.5% by mass of sodium sulfate was used for a nonwoven fabric made of glass fiber having a thickness of 0.4 mm. Other control valve type lead storage battery manufacturing methods and short circuit testing methods are as described above.

表1に、上記した5種類の制御弁式鉛蓄電池の短絡試験結果を示す。本発明に係わる制御弁式鉛蓄電池は、短絡しにくいことがわかる。また、本発明に係わる制御弁式鉛蓄電池では、セパレータにはシリカを含有しないために弾力性があり、正極板及び負極板との積層工程やその他の製造工程においても製造が容易であった。   Table 1 shows the short-circuit test results of the five types of control valve type lead storage batteries described above. It turns out that the control valve type lead acid battery concerning this invention is hard to short-circuit. Moreover, in the control valve type lead-acid battery according to the present invention, since the separator does not contain silica, the separator is elastic and can be easily manufactured in the lamination process with the positive electrode plate and the negative electrode plate and other manufacturing processes.

さらに、上述した実施例では積層方式を用いた場合であるが、本発明に係わるセパレータにはシリカを含浸していないために弾力性があり、捲回式構造に用いた場合でも、製造が容易であり、同様の短絡防止効果があることも確認された。   Furthermore, in the above-described embodiments, the lamination method is used. However, the separator according to the present invention is elastic because it is not impregnated with silica, and even when used in a wound structure, it is easy to manufacture. It was also confirmed that there was a similar short-circuit prevention effect.

Figure 2005183238
Figure 2005183238

本発明を用いると、軽量化と高出力化の両方を備えている制御弁式鉛蓄電池において、製造が容易であり、短絡しにくい制御弁式鉛蓄電池の提供をすることができる。
By using the present invention, it is possible to provide a control valve type lead-acid battery that is easy to manufacture and difficult to short-circuit in a control valve-type lead acid battery that has both weight reduction and high output.

Claims (3)

正極板と負極板とがガラス繊維を主成分とするセパレータを介して絶縁されている制御弁式鉛蓄電池において、電解液にホウ酸マグネシウムが添加されていることを特徴とする制御弁式鉛蓄電池。 A control valve type lead acid battery in which magnesium borate is added to an electrolyte solution in a control valve type lead acid battery in which a positive electrode plate and a negative electrode plate are insulated via a separator mainly composed of glass fiber. . 前記負極板の表面には、シリカ層が存在することを特徴とする請求項1記載の制御弁式鉛蓄電池。 2. The control valve type lead acid battery according to claim 1, wherein a silica layer is present on the surface of the negative electrode plate. 前記負極板の表面には、シリカを含有するペースト紙が存在することを特徴とする請求項1記載の制御弁式鉛蓄電池。 2. The valve-regulated lead-acid battery according to claim 1, wherein paste paper containing silica is present on the surface of the negative electrode plate.
JP2003423934A 2003-12-22 2003-12-22 Control valve type lead storage battery Pending JP2005183238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423934A JP2005183238A (en) 2003-12-22 2003-12-22 Control valve type lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003423934A JP2005183238A (en) 2003-12-22 2003-12-22 Control valve type lead storage battery

Publications (1)

Publication Number Publication Date
JP2005183238A true JP2005183238A (en) 2005-07-07

Family

ID=34784261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423934A Pending JP2005183238A (en) 2003-12-22 2003-12-22 Control valve type lead storage battery

Country Status (1)

Country Link
JP (1) JP2005183238A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033863A (en) * 2015-08-05 2017-02-09 日立化成株式会社 Control valve type lead storage battery
JP2017142888A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Lead storage battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017033863A (en) * 2015-08-05 2017-02-09 日立化成株式会社 Control valve type lead storage battery
JP2017142888A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Lead storage battery

Similar Documents

Publication Publication Date Title
JP2008243487A (en) Lead acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP2008130516A (en) Liquid lead-acid storage battery
JP4956858B2 (en) Control valve type lead acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP2011070904A (en) Separator for lead-acid battery and lead-acid battery using it
JP5545975B2 (en) Positive electrode active material for lead storage battery and positive electrode plate for lead storage battery comprising the same
JP4509660B2 (en) Lead acid battery
JP2005183238A (en) Control valve type lead storage battery
JP6921037B2 (en) Lead-acid battery
JP2006155901A (en) Control valve type lead-acid storage battery
JP4364054B2 (en) Lead acid battery
JP3094423B2 (en) Lead storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP2002100409A (en) Nonaqueous secondary battery
JP4503358B2 (en) Lead acid battery
JP2005190686A (en) Cylindrical closed-type lead acid storage battery
JP2005116206A (en) Control valve type lead-acid storage battery
JP2006059613A (en) Control valve type lead-acid storage battery
JP3637797B2 (en) Lead acid battery
KR860000820B1 (en) Storage battery
JP2006114236A (en) Lead acid storage battery
JPS63152871A (en) Sealed lead-acid battery
JP2003338271A (en) Separator for lead battery and valve-control led lead battery using the same
JP2004327157A (en) Storage battery