JP2003346888A - Lead-acid battery - Google Patents

Lead-acid battery

Info

Publication number
JP2003346888A
JP2003346888A JP2002150321A JP2002150321A JP2003346888A JP 2003346888 A JP2003346888 A JP 2003346888A JP 2002150321 A JP2002150321 A JP 2002150321A JP 2002150321 A JP2002150321 A JP 2002150321A JP 2003346888 A JP2003346888 A JP 2003346888A
Authority
JP
Japan
Prior art keywords
negative electrode
lead
positive electrode
positive
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002150321A
Other languages
Japanese (ja)
Other versions
JP4501330B2 (en
Inventor
Koichi Yonemura
浩一 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002150321A priority Critical patent/JP4501330B2/en
Publication of JP2003346888A publication Critical patent/JP2003346888A/en
Application granted granted Critical
Publication of JP4501330B2 publication Critical patent/JP4501330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable lead-acid battery by suppressing corrosion of a negative electrode tab part, suppressing increase of the liquid reduction amount, and securing charging power largely affecting the service life characteristics. <P>SOLUTION: A positive electrode member comprising a positive electrode grid, a positive electrode shelf 8, a positive pole, and positive electrode connecting body 10 is composed of lead or lead alloy substantially including no Sb. A part excluding a negative electrode grid skeleton part out of a negative electrode member comprising a negative electrode grid 6, a negative electrode shelf 7, a negative pole, and a negative electrode connecting body 9 is composed of lead or lead alloy substantially including no Sb. Either one of the negative electrode grid skeleton part or a negative electrode active material includes Sb and the content of the Sb to the amount of the negative active material is 0.001-0.1 mass%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に正極を構成す
る部材にはアンチモン(Sb)を含まない鉛蓄電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lead-acid battery which does not particularly contain antimony (Sb) in a member constituting a positive electrode.

【0002】[0002]

【従来の技術】従来の鉛蓄電池の正極格子体にはPb−
Sb合金が用いられていたが、減液が多く保存特性に優
れないなどの問題があった。この理由として、鉛蓄電池
を充放電すると、徐々に正極格子体に含まれているSb
が溶出して負極に析出し、析出したSbによって負極に
おける水素過電圧が低下して水素ガスが発生しやすくな
ることが原因である。さらに電池の充放電を継続して行
うと、すると負極上のSb析出量が増加し、さらに減液
が進行する。減液が進行しても補水を怠った場合には、
負極棚および負極耳部が電解液から露出する。一旦これ
らの負極部材が電解液から露出すると急激に腐食が進行
し、短寿命に至る問題があった。
2. Description of the Related Art Pb-
Although an Sb alloy was used, there were problems such as a large amount of liquid reduction and poor storage characteristics. The reason for this is that when the lead-acid battery is charged and discharged, the Sb contained in the positive electrode grid gradually increases.
Is eluted and deposited on the negative electrode, and the deposited Sb causes a reduction in hydrogen overvoltage at the negative electrode, which tends to generate hydrogen gas. When the charge and discharge of the battery are further continued, the amount of Sb deposited on the negative electrode increases, and the liquid reduction further proceeds. If water replenishment is neglected even if fluid reduction proceeds,
The negative electrode shelf and negative electrode ears are exposed from the electrolyte. Once these negative electrode members are exposed from the electrolytic solution, there is a problem that corrosion progresses rapidly, leading to a short life.

【0003】[0003]

【発明が解決しようとする課題】近年、このような腐食
とこれによる短寿命を抑制するために、正極格子体には
実質上Sbを含まないPb−Ca−Sn合金を用いた、
優れたメンテナンスフリー性を持つ電池が一般化してい
る。しかし、正極板を集合溶接する正極棚や棚から導出
した正極柱もしくは正極接続体にはSbを含むPb−S
b合金を用いることが一般的に行われてきた。
In recent years, in order to suppress such corrosion and a short life due to the corrosion, a Pb-Ca-Sn alloy containing substantially no Sb has been used for the positive electrode grid.
Batteries with excellent maintenance-free properties have become popular. However, Pb-S containing Sb is contained in a positive electrode shelf or a positive electrode connector derived from the positive electrode shelf or the positive electrode shelf where the positive electrode plate is collectively welded.
It has been common to use b alloys.

【0004】正極格子体にSbを含まないPb合金を用
いた蓄電池はPb−Sb合金を用いた蓄電池に比較して
大幅に減液量は低下するものの、蓄電池の寿命末期にお
いて正極の棚、極柱および接続体に含まれるSbが負極
耳部を中心とする部分に偏析する傾向があることがわか
ってきた。このようなSbが偏析した負極耳部が電解液
から露出した場合、負極耳部の表面で腐食が進行して厚
みが薄くなることによって、耳部の強度が低下してしま
うという課題があった。
[0004] A storage battery using a Pb alloy containing no Sb in the positive grid has a significantly reduced liquid reduction compared to a storage battery using a Pb-Sb alloy. It has been found that Sb contained in the pillars and the connector has a tendency to segregate in a portion centered on the negative electrode ear. When the negative electrode lug in which such Sb segregates is exposed from the electrolyte, there is a problem in that corrosion progresses on the surface of the negative electrode lug, and the thickness of the negative lug is reduced, thereby reducing the strength of the lug. .

【0005】[0005]

【課題を解決するための手段】前記した課題を解決する
ために、本発明の請求項1の発明は格子耳部と格子骨部
からなる負極格子を備えた負極板と格子耳部と格子骨部
からなる正極格子を備えた正極板を有し、同極性の極板
耳部を集合溶接する棚およびこの棚より導出された極柱
もしくは接続体を備えた鉛蓄電池において、正極格子と
正極棚と正極極柱および正極接続体で構成される正極部
材は実質上Sbを含有しない鉛もしくは鉛合金からな
り、負極格子と負極棚と負極極柱および負極接続体で構
成される負極部材のうち負極格子骨部を除く部位は実質
上Sbを含有しない鉛もしくは鉛合金からなり、負極格
子骨部もしくは負極活物質のいずれか一方はSbを含
み、前記Sbの負極活物質量に対する含有量が0.00
1〜0.1質量%であることを特徴とする鉛蓄電池。
In order to solve the above-mentioned problems, a first aspect of the present invention is to provide a negative electrode plate provided with a negative electrode grid composed of a grid lug and a grid frame, a grid lug, and a grid frame. A positive electrode plate provided with a positive electrode grid comprising a positive electrode grid, and a shelf for collectively welding electrode plate lugs of the same polarity, and a lead storage battery provided with a pole or a connection body derived from this shelf. The positive electrode member composed of the positive electrode pole and the positive electrode connector is made of lead or a lead alloy that does not substantially contain Sb, and the negative electrode of the negative electrode member composed of the negative electrode lattice, the negative electrode shelf, the negative electrode column and the negative electrode connector The portion excluding the lattice skeleton is made of lead or a lead alloy that does not substantially contain Sb, and either the negative electrode lattice skeleton or the negative electrode active material contains Sb, and the content of Sb with respect to the amount of the negative electrode active material is 0.1%. 00
A lead storage battery characterized in that the content is 1 to 0.1% by mass.

【0006】Sbを含み、前記Sbの負極活物質量に対
する含有量が0.001〜0.1質量%であることを特
徴とする鉛蓄電池を示すものである。
A lead-acid battery containing Sb, wherein the content of the Sb with respect to the amount of the negative electrode active material is 0.001 to 0.1% by mass.

【0007】また、本発明の請求項2に係る発明は請求
項1の鉛蓄電池において、負極活物質にSbを含み、該
Sbの負極活物質に対する含有量が0.001質量%〜
0.02質量%であることを特徴とする鉛蓄電池を示す
ものである。
According to a second aspect of the present invention, in the lead-acid battery of the first aspect, the negative electrode active material contains Sb, and the content of the Sb with respect to the negative electrode active material is 0.001% by mass or less.
It shows a lead-acid battery characterized by being 0.02% by mass.

【0008】さらに、本発明の請求項3に係る発明は請
求項1もしくは2の鉛蓄電池において、正極格子の正極
活物質と接する表面の少なくとも一部に、Snを2%以
上含有する鉛合金層を備えることを特徴とする鉛蓄電池
を示すものである。
Further, according to a third aspect of the present invention, there is provided the lead-acid battery according to the first or second aspect, wherein at least a part of the surface of the positive electrode grid in contact with the positive electrode active material contains 2% or more of Sn. It shows a lead storage battery characterized by comprising:

【0009】[0009]

【発明の実施の形態】本発明の実施の形態による鉛蓄電
池を図面を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A lead storage battery according to an embodiment of the present invention will be described with reference to the drawings.

【0010】図1は本発明の鉛蓄電池を構成する極板群
1を示す破載図である。正極板(図示せず)は正極耳部
1と正極格子骨(図示せず)とで構成される正極格子体
に活物質が充填された構成を有している。この正極板と
負極板2がセパレータ3を介して互いに対向している。
FIG. 1 is an exploded view showing an electrode group 1 constituting a lead storage battery of the present invention. The positive electrode plate (not shown) has a structure in which an active material is filled in a positive electrode lattice body composed of a positive electrode lug 1 and a positive electrode lattice bone (not shown). The positive electrode plate and the negative electrode plate 2 face each other with the separator 3 interposed therebetween.

【0011】負極板2は負極耳部5と負極格子骨4とで
構成される負極格子体6を有している。同極性の耳部同
士を集合溶接してそれぞれ正極棚8および負極棚7が形
成され、それぞれの棚に極柱もしくは接続体が形成され
る。図1に示した例では正極、負極ともにそれぞれ棚に
正極接続体8および負極接続体9を設けた例を示してい
る。
The negative electrode plate 2 has a negative electrode lattice member 6 composed of a negative electrode lug 5 and a negative electrode lattice frame 4. The positive pole shelf 8 and the negative pole shelf 7 are formed by collectively welding ears of the same polarity, and a pole or a connection body is formed on each shelf. The example shown in FIG. 1 shows an example in which the positive electrode connection body 8 and the negative electrode connection body 9 are provided on the shelf for both the positive electrode and the negative electrode.

【0012】本発明において正極耳部1、正極格子骨、
正極棚8、正極接続体8および正極極柱(これらを総称
して正極部材)は実質上Sbを含まないPbもしくはP
b合金で構成する。ただし、数ppm程度の不純物とし
て含まれるSbは除く。正極においては酸化腐食が進行
するため、Pb−Sn合金を用いることが好ましい。
In the present invention, the positive ear 1, the positive grid bone,
The positive electrode shelf 8, the positive electrode connector 8, and the positive electrode pole (collectively referred to as a positive electrode member) are made of Pb or Pb substantially containing no Sb.
It is composed of b alloy. However, Sb contained as impurities of about several ppm is excluded. Since oxidation corrosion proceeds in the positive electrode, it is preferable to use a Pb-Sn alloy.

【0013】一方、負極に関しては負極耳部5、負極棚
7、負極接続体9および負極極柱を正極部材と同様、実
質上Sbを含まないPbもしくはPb合金で構成する。
ただし、負極格子体6もしくは負極活物質の少なくとも
いずれか一方にSbを含むよう構成する。負極格子体に
Sbを含有させる場合、特にメンテナンスフリー電池に
おいて負極格子体6をPb−Ca合金で構成する場合に
はPb−Ca合金表面にSbを含む層、具体的にはPb
−Sb合金層を配置する。負極活物質中にSbを含有さ
せる場合には活物質の原料鉛粉にSbを添加する。
On the other hand, as for the negative electrode, the negative electrode lug 5, the negative electrode shelf 7, the negative electrode connector 9, and the negative electrode pole are made of Pb or Pb alloy substantially containing no Sb, similarly to the positive electrode member.
However, it is configured that at least one of the negative electrode grid body 6 and the negative electrode active material contains Sb. When Sb is contained in the negative electrode grid, particularly when the negative electrode grid 6 is made of a Pb-Ca alloy in a maintenance-free battery, a layer containing Sb on the surface of the Pb-Ca alloy, specifically Pb
-An Sb alloy layer is provided. When Sb is contained in the negative electrode active material, Sb is added to the raw material lead powder of the active material.

【0014】本発明においては負極格子体6もしくは負
極活物質中に添加するSb量を負極活物質量に対して
0.001質量%〜0.1質量%の範囲に限定する。こ
のような極板群を用い、定法に従って組み立てることに
より本発明の鉛蓄電池を得ることができる。
In the present invention, the amount of Sb added to the negative electrode grid 6 or the negative electrode active material is limited to the range of 0.001% by mass to 0.1% by mass based on the amount of the negative electrode active material. The lead storage battery of the present invention can be obtained by assembling according to a standard method using such an electrode plate group.

【0015】また、特に負極活物質にSbを添加する場
合には負極活物質量に対して0.001〜0.02質量
%の添加量が好ましい。また、さらに好ましくは正極格
子体の正極活物質と接触する表面の少なくとも一部に2
質量%以上のSnを含むPb−Sn合金層を配置するこ
とが好ましい。
In particular, when Sb is added to the negative electrode active material, the addition amount is preferably 0.001 to 0.02% by mass based on the amount of the negative electrode active material. More preferably, at least a part of the surface of the positive electrode grid body that contacts the positive electrode active material is
It is preferable to dispose a Pb-Sn alloy layer containing at least Sn by mass.

【0016】この本発明の構成による電池は、上述した
課題である寿命サイクル時の減液の増加を抑制して、か
つ負極における腐食を解消し、優れた寿命性能を寄与す
るものである。
The battery according to the structure of the present invention suppresses an increase in liquid reduction during the life cycle, which is the problem described above, and eliminates corrosion on the negative electrode, thereby contributing to excellent life performance.

【0017】[0017]

【実施例】本発明例および従来例による電池を作成し、
過充電試験および過放電試験を行うことによって減液
量、負極耳部の腐食の有無および充電受け入れ性の評価
を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
An overcharge test and an overdischarge test were performed to evaluate the amount of liquid reduction, the presence or absence of corrosion of the negative electrode ear, and the charge acceptability.

【0018】本発明の鉛蓄電池の正極格子体にはPb−
Ca−Sn合金を用い、合金組成はPb−0.07質量
%Ca−1.3質量%Snである。この合金(シート
1)を段階的に圧延した後にエキスパンド加工を行って
格子体を形成し、活物質ペーストを充填して正極板(P
1)を作製した。また、シート1に厚さ約0.2mmの
Pb−7質量%Sn合金(シート2)を重ね合わせて段
階的に圧延し、以後同様の過程を経て正極板(P2)を
作製した。一方、負極板はPb−0.07質量%Ca−
0.25質量%Sn合金(シート3)を、正極と同様に
圧延した後エキスパンド加工を経て格子体を作成した。
その後、活物質量に対してSbを0.010質量%添加
した活物質ペーストを格子体に充填して負極板(N1)
を得た。また、シート4に厚さ約0.2mmのPb−2
質量%Sb合金(シート4)を重ね合わせて段階的に圧
延し、以後同様の過程を経て負極板(N2)を作製し
た。セパレータには、厚さ約0.3mmの微孔性ポリエ
チレン製シートを用いて、正極板を包み込む形の袋状セ
パレータを作製した。
The positive electrode grid of the lead-acid battery of the present invention has Pb-
Using a Ca-Sn alloy, the alloy composition is Pb-0.07% by mass Ca-1.3% by mass Sn. After this alloy (sheet 1) is rolled stepwise, it is subjected to an expanding process to form a lattice, filled with an active material paste, and filled with a positive electrode plate (P).
1) was produced. Further, a Pb-7 mass% Sn alloy (sheet 2) having a thickness of about 0.2 mm was superimposed on the sheet 1 and rolled stepwise, and thereafter a positive electrode plate (P2) was produced through the same process. On the other hand, the negative electrode plate was composed of Pb-0.07 mass% Ca-
A 0.25 mass% Sn alloy (sheet 3) was rolled in the same manner as the positive electrode, and then expanded to form a lattice.
Thereafter, the grid was filled with an active material paste containing 0.010% by mass of Sb based on the amount of the active material, and the negative electrode plate (N1) was filled.
Got. Further, Pb-2 having a thickness of about 0.2 mm
A mass% Sb alloy (sheet 4) was superimposed and rolled stepwise, and thereafter a negative electrode plate (N2) was produced through the same process. As the separator, a bag-shaped separator enclosing the positive electrode plate was prepared using a microporous polyethylene sheet having a thickness of about 0.3 mm.

【0019】上記の2種類の正極板と2種類の負極板を
用いて、1セル当たり正極板5枚と負極板6枚から成る
極板群を用いて55D23形の自動車用鉛蓄電池(12
V48Ah)を作製した。また、極板群を形成する際、
正極における極板を接続する棚及びセル間を接合する接
続体にはSbを含有しない合金を用いて正極全体にSb
を含有しない構成とした。
Using the above two types of positive electrode plates and two types of negative electrode plates, a 55D23 type automotive lead-acid battery (12) is formed by using an electrode group consisting of five positive electrode plates and six negative electrode plates per cell.
V48Ah). Also, when forming the electrode group,
An Sb-free alloy is used for the shelf connecting the plates of the positive electrode and the connecting body connecting the cells, and the entire positive electrode is made of Sb.
Is not contained.

【0020】また、比較のために(従来の製造法によ
る)、シート1に厚さ約0.2mmのPb−7質量%S
b合金(シート5)を重ね合わせて段階的に圧延し、以
後同様の過程を経て正極板を作製した(P0)。負極板
はシート3を段階的に圧延して同様の過程を経て作製し
た(N0)。この格子体を用いた構成の電池を従来例の
電池とした。詳細な電池構成の条件を表1に示す。
For comparison (according to the conventional manufacturing method), the sheet 1 was made of Pb-7 mass% S having a thickness of about 0.2 mm.
The b alloy (sheet 5) was superposed and rolled stepwise, and thereafter a positive electrode plate was produced through the same process (P0). The negative electrode plate was produced through a similar process by rolling the sheet 3 stepwise (N0). The battery having the configuration using this lattice was used as a conventional battery. Table 1 shows the detailed conditions of the battery configuration.

【0021】[0021]

【表1】 [Table 1]

【0022】≪試験1≫各々異なる構成の電池につい
て、課題である減液特性と負極における腐食を評価する
ために次のようなパターンの寿命試験を実施した。この
寿命試験は過充電傾向の使われ方を想定した試験パター
ンであり、75℃雰囲気中で13.8V定電圧充電を連
続で120時間行うサイクルを繰り返した。また、減液
が進行して極板上部が電解液から露出した状態を想定す
るために、電解液を下限水準に減らした状態で試験を行
った。その後、負極耳表面に生成した腐食生成物を除
去、負極耳厚みの測定を行い、初期状態の耳厚みに対す
る試験終了後の耳厚みの比率を百分率で求めた。
[Test 1] For the batteries having different configurations, a life test of the following pattern was carried out in order to evaluate the problem of liquid reduction characteristics and corrosion at the negative electrode. This life test is a test pattern assuming the use of the tendency to overcharge, and a cycle in which 13.8 V constant voltage charging is continuously performed in a 75 ° C. atmosphere for 120 hours was repeated. Further, in order to suppose a state in which the upper portion of the electrode plate was exposed from the electrolytic solution as the liquid reduction proceeded, the test was performed with the electrolytic solution reduced to the lower limit level. Thereafter, corrosion products formed on the surface of the negative electrode ear were removed, the thickness of the negative electrode ear was measured, and the ratio of the ear thickness after the test to the ear thickness in the initial state was determined as a percentage.

【0023】この試験結果を表1に示す。表内の寿命試
験評価は、従来の構成からなる電池Aの減液量及び腐食
度を100として各々の構成からなる電池を比較した。
従来例の電池Aは、正極において図1に示すような箇所
の接続体、棚、格子体表面にSbを含有し、負極にはS
bを含まない構成である。これに対して本発明の電池B
1〜C2は各電池とも正極にSbを含まず、負極にSb
を含有する構成の電池である。従来例Aに対して本発明
例B1〜C2は減液量が約7〜8割程度と少ない結果で
あった。特に従来例Aは、初期における減液は少なかっ
たものの、サイクルが進行すると徐々に減液が増大する
傾向が見られた。これは、サイクルが進行するに従って
正極に含有しているSbが溶出して負極に析出し、水素
過電圧が低下して水素ガスが発生することに起因してい
ると考えられる。初期は正極から負極へのSb析出量も
少ないが、サイクル進行に伴い徐々にSb析出量も増加
して減液が増大したと考えられる。これに対して本発明
B1〜C2は、正極のSbを排除してあらかじめ負極に
微量なSbを付与することで、サイクル進行に伴う減液
の増大を解消し適度な減液量に抑制している結果と想定
できる。また、B1とB2においてはややB1の減液量
が多かった。この理由は明確ではないが、B1は負極活
物質上にSbが存在しているために、Sb上での反応表
面積がB2より広範囲であることが考えられる。
Table 1 shows the test results. In the life test evaluations in the table, the batteries A having the conventional configurations were compared with the batteries having the respective configurations, with the liquid reduction amount and the corrosion degree being 100.
The battery A of the conventional example contains Sb on the surface of the connecting body, shelf, and lattice at the location shown in FIG. 1 in the positive electrode, and contains Sb in the negative electrode.
b is not included. On the other hand, the battery B of the present invention
1 to C2 do not contain Sb in the positive electrode, and Sb
It is a battery of the composition containing. The results of Examples B1 and C2 of the present invention were as small as about 70 to 80% of that of Conventional Example A. Particularly, in Conventional Example A, although the liquid reduction was small in the initial stage, the liquid reduction tended to gradually increase as the cycle progressed. This is considered to be due to the fact that Sb contained in the positive electrode elutes and precipitates on the negative electrode as the cycle proceeds, and the hydrogen overvoltage is reduced to generate hydrogen gas. It is considered that although the amount of Sb deposited from the positive electrode to the negative electrode was small in the initial stage, the amount of Sb deposited gradually increased with the progress of the cycle, and the liquid reduction increased. On the other hand, in the present inventions B1 and C2, by removing Sb of the positive electrode and adding a small amount of Sb to the negative electrode in advance, it is possible to eliminate the increase in liquid reduction accompanying the progress of the cycle and to suppress the liquid reduction to an appropriate amount. Can be assumed. Further, in B1 and B2, the liquid reduction amount of B1 was slightly large. Although the reason for this is not clear, it is conceivable that B1 has a wider reaction surface area on Sb than B2 because Sb exists on the negative electrode active material.

【0024】また、従来例Aは負極棚部及び耳部におい
て腐食の進行が見られたが、本発明例であるB1〜C2
においては全く腐食が見られず初期と同じ状態であっ
た。この理由としては、従来例Aの正極に含有されてい
るSbが起因していると推察できる。前述したように正
極のSbは、サイクル進行に伴って溶出して負極に析出
するが、極板内でも反応利用度が高いと考えられる上部
に多く析出する。特に活物質で覆われていない棚部や極
板耳部及び上枠骨にSbが偏析すると推定される(図2
に負極板の耳部及び上枠骨を示す)。サイクル進行に従
って、Sbが偏析した箇所は露出して、表面は薄い液膜
に覆われてpHが増大すると考えられる。その後、pH
増大によってPbの溶解が起こりやすくなり、Sb上で
は水素ガスが発生し、Pb上ではPbが溶解して硫酸鉛
が生成する局部電池を形成して、腐食が進行していると
推察される。これに対して、本発明例B1〜C2は正極
にSbを含んでいないために、電解液へ溶出して負極上
部に析出することもなく、電解液が減少して負極上部が
露出しても局部電池を形成しないために腐食が進行しな
かったと考えられ、腐食を防止しているといえる。ま
た、本発明例B1〜C2において腐食に差異は見られな
かった。このことからも腐食は正極のSbが溶出して負
極上部へ析出していることが原因であることが言え、正
極にSbが含有されてない電池では差が見られなかった
と考えられる。
Further, in the conventional example A, corrosion progress was observed in the negative electrode shelf and the ear, but in the examples B1 to C2 of the present invention.
Showed no corrosion at all and was in the same state as the initial state. It can be inferred that this is due to Sb contained in the positive electrode of Conventional Example A. As described above, Sb of the positive electrode elutes with the progress of the cycle and precipitates on the negative electrode. In particular, it is estimated that Sb segregates on the shelves, the plate ears, and the upper frame bone that are not covered with the active material (FIG. 2).
Shows the ears of the negative electrode plate and the upper frame bone). It is considered that as the cycle progresses, the portion where Sb segregates is exposed, and the surface is covered with a thin liquid film, and the pH increases. Then pH
It is presumed that Pb is easily dissolved by the increase, hydrogen gas is generated on Sb, Pb is dissolved on Pb to form a local battery in which lead sulfate is generated, and corrosion is progressing. In contrast, Examples B1 and C2 of the present invention do not contain Sb in the positive electrode, and therefore do not elute into the electrolytic solution and precipitate on the upper portion of the negative electrode. It is considered that corrosion did not progress because no local battery was formed, and it can be said that corrosion was prevented. Further, no difference was observed in the corrosion in the inventive examples B1 and C2. From this, it can be said that the corrosion was caused by the elution of Sb of the positive electrode and the deposition on the upper part of the negative electrode, and it is considered that no difference was observed in the battery in which the positive electrode did not contain Sb.

【0025】≪試験2≫次に、前記した過充電傾向を想
定した寿命試験とは別に過放電放置を想定した試験を行
った。この試験条件は、9.6Aで5時間定電流放電を
実施した後に、40℃雰囲気中で10Wの負荷を接続し
て14日間放電し、負荷を取り外して開路状態にして引
き続き40℃雰囲気中で14日間放置した。その後、1
5.0Vで4時間回復充電を実施した後、5時間率放電
によって容量を評価した。この試験結果を(表1)に示
す。表内の試験評価は、従来の構成からなる従来例Aの
回復容量を100として各々の構成からなる電池を比較
した。従来例Aと比較して、本発明例B1とB2は著し
く容量が低下していた。ところで、従来例Aの正極格子
表面のSb層は、先に述べてきた充電受け入れ性を向上
させる効果と共に、過放電放置後に格子体と活物質との
界面に生成する不導態膜の影響を緩和する効果が知られ
ている。よって、B1とB2は過放電放置によって生成
した界面の不導体膜の影響を受け、充電しても回復でき
ずに容量が低下したと考えられる。これに対して、本発
明例C1とC2は従来例Aと同等の容量が得られた。こ
れは、本発明例C1とC2における正極格子体表面のS
n層が従来例AのSb層と同様の効果が考えられ、生成
した界面の不導体膜の影響を緩和していることが推定で
きる。
[Test 2] Next, a test was conducted on the assumption of overdischarge leaving, apart from the life test on the assumption of the tendency of overcharging. The test conditions were as follows: after conducting a constant current discharge at 9.6 A for 5 hours, a load of 10 W was connected in a 40 ° C. atmosphere and discharged for 14 days. Left for 14 days. Then 1
After carrying out recovery charging at 5.0 V for 4 hours, the capacity was evaluated by discharging at a rate of 5 hours. The test results are shown in (Table 1). In the test evaluations in the table, the batteries having the respective configurations were compared with the recovery capacity of the conventional example A having the conventional configuration being 100. The capacities of the inventive examples B1 and B2 were significantly lower than those of the conventional example A. By the way, the Sb layer on the surface of the positive electrode grid of the conventional example A has the effect of improving the charge acceptability described above and the effect of the passivation film generated at the interface between the grid and the active material after being left in overdischarge. The effect of alleviation is known. Therefore, it is considered that B1 and B2 were affected by the non-conductive film at the interface generated by the over-discharge standing and could not be recovered even when charged, resulting in a decrease in capacity. On the other hand, in Examples C1 and C2 of the present invention, a capacity equivalent to that of Conventional Example A was obtained. This is due to the fact that S on the surface of the positive electrode grid body in the inventive examples C1 and C2
The same effect as the Sb layer of the conventional example A can be considered for the n-layer, and it can be estimated that the influence of the generated non-conductive film at the interface is reduced.

【0026】以上のように、正極にSbを含有せず、負
極はセル間を接続する接続体、極板を溶接する棚部及び
極板耳部を除く部位において、Sbを負極活物質量に対
して0.001質量%〜0.1質量%含有する構成の鉛
蓄電池は、課題である寿命サイクル時の減液の増加を抑
制して、かつ負極における腐食を解消し、優れた寿命性
能を寄与するものである。また、過放電放置の場合も想
定して、正極格子体表面の少なくとも一部に、Snを2
質量%以上含有する鉛合金層を形成する正極板を用いた
上記構成の鉛蓄電池が望ましい。
As described above, the positive electrode does not contain Sb, and the negative electrode has Sb reduced to the amount of the negative electrode active material in portions other than the connecting body for connecting the cells, the shelf for welding the electrode plates, and the electrode plate ears. On the other hand, a lead-acid battery having a configuration containing 0.001% by mass to 0.1% by mass suppresses an increase in liquid reduction during a life cycle, which is a problem, and eliminates corrosion in a negative electrode, thereby achieving excellent life performance. It will contribute. Also, assuming the case of overdischarge, Sn is added to at least a part of the surface of the positive electrode grid body.
A lead-acid battery having the above-described configuration using a positive electrode plate on which a lead alloy layer containing at least 10 mass% is contained is desirable.

【0027】[0027]

【発明の効果】以上、正極にSbを含有せず、負極にS
bを負極活物質量に対して微量含有する構成の鉛蓄電池
は、寿命サイクル時の減液の増加を抑制して適度な減液
量を保ち、かつ負極における腐食を解消して優れた寿命
特性を持つことが可能である。特に、正極格子体表面の
少なくとも一部に、Snを2質量%以上含有する鉛合金
層を形成する正極板を用いた上記構成の鉛蓄電池は過放
電した場合も容量低下を防ぎ安定した特性を得ることが
できる。
As described above, the positive electrode does not contain Sb, and the negative electrode contains Sb.
The lead-acid battery, which contains a small amount of b with respect to the amount of the negative electrode active material, suppresses an increase in the amount of liquid reduction during the life cycle, maintains an appropriate amount of liquid reduction, and eliminates corrosion in the negative electrode and has excellent life characteristics. It is possible to have In particular, the lead storage battery having the above-described configuration using a positive electrode plate in which a lead alloy layer containing 2% by mass or more of Sn is formed on at least a part of the surface of the positive electrode grid has stable characteristics even when overdischarged. Obtainable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】極板群構成を示す一部破載図FIG. 1 is a partially exploded view showing the configuration of an electrode group;

【符号の説明】 1 極板群 2 正極耳部 3 セパレータ 4 負極格子骨 5 負極耳部 6 負極格子体 7 負極棚 8 正極接続体 9 負極接続体[Explanation of symbols] 1 Electrode group 2 Positive ear 3 separator 4 Negative grid lattice 5 Negative ears 6 Negative grid 7 Negative electrode shelf 8 Positive electrode connection 9 Negative electrode connector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/73 H01M 4/73 A Fターム(参考) 5H017 AA01 AS08 AS10 CC05 EE02 HH01 HH05 5H022 AA01 BB11 CC12 CC13 CC20 EE02 5H028 BB05 CC08 EE01 HH01 5H050 AA07 AA08 BA09 CA06 CB15 DA05 EA02 GA07 HA01 HA12──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H01M 4/73 H01M 4/73 A F term (Reference) 5H017 AA01 AS08 AS10 CC05 EE02 HH01 HH05 5H022 AA01 BB11 CC12 CC13 CC20 EE02 5H028 BB05 CC08 EE01 HH01 5H050 AA07 AA08 BA09 CA06 CB15 DA05 EA02 GA07 HA01 HA12

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 格子耳部と格子骨部からなる負極格子を
備えた負極板と格子耳部と格子骨部からなる正極格子を
備えた正極板を有し、同極性の極板耳部を集合溶接する
棚およびこの棚より導出された極柱もしくは接続体を備
えた鉛蓄電池において、正極格子と正極棚と正極極柱お
よび正極接続体で構成される正極部材は実質上Sbを含
有しない鉛もしくは鉛合金からなり、負極格子と負極棚
と負極極柱および負極接続体で構成される負極部材のう
ち負極格子骨部を除く部位は実質上Sbを含有しない鉛
もしくは鉛合金からなり、負極格子骨部もしくは負極活
物質のいずれか一方はSbを含み、前記Sbの負極活物
質量に対する含有量が0.001〜0.1質量%である
ことを特徴とする鉛蓄電池。
1. A negative electrode plate provided with a negative electrode grid composed of a lattice ear and a lattice skeleton, and a positive electrode plate provided with a positive electrode lattice composed of a lattice lug and a lattice skeleton. In a lead-acid battery having a shelf to be collectively welded and a pole or connector derived from the shelf, the positive electrode member composed of the positive grid, the positive shelf, the positive pole and the positive connector has substantially no lead containing Sb. Alternatively, a portion of the negative electrode member composed of a negative electrode lattice, a negative electrode shelf, a negative electrode pole, and a negative electrode connection body, except for a negative electrode lattice bone portion, is substantially made of lead or a lead alloy containing no Sb. A lead-acid battery, wherein one of the skeleton and the negative electrode active material contains Sb, and the content of Sb with respect to the amount of the negative electrode active material is 0.001 to 0.1% by mass.
【請求項2】 負極活物質にSbを含み、該Sbの負極
活物質に対する含有量が0.001質量%〜0.02質
量%であることを特徴とする請求項1に記載の鉛蓄電
池。
2. The lead-acid battery according to claim 1, wherein the negative electrode active material contains Sb, and the content of the Sb with respect to the negative electrode active material is 0.001% by mass to 0.02% by mass.
【請求項3】 前記正極格子の正極活物質と接する表面
の少なくとも一部に、Snを2%以上含有する鉛合金層
を備えることを特徴とする請求項1〜2に記載の鉛蓄電
池。
3. The lead-acid battery according to claim 1, further comprising a lead alloy layer containing 2% or more of Sn on at least a part of a surface of the positive electrode grid in contact with the positive electrode active material.
JP2002150321A 2002-05-24 2002-05-24 Lead acid battery Expired - Fee Related JP4501330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150321A JP4501330B2 (en) 2002-05-24 2002-05-24 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150321A JP4501330B2 (en) 2002-05-24 2002-05-24 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2003346888A true JP2003346888A (en) 2003-12-05
JP4501330B2 JP4501330B2 (en) 2010-07-14

Family

ID=29768208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150321A Expired - Fee Related JP4501330B2 (en) 2002-05-24 2002-05-24 Lead acid battery

Country Status (1)

Country Link
JP (1) JP4501330B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096431A1 (en) * 2004-04-02 2005-10-13 Matsushita Electric Industrial Co., Ltd. Lead storage battery
WO2005099020A1 (en) * 2004-04-08 2005-10-20 Matsushita Electric Industrial Co., Ltd. Lead storage battery
JP2005302302A (en) * 2004-04-06 2005-10-27 Matsushita Electric Ind Co Ltd Lead storage battery
WO2005107004A1 (en) * 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. Lead acid battery
WO2005124920A1 (en) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. Lead storage battery
JP2006066252A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2006114417A (en) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2006114416A (en) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2006140032A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2006140033A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Lead storage battery
JP2006155913A (en) * 2004-11-25 2006-06-15 Matsushita Electric Ind Co Ltd Lead acid battery
JP2006164598A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Lead acid battery
JP2006164597A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Lead storage battery
WO2013114822A1 (en) * 2012-01-31 2013-08-08 パナソニック株式会社 Lead-acid battery
JP2015022796A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Lead storage battery
CN108630900A (en) * 2010-05-10 2018-10-09 新神户电机株式会社 Lead accumulator
CN114284583A (en) * 2021-12-27 2022-04-05 河南超威正效电源有限公司 Method for reducing EFB power-on and power-off pool water loss

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646374A (en) * 1987-06-29 1989-01-10 Matsushita Electric Ind Co Ltd Lead storage battery
JPH01189859A (en) * 1988-01-22 1989-07-31 Japan Storage Battery Co Ltd Lead-acid battery
JPH0574464A (en) * 1991-09-12 1993-03-26 Matsushita Electric Ind Co Ltd Sealed lead-acid storage battery
JPH07211306A (en) * 1994-01-20 1995-08-11 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH09283137A (en) * 1996-04-11 1997-10-31 Japan Storage Battery Co Ltd Lead-acid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646374A (en) * 1987-06-29 1989-01-10 Matsushita Electric Ind Co Ltd Lead storage battery
JPH01189859A (en) * 1988-01-22 1989-07-31 Japan Storage Battery Co Ltd Lead-acid battery
JPH0574464A (en) * 1991-09-12 1993-03-26 Matsushita Electric Ind Co Ltd Sealed lead-acid storage battery
JPH07211306A (en) * 1994-01-20 1995-08-11 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH09283137A (en) * 1996-04-11 1997-10-31 Japan Storage Battery Co Ltd Lead-acid battery

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096431A1 (en) * 2004-04-02 2005-10-13 Matsushita Electric Industrial Co., Ltd. Lead storage battery
US8197967B2 (en) 2004-04-02 2012-06-12 Panasonic Corporation Long life and low corrosion lead storage battery with a separator including silica and oil
KR101139665B1 (en) * 2004-04-02 2012-05-14 파나소닉 주식회사 Lead storage battery
JP2005302302A (en) * 2004-04-06 2005-10-27 Matsushita Electric Ind Co Ltd Lead storage battery
US8071239B2 (en) 2004-04-08 2011-12-06 Panasonic Corporation Long life and low corrosion lead storage battery
WO2005099020A1 (en) * 2004-04-08 2005-10-20 Matsushita Electric Industrial Co., Ltd. Lead storage battery
KR101128586B1 (en) 2004-04-08 2012-03-26 파나소닉 주식회사 Lead storage battery
JP5016306B2 (en) * 2004-04-28 2012-09-05 パナソニック株式会社 Lead acid battery
KR101068378B1 (en) 2004-04-28 2011-09-28 파나소닉 주식회사 Lead acid battery
WO2005107004A1 (en) * 2004-04-28 2005-11-10 Matsushita Electric Industrial Co., Ltd. Lead acid battery
JPWO2005107004A1 (en) * 2004-04-28 2008-03-21 松下電器産業株式会社 Lead acid battery
CN100448093C (en) * 2004-04-28 2008-12-31 松下电器产业株式会社 Lead acid battery
US7597998B2 (en) 2004-04-28 2009-10-06 Panasonic Corporation Lead acid battery including antimony
JP5079324B2 (en) * 2004-06-16 2012-11-21 パナソニック株式会社 Lead acid battery
WO2005124920A1 (en) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. Lead storage battery
JPWO2005124920A1 (en) * 2004-06-16 2008-04-17 松下電器産業株式会社 Lead acid battery
CN100446329C (en) * 2004-06-16 2008-12-24 松下电器产业株式会社 Lead storage battery
US7514177B2 (en) 2004-06-16 2009-04-07 Panasonic Corporation Lead storage battery
JP2006066252A (en) * 2004-08-27 2006-03-09 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2006114416A (en) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2006114417A (en) * 2004-10-18 2006-04-27 Matsushita Electric Ind Co Ltd Lead-acid storage battery
JP2006140033A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Lead storage battery
JP2006140032A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2006155913A (en) * 2004-11-25 2006-06-15 Matsushita Electric Ind Co Ltd Lead acid battery
JP2006164597A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Lead storage battery
JP2006164598A (en) * 2004-12-03 2006-06-22 Matsushita Electric Ind Co Ltd Lead acid battery
CN108630900A (en) * 2010-05-10 2018-10-09 新神户电机株式会社 Lead accumulator
CN108630900B (en) * 2010-05-10 2021-11-09 新神户电机株式会社 Lead-acid battery
WO2013114822A1 (en) * 2012-01-31 2013-08-08 パナソニック株式会社 Lead-acid battery
JPWO2013114822A1 (en) * 2012-01-31 2015-05-11 パナソニックIpマネジメント株式会社 Lead acid battery
CN104067436B (en) * 2012-01-31 2017-04-05 株式会社杰士汤浅国际 Lead accumulator
CN104067436A (en) * 2012-01-31 2014-09-24 松下电器产业株式会社 Lead-acid battery
JP2015022796A (en) * 2013-07-16 2015-02-02 パナソニック株式会社 Lead storage battery
CN114284583A (en) * 2021-12-27 2022-04-05 河南超威正效电源有限公司 Method for reducing EFB power-on and power-off pool water loss

Also Published As

Publication number Publication date
JP4501330B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP2003346888A (en) Lead-acid battery
WO2010032782A1 (en) Lead acid storage battery
KR100305423B1 (en) Expanded Grid For Electrode Plate of Lead-Acid Battery
US5120620A (en) Binary lead-tin alloy substrate for lead-acid electrochemical cells
JP5061451B2 (en) Anode current collector for lead acid battery
WO2006049295A1 (en) Negative electrode current collector for lead storage battery and lead storage battery including the same
JP2002175798A (en) Sealed lead-acid battery
JP4815665B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP4892827B2 (en) Lead acid battery
JP4894211B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP4292666B2 (en) Sealed lead acid battery
JP4904686B2 (en) Lead acid battery
JPS63148556A (en) Paste type lead acid battery
JP4678117B2 (en) Lead acid battery
JP3094423B2 (en) Lead storage battery
JP3509294B2 (en) Lead storage battery
JP5135692B2 (en) Lead acid battery
JP2006164597A (en) Lead storage battery
JP4765190B2 (en) Control valve type lead acid battery
JPH0770321B2 (en) Sealed lead acid battery
JP4802903B2 (en) Lead acid battery
JP4923399B2 (en) Lead acid battery
JPS61198574A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees