JP2002100409A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery

Info

Publication number
JP2002100409A
JP2002100409A JP2000288500A JP2000288500A JP2002100409A JP 2002100409 A JP2002100409 A JP 2002100409A JP 2000288500 A JP2000288500 A JP 2000288500A JP 2000288500 A JP2000288500 A JP 2000288500A JP 2002100409 A JP2002100409 A JP 2002100409A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
secondary battery
lithium
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000288500A
Other languages
Japanese (ja)
Inventor
Akihiro Fujii
明博 藤井
Ryuji Shiozaki
竜二 塩崎
Katsuhiko Okamoto
勝彦 岡本
Kazuya Okabe
一弥 岡部
Hiroshi Yufu
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2000288500A priority Critical patent/JP2002100409A/en
Publication of JP2002100409A publication Critical patent/JP2002100409A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery of high safety, superior mass-productivity, wherein self discharge is not much and a capacity is not lowered much, even after keeping it for a long time and keeping it in a high temperature, and to especially enhance preservation characteristics of the nonaqueous secondary battery using a lithium manganese composite oxide for a positive electrode. SOLUTION: In this nonaqueous secondary battery, the acting material applied surface of a negative electrode is larger than the active material applied surface of a positive electrode facing the negative electrode, and the active material applied area of the negative electrode is set to be not more than 105% of the active material applied area of the positive electrode. After adjusting a negative electrode potential so as to make it lower than the lithium metal potential by not more than 1,000 mV, after assembling, initial discharging is carried out for solving above problem.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に関
し、特に、非水二次電池の電極構成及び化成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous secondary battery, and more particularly, to an electrode configuration of a non-aqueous secondary battery and a chemical conversion method.

【0002】[0002]

【従来の技術】近年、携帯電話、ノートパソコン等の携
帯機器用、電気自動車用などの電源として、エネルギー
密度が高く、自己放電が少なく、サイクル特性の良好な
非水二次電池が注目されている。このような非水二次電
池の中で、リチウムイオン二次電池が広く市場に出回っ
ている。一般にリチウムイオン二次電池は、固有の電位
においてリチウムイオンを吸蔵・放出可能な正極及び負
極と、前記正極及び負極を隔離するセパレータ、電解質
塩を含有する非水系電解液から構成される。正極作用物
質としてはLiCoO2,LiNiO2,LiMn2O4等に代表される層
状またはスピネル酸化物が特に知られており、負極作用
物質としては炭素材料が広く用いられている。なかで
も、LiMn2O4は高い安全性を有するため、現在最も注目
されている正極作用物質である。
2. Description of the Related Art In recent years, non-aqueous secondary batteries having high energy density, low self-discharge, and good cycle characteristics have been attracting attention as power sources for portable devices such as cellular phones and notebook computers, and electric vehicles. I have. Among such non-aqueous secondary batteries, lithium ion secondary batteries are widely marketed. Generally, a lithium ion secondary battery includes a positive electrode and a negative electrode capable of inserting and extracting lithium ions at a specific potential, a separator for separating the positive electrode and the negative electrode, and a non-aqueous electrolyte containing an electrolyte salt. A layered or spinel oxide typified by LiCoO 2 , LiNiO 2 , LiMn 2 O 4 or the like is particularly known as a positive electrode active substance, and a carbon material is widely used as a negative electrode active substance. Above all, LiMn 2 O 4 is a cathode active substance that has received the most attention at present because of its high safety.

【0003】このようなリチウムイオン電池において
は、正極と負極との対向面積が大きいほど、大きな電流
を取り出すことができる。発電要素を構成する方法とし
ては、帯状に成形した前記正極、負極及びセパレータを
積層し、捲回する方法が多く用いられている。ここで、
正極や負極の周縁部のバリによる短絡を防止するため、
正極板または負極板のいずれか一方を大きくすることが
一般的に行われている。例えば、特開平5−74496
号公報には、前記帯状負極の長さ方向の両端部、即ち巻
き始め部及び巻き終わり部を、前記帯状正極正極の長さ
方向の両端部より1〜10mm長くする構成が開示され
ている。
In such a lithium ion battery, a larger current can be taken out as the facing area between the positive electrode and the negative electrode is larger. As a method of forming a power generating element, a method of laminating and winding the positive electrode, the negative electrode, and the separator formed into a belt shape and winding the same is often used. here,
To prevent short circuit due to burrs on the periphery of the positive and negative electrodes,
It is common practice to increase either the positive electrode plate or the negative electrode plate. For example, Japanese Patent Application Laid-Open No. 5-74496
The publication discloses a configuration in which both ends in the length direction of the strip-shaped negative electrode, that is, a winding start portion and a winding end portion, are longer by 1 to 10 mm than both ends in the length direction of the strip-shaped positive electrode.

【0004】負極板の大きさはできるだけ正極板に近い
方がエネルギー密度を高く設計できる点で好ましいが、
正極板と負極板を同一寸法とすると、捲回時のずれ等に
より、正極の一部に負極と対向していない部分が生じた
場合、その近傍で短絡が発生しやすい。この短絡の原因
は、上記した正極板や負極板のバリによる短絡ではな
く、負極周縁部が部分的に過充電されることにより、負
極炭素材料内に吸蔵できないリチウムがデンドライト状
に析出して発生した短絡である。これを避けるために
は、負極板を正極板よりも大きく構成することが有効で
ある。
[0004] The size of the negative electrode plate is preferably as close to the positive electrode plate as possible from the viewpoint that the energy density can be designed high.
When the positive electrode plate and the negative electrode plate have the same dimensions, when a part of the positive electrode that is not opposed to the negative electrode is generated due to a displacement during winding or the like, a short circuit is likely to occur in the vicinity thereof. The cause of this short-circuit is not the above-mentioned short-circuit due to burrs of the positive electrode plate or the negative electrode plate. Short circuit. To avoid this, it is effective to make the negative electrode plate larger than the positive electrode plate.

【0005】一方、前記負極板が正極板に対して大きす
ぎると、次のような問題点が生じる。即ち、充電によ
り、正極から供給されるリチウムイオンは、正極と対向
している部分の負極炭素材料に吸蔵されるが、上記のよ
うに負極が大きすぎると、電池の放置中、吸蔵された前
記リチウムイオンは、正極に対向していない部分の炭素
材料まで拡散により移動する。この結果、移動したリチ
ウムイオンは、対向部に正極が存在しないため、次回の
放電にほとんど供さないものとなり、電池の容量低下を
導く結果となる。
On the other hand, if the negative electrode plate is too large with respect to the positive electrode plate, the following problems occur. That is, by charging, lithium ions supplied from the positive electrode are occluded in the negative electrode carbon material in a portion facing the positive electrode. The lithium ions move by diffusion to a portion of the carbon material not facing the positive electrode. As a result, the moved lithium ions are hardly provided for the next discharge because the positive electrode does not exist in the facing portion, which leads to a reduction in the capacity of the battery.

【0006】このようなメカニズムによる容量低下は、
正極材料にリチウムマンガン複合酸化物を用いた場合、
特に顕著となる。この原因については必ずしも明らかで
ないが、次のように考えられる。即ち、リチウムマンガ
ン複合酸化物は、保存中にマンガンイオンが電池内に溶
出しやすい。また、前記負極内において、正極との対向
部と非対向部とは吸蔵されているリチウムイオン量が異
なるため、電位差が生じる。このとき、溶出したマンガ
ンイオンが負極近傍に存在すると、正極との対向部から
非対向部へのリチウムイオンの移動が大幅に加速される
ものと考えられる。即ち、正極にリチウムマンガン複合
酸化物を用いたリチウムイオン電池においては、正極と
負極との寸法構成は極めて厳密に設計されなければなら
ない。
[0006] The capacity reduction due to such a mechanism is as follows.
When using lithium manganese composite oxide for the positive electrode material,
This is particularly noticeable. Although the cause is not always clear, it is considered as follows. That is, in the lithium manganese composite oxide, manganese ions are easily eluted into the battery during storage. Further, in the negative electrode, the portion facing the positive electrode and the non-facing portion have different amounts of occluded lithium ions, so that a potential difference occurs. At this time, if the eluted manganese ions exist in the vicinity of the negative electrode, it is considered that the movement of lithium ions from a portion facing the positive electrode to a portion not facing the positive electrode is greatly accelerated. That is, in a lithium ion battery using a lithium manganese composite oxide for the positive electrode, the dimensional configuration of the positive electrode and the negative electrode must be extremely strictly designed.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みなされたものであって、安全性が高く、量産性に
優れ、長期の放置や高温放置を行っても自己放電が少な
く、容量低下が小さい非水二次電池を提供することを目
的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above problems, and has high safety, excellent mass productivity, and low self-discharge even after long-term or high-temperature storage. It is an object of the present invention to provide a non-aqueous secondary battery having a small capacity reduction.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の非水二次電池は、請求項1に記載したよう
に、正極、負極及びセパレーターを有する発電要素を具
備し、前記負極の作用物質塗布面が、対向する前記正極
の作用物質塗布面よりも大きい非水二次電池において、
前記負極の作用物質塗布面積が、前記正極の作用物質塗
布面積に対して105%以下であることを特徴としてい
る。
According to a first aspect of the present invention, there is provided a non-aqueous secondary battery comprising a power generating element having a positive electrode, a negative electrode, and a separator. In the non-aqueous secondary battery, the active substance application surface of the larger than the opposing active substance application surface of the positive electrode,
The active substance application area of the negative electrode is not more than 105% of the active substance application area of the positive electrode.

【0009】このような構成によれば、正極板が負極板
からはみ出すことがないので、負極周縁部の過充電を防
ぎ、これに起因する短絡が発生しない非水二次電池を提
供することができる。また、負極内のリチウムイオンが
正極との非対向部へ移動することに起因する容量低下を
抑制することができる。
According to such a configuration, since the positive electrode plate does not protrude from the negative electrode plate, it is possible to provide a non-aqueous secondary battery that prevents overcharging of the peripheral portion of the negative electrode and does not cause a short circuit due to this. it can. Further, it is possible to suppress a decrease in capacity due to the movement of lithium ions in the negative electrode to a portion not facing the positive electrode.

【0010】また、本発明の非水二次電池は、請求項2
に記載したように前記発電要素は、帯状正極、帯状セパ
レーター及び帯状負極からなる積層体が捲回されてな
り、前記帯状負極の作用物質塗布面は、前記帯状正極の
作用物質塗布面に対し、幅方向において両端部から1.
5mm以上2.5mm以下の範囲ではみ出していること
を特徴としている。
Further, the non-aqueous secondary battery of the present invention is characterized in that
As described in the above, the power generating element, a band-shaped positive electrode, a band-shaped separator and a stacked body composed of a band-shaped negative electrode are wound, the active material applied surface of the band-shaped negative electrode, with respect to the active material coated surface of the band-shaped positive electrode, 1. From both ends in the width direction.
It protrudes in the range of 5 mm or more and 2.5 mm or less.

【0011】このような構成によれば、量産製造時にお
いても、正極が負極対向面からはみ出すことが充分に防
止できるので、負極周縁部の過充電を防ぎ、これに起因
する短絡が発生しない非水二次電池を量産に優れた方法
で提供することができる。また、正極板に対する負極板
の幅方向の大きさが規制されているので、負極内のリチ
ウムイオンが正極との非対向部へ移動することを効果的
に抑止でき、保存時の容量低下を最小限に抑えた非水二
次電池を提供することができる。
According to such a configuration, even during mass production, the positive electrode can be sufficiently prevented from protruding from the surface facing the negative electrode, so that overcharge of the peripheral portion of the negative electrode is prevented, and a short circuit caused by this is not generated. The water secondary battery can be provided by a method excellent in mass production. In addition, since the size of the negative electrode plate in the width direction with respect to the positive electrode plate is regulated, it is possible to effectively prevent lithium ions in the negative electrode from moving to a portion not facing the positive electrode, and to minimize the capacity reduction during storage. It is possible to provide a non-aqueous secondary battery with a minimum capacity.

【0012】また、本発明の非水二次電池は、請求項3
に記載したように、前記発電要素は、帯状正極、帯状セ
パレーター及び帯状負極からなる積層体が捲回されてな
り、前記帯状負極の作用物質塗布面は、前記帯状正極の
作用物質塗布面に対し、長さ方向において少なくとも一
方の端部から15mm以上はみ出していることを特徴と
している。
Further, the non-aqueous secondary battery of the present invention is characterized in that
As described in the above, the power generating element is formed by winding a laminate comprising a band-shaped positive electrode, a band-shaped separator, and a band-shaped negative electrode, and the active material-coated surface of the band-shaped negative electrode is opposed to the active material-coated surface of the band-shaped positive electrode. , Protruding by at least 15 mm from at least one end in the length direction.

【0013】このような構成によれば、巻き込み時のず
れ、電極厚みの変動等があっても、正極が負極対向面か
らはみ出すことがないので、これに起因する短絡が発生
しない非水二次電池を量産に優れた方法で提供すること
ができる。
According to such a configuration, the positive electrode does not protrude from the surface facing the negative electrode even if there is a deviation at the time of winding or a change in the electrode thickness. The battery can be provided in a method excellent for mass production.

【0014】また、本発明の非水二次電池は、請求項4
に記載したように、前記正極作用物質が、リチウムマン
ガン複合酸化物であることを特徴としている。
Further, the non-aqueous secondary battery of the present invention is characterized in that
As described in above, the positive electrode active substance is a lithium manganese composite oxide.

【0015】このような構成によれば、正極にリチウム
マンガン複合酸化物を用いているので、安全性に極めて
優れた非水二次電池を提供することができる。なかで
も、スピネル構造を有するリチウムマンガン複合酸化物
を正極に用いると、良好な充放電サイクル性能を兼ね備
えた非水二次電池を提供することができる。さらに、前
記リチウムマンガン複合酸化物、特にスピネル構造を有
するリチウムマンガン複合酸化物が有する、保存中にマ
ンガンが溶出しやすいといった欠点による容量低下を最
小限に抑制することができる。
According to such a configuration, since the lithium manganese composite oxide is used for the positive electrode, a non-aqueous secondary battery with extremely excellent safety can be provided. In particular, when a lithium manganese composite oxide having a spinel structure is used for the positive electrode, a nonaqueous secondary battery having good charge / discharge cycle performance can be provided. Further, it is possible to minimize a decrease in capacity due to a drawback of the lithium manganese composite oxide, particularly a lithium manganese composite oxide having a spinel structure, that manganese is easily eluted during storage.

【0016】また、本発明の非水二次電池は、請求項5
に記載したように、少なくとも電解液注液工程前のいず
れかの段階において、前記正極に対して電気的に接触す
ることなく設けられた含リチウム物質を電池内部に有
し、化成充電工程前の状態において、前記負極電位が金
属リチウムの電位に対して1000mV以下になるよう
に調整したことを特徴としている。
Further, the non-aqueous secondary battery of the present invention is characterized in that
As described in the above, at least at any stage before the electrolyte injection step, having a lithium-containing substance provided without being in electrical contact with the positive electrode inside the battery, before the formation charging step In this state, the potential of the negative electrode is adjusted to be 1000 mV or less with respect to the potential of metallic lithium.

【0017】このような構成によれば、特に正極にリチ
ウムマンガン複合酸化物を用いた場合、なかでも、スピ
ネル構造を有するリチウムマンガン複合酸化物を用いた
場合、保存中にマンガンが溶出しやすいといった前記欠
点を完全に抑制することができるので、保存時の容量低
下を最小限に抑え、高い安全性を兼ね備えた非水二次電
池を提供することができる。
According to such a structure, particularly when a lithium manganese composite oxide is used for the positive electrode, especially when a lithium manganese composite oxide having a spinel structure is used, manganese is easily eluted during storage. Since the above drawbacks can be completely suppressed, it is possible to provide a non-aqueous secondary battery that minimizes a decrease in capacity during storage and has high safety.

【0018】前記したように、負極内においてリチウム
イオンが正極との非対向部へ移動する起動原因は、電位
差であると考えられる。そこで、電池の組立後、正極か
らのリチウムイオンによる最初の充電よりも前の工程
で、正極以外のリチウム源により、負極の電位を金属リ
チウムの電位に対して1000mV以下、好ましくは炭
素負極表面における固体電解質被膜(SEI)形成電位
である600mV以下までリチウムをドープしておくこ
とにより、驚くべきことに、正極作用物質にリチウム・
ニッケル酸化物やリチウム・コバルト複合酸化物を用い
た電池と同程度にまで自己放電量を抑制できることを見
いだした。
As described above, it is considered that the cause of the start of the movement of the lithium ions in the negative electrode to the portion not facing the positive electrode is the potential difference. Therefore, after assembling the battery, in a step before the first charging with lithium ions from the positive electrode, the potential of the negative electrode is set to 1000 mV or less with respect to the potential of metallic lithium by a lithium source other than the positive electrode, preferably at the surface of the carbon negative electrode. By doping lithium to a solid electrolyte film (SEI) formation potential of 600 mV or less, surprisingly, lithium
It has been found that the self-discharge amount can be suppressed to the same extent as a battery using nickel oxide or lithium-cobalt composite oxide.

【0019】この原因については必ずしも明らかではな
いが、リチウムマンガン複合酸化物からマンガンが溶出
する以前の段階で、マンガンを含有しない固体電解質被
膜(SEI)を炭素表面上に形成することにより、マン
ガンイオンによる負極内リチウムの拡散促進効果を抑え
ることができたものと考えられる。
Although the cause is not necessarily clear, the formation of a manganese-free solid electrolyte film (SEI) on the carbon surface before the manganese is eluted from the lithium-manganese composite oxide allows the manganese ion to be formed. It is considered that the effect of promoting the diffusion of lithium in the negative electrode due to the above was suppressed.

【0020】このため、本発明は上記したように、電池
組み立て後、通常行われる初期充放電(以下「化成」と
いう)に先立って、正極以外のリチウム源を用い、前記
負極電位を1000mV(v.s.Li/Li+)以下になるよう
に調整(以下「予備化成」という)したことを特徴とし
ている。
Therefore, as described above, the present invention uses a lithium source other than the positive electrode and sets the negative electrode potential at 1000 mV (vsLi / Li + ) or less (hereinafter referred to as “preliminary formation”).

【0021】ここで、含リチウム物質としては、リチウ
ム金属、リチウム合金、その他のリチウム化合物等、特
に限定されるものではなく、電気化学的にリチウムイオ
ンを供給しうるものであれば何でもよい。なかでも、リ
チウム金属またはリチウム合金を用いると、電槽内壁等
への貼付が容易であるため配置方法が簡略化できる点で
好ましい。特に、リチウム金属を用いると、リチウム源
以外の元素を含まないので電池のエネルギー密度を高く
設定できる点でさらに好ましい。
Here, the lithium-containing substance is not particularly limited, such as lithium metal, a lithium alloy, and other lithium compounds, and may be any substance that can electrochemically supply lithium ions. Among them, the use of lithium metal or lithium alloy is preferable in that it can be easily attached to the inner wall of a battery case or the like because the arrangement method can be simplified. In particular, the use of lithium metal is more preferable in that it does not contain any elements other than the lithium source, so that the energy density of the battery can be set high.

【0022】また、前記含リチウム物質を配置する場所
については、正極に対して電気的に接触しない場所であ
れば限定されない。
The location of the lithium-containing substance is not limited as long as it does not make electrical contact with the positive electrode.

【0023】負極上の任意の場所(例えば周縁部)に前
記含リチウム物質を貼付または混入すれば、電解液の注
液によって自動的に前記予備化成を開始させることがで
きる点で好ましい。この場合には、前記予備化成に必要
なリチウムイオンを供給しうる量と同等とすると、最適
なレベルで前記予備化成を自動的に完了させることがで
きる点で好ましい。同等量を超えた過剰量を配置する
と、負極が過充電状態となりリチウムが析出し、ショー
トを誘発する虞れがあるので好ましくない。ただ、同等
量以下であっても、前記含リチウム物質に含まれる全チ
ウム量が負極に吸蔵されずに残ったり、前記含リチウム
物質を構成するリチウム元素以外の物質が残査として負
極上に残ると、その部分が核となって充放電サイクルの
進行に伴いリチウムのデンドライト析出を誘発する虞れがあ
るので、注意が必要であるといった欠点を有する。
It is preferable to attach or mix the lithium-containing substance at an arbitrary position (for example, a peripheral portion) on the negative electrode since the preliminary formation can be automatically started by injecting the electrolytic solution. In this case, it is preferable that the amount of lithium ions necessary for the pre-formation be equal to the amount that can be supplied, because the pre-formation can be automatically completed at an optimum level. An excessive amount exceeding the equivalent amount is not preferable because the negative electrode may be overcharged and lithium may be precipitated to cause a short circuit. However, even if the amount is equal to or less than the total amount of lithium contained in the lithium-containing substance, the anode remains unabsorbed, or a substance other than the lithium element constituting the lithium-containing substance remains on the anode as a residue. In addition, there is a possibility that the portion becomes a nucleus and induces dendrite precipitation of lithium with the progress of the charge / discharge cycle.

【0024】正極及び負極のいずれに対しても電気的に
接触しない場所、例えば、金属電槽の内壁に前記含リチ
ウム物質を貼付すれば、前記電槽と負極端子とをリード
線で接続することで、任意の時期に任意の時間だけ前記
予備化成を行うことができる点で好ましい。あるいは、
セパレータ上の任意の場所(例えば周縁部)に前記含リ
チウム物質を配置し、該含リチウム物質が電槽内壁に接
触するように配置するか、または、該含リチウム物質か
らリード線を介して別途設けた専用端子に接続してもよ
い。これらの場合、前記含リチウム物質の配置量につい
ては、前記予備化成に必要なリチウムイオンを供給しう
る量と同等またはそれ以上とすることができる。前記予
備化成に必要なリチウムイオンを供給しうる量と同等と
すれば、リード線で接続することにより前記予備化成を
行う場合には、該接続時間を管理することなく前記予備
化成を完了させることができる点で好ましい。
If the lithium-containing substance is attached to a place that does not come into electrical contact with either the positive electrode or the negative electrode, for example, the inner wall of a metal battery case, the battery case and the negative electrode terminal can be connected by a lead wire. This is preferable in that the preliminary formation can be performed at any time and for any time. Or
The lithium-containing substance is disposed at an arbitrary position (for example, a peripheral portion) on the separator, and the lithium-containing substance is disposed so as to be in contact with the inner wall of the battery case, or separately from the lithium-containing substance via a lead wire. It may be connected to a dedicated terminal provided. In these cases, the arrangement amount of the lithium-containing substance can be equal to or larger than the amount capable of supplying lithium ions necessary for the pre-chemical formation. When performing the pre-formation by connecting with a lead wire as long as the lithium ion required for the pre-formation can be supplied, the pre-formation can be completed without managing the connection time. It is preferable in that it can be performed.

【0025】一方、前記含リチウム物質の配置量を、該
予備化成に必要なリチウムイオンを供給しうる量に対し
て過剰としておけば、充放電が繰り返され容量低下した
電池に対して、前記予備化成と同様の操作を施すことに
より、充放電容量を回復させることができる点で好まし
い。
On the other hand, if the amount of the lithium-containing substance is set to be excessive with respect to the amount capable of supplying lithium ions necessary for the preliminary formation, the amount of the lithium-containing substance can be reduced with respect to the battery whose charge and discharge are repeated and whose capacity is reduced. By performing the same operation as in the formation, it is preferable in that the charge / discharge capacity can be recovered.

【0026】[0026]

【実施例】以下に、実施例に基づき、本発明をさらに詳
細に説明するが、本発明はこれらの記載によって何ら限
定されるものではない。
The present invention will be described in more detail with reference to the following Examples, which should not be construed as limiting the present invention.

【0027】(実施例1)正極活物質は、次のようにし
て合成した。酢酸リチウム二水和物と酢酸マンガン(I
I)四水和物とを、リチウムとマンガンとの元素比が
1.08:1.92になるように混合し、この混合物を
酢酸に溶解した。熱を加えながら撹拌を行い、完全に溶
解した溶液から酢酸を蒸発させ、混合塩を得た。この混
合塩を500℃で12時間仮焼成し、続いて空気中85
0℃で24時間本焼成した。このようにして正極活物質
(LiMn2O4)を得た。
Example 1 A positive electrode active material was synthesized as follows. Lithium acetate dihydrate and manganese acetate (I
I) Tetrahydrate was mixed so that the element ratio of lithium and manganese was 1.08: 1.92, and this mixture was dissolved in acetic acid. Stirring was performed while applying heat, and acetic acid was evaporated from the completely dissolved solution to obtain a mixed salt. This mixed salt is preliminarily calcined at 500 ° C. for 12 hours.
The main baking was performed at 0 ° C. for 24 hours. Thus, the positive electrode active material
(LiMn 2 O 4 ) was obtained.

【0028】正極板は、次のようにして作製した。前記
正極活物質、導電剤であるアセチレンブラック、及び結
着剤であるポリフッ化ビニリデン(PVDF)を重量比
91:4.5:4.5で混合し、N−メチルピロリドン
(NMP)を加えて混練した。これを集電体であるアル
ミニウム箔上に塗布後、N−メチルピロリドンを130
℃にて蒸発させたものをロールプレスに通し、シート状
に成形した。このようにして正極板を得た。
The positive electrode plate was manufactured as follows. The positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder were mixed at a weight ratio of 91: 4.5: 4.5, and N-methylpyrrolidone (NMP) was added. Kneaded. After applying this on an aluminum foil as a current collector, N-methylpyrrolidone was
What was evaporated at ℃ was passed through a roll press and formed into a sheet. Thus, a positive electrode plate was obtained.

【0029】負極板は、次のようにして作製した。負極
作用物質である人造黒鉛(平均粒径6μm)とポリフッ
化ビニリデンとを重量比94:6で混合し、N−メチル
ピロリドンを加えて混練した。これを集電体である銅箔
上に塗布後、N−メチルピロリドンを蒸発させ、ロール
プレスに通し、シート状に成形した。このようにして負
極板を得た。
The negative electrode plate was manufactured as follows. Artificial graphite (average particle size: 6 μm), which is a negative electrode active substance, and polyvinylidene fluoride were mixed at a weight ratio of 94: 6, and N-methylpyrrolidone was added and kneaded. After this was applied on a copper foil as a current collector, N-methylpyrrolidone was evaporated and passed through a roll press to form a sheet. Thus, a negative electrode plate was obtained.

【0030】非水電解液は、次のようにして調整した。
エチレンカーボネート、メチルエチルカーボネート及び
ジメチルカーボネートを体積比6:7:7の割合で混合
した混合溶剤に、LiPF6を1mol/lの濃度で溶
解させ、非水電解液を得た。
The non-aqueous electrolyte was prepared as follows.
LiPF 6 was dissolved at a concentration of 1 mol / l in a mixed solvent obtained by mixing ethylene carbonate, methyl ethyl carbonate and dimethyl carbonate at a volume ratio of 6: 7: 7 to obtain a non-aqueous electrolyte.

【0031】露点−50℃以下の乾燥雰囲気下におい
て、前記正極板と、前記正極板の活物質塗布面積に対し
て102%の負極作用物質塗布面積を有する前記負極板
とを、セパレーター(ポリプロピレン製、孔径0.1μ
m)を介して扁平状に捲回した後、扁平角形の金属電槽
缶に収納した。
In a dry atmosphere having a dew point of -50 ° C. or less, the positive electrode plate and the negative electrode plate having a negative electrode active material application area of 102% with respect to the active material application area of the positive electrode plate are separated by a separator (made of polypropylene). , Pore size 0.1μ
m), and wound in a flat rectangular metal battery case.

【0032】引き続き、前記非水電解液を前記電槽缶内
に注液し、前記電槽缶の開口部を密閉封口した。続い
て、化成のため、温度25℃の雰囲気中で10時間率
(0.1It)にて定電圧充電(終止電圧4.2V)及
び定電流放電(終止電圧3.0V)を3回繰り返して行
った。以上のようにして、非水二次電池を得た。これを
本発明電池1とする。
Subsequently, the non-aqueous electrolyte was poured into the battery case, and the opening of the battery case was hermetically sealed. Subsequently, for chemical formation, constant voltage charging (final voltage 4.2 V) and constant current discharging (final voltage 3.0 V) were repeated three times in an atmosphere at a temperature of 25 ° C. at a rate of 10 hours (0.1 It). went. As described above, a non-aqueous secondary battery was obtained. This is designated as Battery 1 of the invention.

【0033】(実施例2)負極板として、正極板の活物
質塗布面積に対して105%の負極作用物質塗布面積を
有するものを用いたことを除いては、実施例1と同様に
して、非水二次電池を得た。これを本発明電池2とす
る。
Example 2 A negative electrode plate was prepared in the same manner as in Example 1 except that a negative electrode plate having a negative electrode active material application area of 105% of the active material application area of the positive electrode plate was used. A non-aqueous secondary battery was obtained. This is designated as Battery 2 of the invention.

【0034】(比較例1)負極板として、正極板の活物
質塗布面積に対して110%の負極作用物質塗布面積を
有するものを用いたことを除いては、実施例1と同様に
して、非水二次電池を得た。これを比較電池1とする。
Comparative Example 1 A negative electrode plate was prepared in the same manner as in Example 1 except that a negative electrode plate having a negative electrode active material application area of 110% of the active material application area of the positive electrode plate was used. A non-aqueous secondary battery was obtained. This is designated as Comparative Battery 1.

【0035】(比較例2)負極板として、正極板の活物
質塗布面積に対して115%の負極作用物質塗布面積を
有するものを用いたことを除いては、実施例1と同様に
して、非水二次電池を得た。これを比較電池2とする。
Comparative Example 2 A negative electrode plate was prepared in the same manner as in Example 1 except that the negative electrode plate had a negative electrode active material application area of 115% of the active material application area of the positive electrode plate. A non-aqueous secondary battery was obtained. This is designated as Comparative Battery 2.

【0036】(実施例3)正極活物質としてニッケル酸
リチウム(LiNiO2)を用いたことを除いては、実施例1
と同様にして、非水二次電池を得た。これを本発明電池
3とする。
Example 3 Example 1 was repeated except that lithium nickelate (LiNiO 2 ) was used as the positive electrode active material.
In the same manner as in the above, a non-aqueous secondary battery was obtained. This is designated as Battery 3 of the invention.

【0037】(実施例4)正極活物質としてニッケル酸
リチウム(LiNiO2)を用いたことを除いては、実施例2
と同様にして、非水二次電池を得た。これを本発明電池
4とする。
Example 4 Example 2 was repeated except that lithium nickelate (LiNiO 2 ) was used as the positive electrode active material.
In the same manner as in the above, a non-aqueous secondary battery was obtained. This is designated as Battery 4 of the invention.

【0038】(比較例3)正極活物質としてニッケル酸
リチウム(LiNiO2)を用いたことを除いては、比較例1
と同様にして、非水二次電池を得た。これを比較電池3
とする。
Comparative Example 3 Comparative Example 1 was performed except that lithium nickelate (LiNiO 2 ) was used as the positive electrode active material.
In the same manner as in the above, a non-aqueous secondary battery was obtained. Compare this with Comparative Battery 3
And

【0039】(比較例4)正極活物質としてニッケル酸
リチウム(LiNiO2)を用いたことを除いては、比較例2
と同様にして、非水二次電池を得た。これを比較電池4
とする。
Comparative Example 4 Comparative Example 2 was repeated except that lithium nickelate (LiNiO 2 ) was used as the positive electrode active material.
In the same manner as in the above, a non-aqueous secondary battery was obtained. This is compared with Battery 4
And

【0040】(実施例5)正極活物質としてコバルト酸
リチウム(LiCoO2)を用いたことを除いては、実施例1
と同様にして、非水二次電池を得た。これを本発明電池
5とする。
Example 5 Example 1 was repeated except that lithium cobaltate (LiCoO 2 ) was used as the positive electrode active material.
In the same manner as in the above, a non-aqueous secondary battery was obtained. This is designated as Battery 5 of the invention.

【0041】(実施例6)正極活物質としてコバルト酸
リチウム(LiCoO2)を用いたことを除いては、実施例2
と同様にして、非水二次電池を得た。これを本発明電池
6とする。
Example 6 Example 2 was repeated except that lithium cobaltate (LiCoO 2 ) was used as the positive electrode active material.
In the same manner as in the above, a non-aqueous secondary battery was obtained. This is designated as Battery 6 of the invention.

【0042】(比較例5)正極活物質としてコバルト酸
リチウム(LiCoO2)を用いたことを除いては、比較例1
と同様にして、非水二次電池を得た。これを比較電池5
とする。
Comparative Example 5 Comparative Example 1 was performed except that lithium cobaltate (LiCoO 2 ) was used as the positive electrode active material.
In the same manner as in the above, a non-aqueous secondary battery was obtained. Compare this with Comparative Battery 5.
And

【0043】(比較例6)正極活物質としてコバルト酸
リチウム(LiCoO2)を用いたことを除いては、比較例2
と同様にして、非水二次電池を得た。これを比較電池6
とする。
Comparative Example 6 Comparative Example 2 was performed except that lithium cobalt oxide (LiCoO 2 ) was used as the positive electrode active material.
In the same manner as in the above, a non-aqueous secondary battery was obtained. This is compared with Comparative Battery 6
And

【0044】(実施例7)実施例1において、金属電槽
缶の一部に金属リチウムを貼り付けたものを用いた。こ
こで、該電槽缶は正極または負極のいずれとも接触して
いない。化成に先立ち、予備化成として電槽缶と負極端
子とをリード線で2時間接続した。前記予備化成終了4
時間後、前記電槽缶と負極端子との電位差を測定したと
ころ、470mVであった。
(Example 7) In Example 1, a metal battery case was used in which metallic lithium was attached to a part of the can. Here, the battery case is not in contact with either the positive electrode or the negative electrode. Prior to the formation, the battery case and the negative electrode terminal were connected by lead wires for 2 hours as preliminary formation. Preliminary formation 4
After a lapse of time, the potential difference between the battery case and the negative electrode terminal was measured to be 470 mV.

【0045】上記操作を行ったことを除いては、実施例
1と同様にして、非水二次電池を得た。これを本発明電
池7とする。
A non-aqueous secondary battery was obtained in the same manner as in Example 1 except that the above operation was performed. This is designated as Battery 7 of the invention.

【0046】(高温保存試験)本発明電池1〜7及び比
較電池1〜6を、10時間率(0.1It)にて定電圧
充電(終止電圧4.2V)を行った後、60℃の恒温槽
中に20日間静置した。
(High Temperature Storage Test) The batteries 1 to 7 of the present invention and the comparative batteries 1 to 6 were charged at a constant voltage (final voltage: 4.2 V) at a rate of 10 hours (0.1 It) and then charged at 60 ° C. It was left still in a thermostat for 20 days.

【0047】次に、これらの電池を25℃雰囲気中に戻
し、10時間率(0.1It)にて定電流放電(終止電
圧3.0V)を行った。ここで得られた放電容量を保存
後放電容量とした。前記化成3サイクル目の放電容量と
該保存後放電容量との差の、前記化成3サイクル目の放
電容量に対する比を自己放電率とした。
Next, these batteries were returned to an atmosphere of 25 ° C., and were subjected to constant current discharge (final voltage: 3.0 V) at a rate of 10 hours (0.1 It). The discharge capacity obtained here was defined as the discharge capacity after storage. The ratio of the difference between the discharge capacity at the third formation cycle and the discharge capacity after storage to the discharge capacity at the third formation cycle was defined as the self-discharge rate.

【0048】さらに、1サイクルの充放電を行い、ここ
で得られた放電容量を回復放電容量とした。前記化成3
サイクル目の放電容量と該回復放電容量との差の、前記
化成3サイクル目の放電容量に対する比を容量低下率と
した。
Further, one cycle of charge / discharge was performed, and the obtained discharge capacity was defined as a recovery discharge capacity. Chemical formation 3
The ratio of the difference between the discharge capacity at the cycle and the recovery discharge capacity to the discharge capacity at the third chemical formation cycle was defined as the capacity reduction rate.

【0049】結果を表1にまとめて示す。The results are summarized in Table 1.

【0050】[0050]

【表1】 正極活物質にLiMn2O4を用いた電池の結果から明らかな
ように、正極活物質塗布面積に対する負極作用物質塗布
面積が大きくなる程、自己放電率の値も容量低下率の値
も大きくなる傾向がみられる。特に、負極作用物質塗布
面積が105%を越えると、両者の値が急激に増加して
いる。これは、負極に吸蔵されたリチウムイオンが、保
存中に、正極活物質塗布面と対向していない負極作用物
質塗布面の部分に移動してしまうためと考えられ、その
量が、前記負極作用物質塗布面積に比例して多くなるた
めである。
[Table 1] As is clear from the results of the battery using LiMn 2 O 4 as the positive electrode active material, the larger the negative electrode active material application area with respect to the positive electrode active material application area, the larger the value of the self-discharge rate and the value of the capacity reduction rate There is a tendency. In particular, when the area of application of the negative electrode active material exceeds 105%, both values sharply increase. This is considered to be because the lithium ions occluded in the negative electrode move to a portion of the negative electrode active material application surface that is not opposed to the positive electrode active material application surface during storage. This is because it increases in proportion to the material application area.

【0051】また、正極活物質にLiNiO2やLiCoO2を用い
た電池の結果と比較すると、正極活物質にLiMn2O4を用
いた電池では、両者の値は極めて大きく、負極面積比へ
の依存度も顕著である。
Also, when compared with the results of the battery using LiNiO 2 or LiCoO 2 as the positive electrode active material, in the battery using LiMn 2 O 4 as the positive electrode active material, both values are extremely large, and Dependency is also remarkable.

【0052】一方、予備化成を行った本発明電池7で
は、正極活物質にLiMn2O4を用いながらも、LiNiO2やLiC
oO2を用いた電池と同程度にまで、両者の値が改善され
ることがわかる。
On the other hand, in the battery 7 of the present invention subjected to pre-formation, while using LiMn 2 O 4 as the positive electrode active material, LiNiO 2 or LiC
It can be seen that both values are improved to about the same level as the battery using oO 2 .

【0053】この原因は必ずしも明らかではないが、リ
チウムマンガン複合酸化物からマンガンが溶出する以前
に、予備化成によりマンガンを含有しない固体電解質の
被膜を炭素表面上に形成することによって、マンガンイ
オンが有する負極内リチウムの拡散加速性が抑制された
ものと考えられる。
Although the cause is not necessarily clear, manganese ions have a manganese ion by forming a solid electrolyte film containing no manganese on the carbon surface by pre-formation before manganese is eluted from the lithium manganese composite oxide. It is considered that diffusion acceleration of lithium in the negative electrode was suppressed.

【0054】[0054]

【発明の効果】本発明による非水二次電池は、上記のよ
うに構成されているので、巻き込み時のずれに起因する
正極板周縁部における負極の過充電を防ぎ、デンドライ
ト析出による短絡が発生せず、高温で長期保存しても自
己放電が小さく、容量回復率に優れたエネルギー密度の
高い電池を量産に適した方法で提供することができる。
Since the non-aqueous secondary battery according to the present invention is configured as described above, the overcharge of the negative electrode at the periphery of the positive electrode plate due to the displacement at the time of winding is prevented, and the short circuit due to the deposition of dendrite occurs. Without this, even when stored for a long time at a high temperature, a self-discharge is small, and a high energy density battery excellent in capacity recovery rate can be provided by a method suitable for mass production.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡部 一弥 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 油布 宏 大阪府高槻市古曽部町二丁目3番21号 株 式会社ユアサコーポレーション内 Fターム(参考) 5H029 AJ02 AJ12 AJ14 AK03 AL06 AM03 AM04 AM05 AM07 CJ16 DJ12 HJ04 HJ12 HJ18 5H050 AA05 AA15 AA19 BA17 CA09 CB07 DA02 DA03 EA10 EA24 FA05 FA08 GA18 HA04 HA12 HA18  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Kazuya Okabe, Inventor Kazuya Okabe 2-3-1-21, Kosobe-cho, Takatsuki-shi, Osaka (72) Inventor Hiroshi Yufu, 2-3-1-21, Kosobe-cho, Takatsuki-shi, Osaka No. F-term in Yuasa Corporation (reference)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極及びセパレーターを有する発
電要素を具備し、前記負極の作用物質塗布面が、対向す
る前記正極の作用物質塗布面よりも大きい非水二次電池
において、前記負極の作用物質塗布面積が、前記正極の
作用物質塗布面積に対して105%以下であることを特
徴とする非水二次電池。
1. A non-aqueous secondary battery comprising a power generating element having a positive electrode, a negative electrode, and a separator, wherein an active material application surface of the negative electrode is larger than an opposing active material application surface of the positive electrode. A non-aqueous secondary battery, wherein a substance application area is 105% or less of an active substance application area of the positive electrode.
【請求項2】 前記発電要素は、帯状正極、帯状セパレ
ーター及び帯状負極からなる積層体が捲回されてなり、
前記帯状負極の作用物質塗布面は、前記帯状正極の作用
物質塗布面に対し、幅方向において両端部から1.5m
m以上2.5mm以下の範囲ではみ出していることを特
徴とする請求項1記載の非水二次電池。
2. The power generating element is formed by winding a laminate including a strip-shaped positive electrode, a strip-shaped separator, and a strip-shaped negative electrode,
The active material applied surface of the strip-shaped negative electrode is 1.5 m from both ends in the width direction with respect to the active material applied surface of the strip-shaped positive electrode.
The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery protrudes in a range of not less than m and not more than 2.5 mm.
【請求項3】 前記発電要素は、帯状正極、帯状セパレ
ーター及び帯状負極からなる積層体が捲回されてなり、
前記帯状負極の作用物質塗布面は、前記帯状正極の作用
物質塗布面に対し、長さ方向において少なくとも一方の
端部から15mm以上はみ出していることを特徴とする
請求項1または2のいずれかに記載の非水二次電池。
3. The power generating element is obtained by winding a laminate including a strip-shaped positive electrode, a strip-shaped separator, and a strip-shaped negative electrode,
The active material application surface of the strip-shaped negative electrode protrudes from the active material application surface of the strip-shaped positive electrode by 15 mm or more from at least one end in the length direction, The method according to claim 1 or 2, wherein The non-aqueous secondary battery according to the above.
【請求項4】 前記正極作用物質が、リチウムマンガン
複合酸化物であることを特徴とする請求項1〜3のいず
れかに記載の非水二次電池。
4. The non-aqueous secondary battery according to claim 1, wherein the positive electrode active substance is a lithium manganese composite oxide.
【請求項5】 少なくとも電解液注液工程前のいずれか
の段階において、前記正極に対して電気的に接触するこ
となく設けられた含リチウム物質を電池内部に有し、化
成充電工程前の状態において、前記負極電位が金属リチ
ウムの電位に対して1000mV以下になるように調整
したことを特徴とする請求項4記載の非水二次電池。
5. At least at any stage before the electrolyte injection step, a lithium-containing substance provided without being in electrical contact with the positive electrode is provided inside the battery, and the state before the formation charging step is provided. 5. The non-aqueous secondary battery according to claim 4, wherein the potential of the negative electrode is adjusted to be 1000 mV or less with respect to the potential of metallic lithium.
JP2000288500A 2000-09-22 2000-09-22 Nonaqueous secondary battery Pending JP2002100409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000288500A JP2002100409A (en) 2000-09-22 2000-09-22 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000288500A JP2002100409A (en) 2000-09-22 2000-09-22 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2002100409A true JP2002100409A (en) 2002-04-05

Family

ID=18772080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000288500A Pending JP2002100409A (en) 2000-09-22 2000-09-22 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2002100409A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026492A1 (en) * 2005-08-30 2007-03-08 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
JP2008300141A (en) * 2007-05-30 2008-12-11 Nec Tokin Corp Laminated secondary battery and its manufacturing method
JP2013110064A (en) * 2011-11-24 2013-06-06 Toyota Motor Corp Lithium ion secondary battery system and method for manufacturing the same
CN103682248A (en) * 2012-09-06 2014-03-26 索尼公司 Secondary battery, method of manufacturing the same, battery pack, and electric vehicle
JPWO2014034708A1 (en) * 2012-08-29 2016-08-08 シャープ株式会社 Electrode plate and secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130389A (en) * 1993-10-29 1995-05-19 Sony Corp Nonaqueous electrolyte secondary battery
JPH0850917A (en) * 1994-05-30 1996-02-20 Canon Inc Secondary cell
JPH09293537A (en) * 1996-04-25 1997-11-11 Seiko Instr Kk Nonaqueous electrolyte secondary battery and manufacture thereof
JPH1021951A (en) * 1996-06-28 1998-01-23 Toray Ind Inc Battery
JPH11162522A (en) * 1997-12-02 1999-06-18 Toshiba Battery Co Ltd Nonaqueous electrolytic solution secondary battery
JP2000012093A (en) * 1998-06-26 2000-01-14 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2000188097A (en) * 1998-10-12 2000-07-04 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000311676A (en) * 1999-04-28 2000-11-07 Shin Kobe Electric Mach Co Ltd Cylindrical lithium ion battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130389A (en) * 1993-10-29 1995-05-19 Sony Corp Nonaqueous electrolyte secondary battery
JPH0850917A (en) * 1994-05-30 1996-02-20 Canon Inc Secondary cell
JPH09293537A (en) * 1996-04-25 1997-11-11 Seiko Instr Kk Nonaqueous electrolyte secondary battery and manufacture thereof
JPH1021951A (en) * 1996-06-28 1998-01-23 Toray Ind Inc Battery
JPH11162522A (en) * 1997-12-02 1999-06-18 Toshiba Battery Co Ltd Nonaqueous electrolytic solution secondary battery
JP2000012093A (en) * 1998-06-26 2000-01-14 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2000188097A (en) * 1998-10-12 2000-07-04 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2000311676A (en) * 1999-04-28 2000-11-07 Shin Kobe Electric Mach Co Ltd Cylindrical lithium ion battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026492A1 (en) * 2005-08-30 2007-03-08 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
JPWO2007026492A1 (en) * 2005-08-30 2009-03-05 富士重工業株式会社 Lithium ion capacitor
US7817403B2 (en) 2005-08-30 2010-10-19 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
JP2008300141A (en) * 2007-05-30 2008-12-11 Nec Tokin Corp Laminated secondary battery and its manufacturing method
JP2013110064A (en) * 2011-11-24 2013-06-06 Toyota Motor Corp Lithium ion secondary battery system and method for manufacturing the same
JPWO2014034708A1 (en) * 2012-08-29 2016-08-08 シャープ株式会社 Electrode plate and secondary battery
CN103682248A (en) * 2012-09-06 2014-03-26 索尼公司 Secondary battery, method of manufacturing the same, battery pack, and electric vehicle

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
CN100431203C (en) Non- aqueous electrolyte secondary battery
JPWO2006134684A1 (en) Lithium secondary battery
JP2010225291A (en) Lithium-ion secondary battery and method of manufacturing the same
CN108717977B (en) Lithium ion battery with excellent zero-volt storage performance
JP2000011996A (en) Nonaqueous electrolyte secondary battery
JP2009110886A (en) Method of manufacturing nonaqueous electrolyte secondary battery
JP2003331825A (en) Nonaqueous secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JP2000021442A (en) Nonaqueous electrolyte secondary battery
JP2004281158A (en) Nonaqueous electrolyte secondary battery
JP2006172860A (en) Negative electrode for lithium secondary battery and its manufacturing method, and lithium secondary battery
JP2010140737A (en) Nonaqueous electrolyte secondary battery
WO2012043733A1 (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2000012079A (en) Nonaqueous electrolyte secondary battery
JP3223051B2 (en) Lithium secondary battery
JP2001143708A (en) Non-aqueous electrolyte secondary battery
JPH08306386A (en) Manaqueous electrolyte secondary battery
JP2002100409A (en) Nonaqueous secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2001297750A (en) Power-generating element for lithium secondary battery and lithium secondary battery using same
JPH08162155A (en) Nonaqueous electrolytic battery
JP2000012026A (en) Nonaqueous electrolyte secondary battery
JP3775107B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101020