JP5135692B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP5135692B2
JP5135692B2 JP2006055838A JP2006055838A JP5135692B2 JP 5135692 B2 JP5135692 B2 JP 5135692B2 JP 2006055838 A JP2006055838 A JP 2006055838A JP 2006055838 A JP2006055838 A JP 2006055838A JP 5135692 B2 JP5135692 B2 JP 5135692B2
Authority
JP
Japan
Prior art keywords
lead
antimony
lattice
positive electrode
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006055838A
Other languages
Japanese (ja)
Other versions
JP2007234444A (en
Inventor
善博 村田
和成 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006055838A priority Critical patent/JP5135692B2/en
Publication of JP2007234444A publication Critical patent/JP2007234444A/en
Application granted granted Critical
Publication of JP5135692B2 publication Critical patent/JP5135692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

自動車用鉛蓄電池は、自己放電が少なく、減液特性に優れる等、メンテナンスフリー化を目的として、正極および負極の格子体にPb−Ca合金を用いることが一般的である。   In general, lead-acid batteries for automobiles use a Pb—Ca alloy for the positive and negative grids for the purpose of maintenance-free, such as low self-discharge and excellent liquid reduction characteristics.

近年、環境への配慮から車両の燃費改善を図るため、自動車部品のエレクトロニクス化が急速に発展してきた。その結果、鉛蓄電池の負荷は増大する傾向にある。また自動車の普及に伴い、特に、都市およびその周辺の道路では慢性的な渋滞が発生しており、車両内の温度は非常に高い。したがって、車両用の鉛蓄電池では、高温雰囲気下で高い電気負荷に対する耐久性が求められる。   In recent years, the use of electronics for automobile parts has been rapidly developed in order to improve vehicle fuel efficiency in consideration of the environment. As a result, the load of the lead storage battery tends to increase. In addition, with the spread of automobiles, chronic traffic congestion has occurred particularly in cities and the surrounding roads, and the temperature inside the vehicle is very high. Therefore, the lead acid battery for vehicles is required to have durability against a high electric load in a high temperature atmosphere.

前記したPb−Ca合金を正・負の格子体に用いた鉛蓄電池は、格子体にPb−Sb合金を用いたものに比較して、メンテナンスフリー性は格段に向上するものの、前記したような、高温雰囲気下で高い電気負荷で使用したときの耐久性に劣っていた。   The lead-acid battery using the Pb—Ca alloy described above for the positive and negative grids has a significantly improved maintenance-free property as compared to the Pb—Sb alloy used for the grid, but as described above. Inferior in durability when used with a high electric load in a high temperature atmosphere.

例えば、特許文献1には、鉛−カルシウム合金格子体に鉛−アンチモン−スズ合金層を形成し、深い充放電を繰り返し行ったときの鉛蓄電池の寿命特性を改善することが示されている。さらに特許文献2および特許文献3には、格子体表面に形成したアンチモンとスズを含む鉛合金中に、ビスマス、砒素、銅、銀および鉄の少なくとも1種あるいは少なくとも2種を0.2質量%以下の範囲内で添加することが示されている。   For example, Patent Document 1 shows that a lead-antimony-tin alloy layer is formed on a lead-calcium alloy lattice and the life characteristics of the lead-acid battery are improved when deep charge / discharge is repeated. Further, Patent Document 2 and Patent Document 3 describe that 0.2% by mass of at least one or at least two of bismuth, arsenic, copper, silver, and iron in a lead alloy containing antimony and tin formed on the surface of the lattice. Addition within the following ranges is indicated.

特許文献2および特許文献3の構成によれば、格子表面層にビスマス、砒素、銅、銀、もしくは鉄を添加することにより、負極の充電電位が一定に保たれるため、寿命末期まで優れた充電効率が維持でき、その結果、鉛蓄電池の高温耐久力が改善することが示されている。また、格子表面層に添加するビスマスや銀等の金属元素は総量で0.2質量%以下に制限しない場合、電解液の減液速度が増加し、鉛蓄電池のメンテナンスフリー性が損なわれることが示されている。
特開昭63−148556号公報 特開平2−299154号公報 特開平3−22360号公報
According to the configurations of Patent Document 2 and Patent Document 3, by adding bismuth, arsenic, copper, silver, or iron to the lattice surface layer, the charge potential of the negative electrode is kept constant, so that it was excellent until the end of its lifetime. It is shown that the charging efficiency can be maintained, and as a result, the high temperature durability of the lead acid battery is improved. In addition, when the total amount of metal elements such as bismuth and silver added to the lattice surface layer is not limited to 0.2% by mass or less, the rate of liquid electrolyte decrease increases, and the maintenance-free property of the lead-acid battery may be impaired. It is shown.
JP-A 63-148556 JP-A-2-299154 JP-A-3-22360

本発明の発明者は、格子表面に形成する鉛−アンチモン合金層について、鋭意研究を行ったところ、ビスマス、砒素、銅および鉄に関しては、鉛蓄電池のメンテナンスフリー性を維持するために、その総量を特許文献2および特許文献3に記載された如く、0.2質量%程度以下に制限する必要があるものの、銀に関してはむしろ、その添加量が0.2質量%を超える領域でメンテナンスフリー性に対して好ましい効果が得られることがわかった。   The inventor of the present invention diligently researched the lead-antimony alloy layer formed on the lattice surface. As for bismuth, arsenic, copper and iron, in order to maintain the maintenance-free property of the lead-acid battery, the total amount However, as described in Patent Document 2 and Patent Document 3, it is necessary to limit the amount to about 0.2% by mass or less, but rather, regarding silver, maintenance-free properties in a region where the addition amount exceeds 0.2% by mass. It was found that a favorable effect can be obtained.

さらには、このような量の銀添加により、格子表面層に配置されたアンチモンによる寿命改善効果がより顕著に得られることを見出した。   Furthermore, it has been found that by adding such an amount of silver, the effect of improving the lifetime by the antimony disposed in the lattice surface layer can be obtained more remarkably.

本発明は、このような新たな知見によりなされたものであり、従来の鉛蓄電池よりもさらに高温寿命特性を改善し、メンテナンスフリー性にも優れた鉛蓄電池を提供するものである。   The present invention has been made based on such new knowledge, and provides a lead storage battery that is further improved in high-temperature life characteristics and superior in maintenance-free properties as compared with conventional lead storage batteries.

上記の課題を解決するために、本発明の請求項1に係る発明は、鉛−カルシウム−スズ合金の格子体表面にアンチモンを含み、かつ、0.25質量%以上の銀を含み、残部鉛とする鉛−アンチモン−銀合金を配した格子体を正極板に用いた鉛蓄電池を示すものである。   In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention includes a lead-calcium-tin alloy lattice surface containing antimony and containing 0.25% by mass or more of silver, with the remainder being lead A lead storage battery using a grid body in which a lead-antimony-silver alloy is disposed as a positive electrode plate is shown.

さらに、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、前記鉛−カルシウム−スズ合金からなる母材シート上の少なくとも片面に前記鉛−アンチモン−銀合金層を形成した圧延鉛合金シートを前記格子体に用いたものである。   Furthermore, the invention according to claim 2 of the present invention is the lead storage battery according to claim 1, wherein the lead-antimony-silver alloy layer is formed on at least one surface of the base material sheet made of the lead-calcium-tin alloy. A lead alloy sheet is used for the lattice body.

またさらに、本発明の請求項3に係る発明は、請求項2の鉛蓄電池において、前記鉛−カルシウム−スズ合金の母材ストリップ上に前記鉛−アンチモン−銀合金からなるストリップを重ねあわせ、同時圧延により両者を圧着し、かつ前記鉛−アンチモン−銀合金層の厚み(A)を前記格子体の骨の厚み(B)の1.3%〜5.0%の厚みに形成する。   Furthermore, the invention according to claim 3 of the present invention is the lead storage battery of claim 2, wherein the lead-antimony-silver alloy strip is superposed on the lead-calcium-tin alloy base material strip, and simultaneously. Both are pressure-bonded by rolling, and the thickness (A) of the lead-antimony-silver alloy layer is formed to be 1.3% to 5.0% of the bone thickness (B) of the lattice body.

本発明の鉛蓄電池は、前記の構成を有し、鉛−カルシウム−スズ合金の格子体表面に鉛−アンチモン合金層を形成した鉛蓄電池において、鉛−アンチモン合金層中の銀添加量を限定することにより、自己放電がさらに少なく、減液特性に優れるメンテナンスフリー電池の性能をさらに改善しながら、鉛蓄電池の高温雰囲気中での充放電寿命の向上を図ることができる。   The lead storage battery of the present invention has the above-described configuration, and in the lead storage battery in which the lead-antimony alloy layer is formed on the surface of the lead-calcium-tin alloy lattice, the amount of silver added in the lead-antimony alloy layer is limited. As a result, it is possible to improve the charge / discharge life of the lead-acid battery in a high temperature atmosphere while further improving the performance of the maintenance-free battery with less self-discharge and excellent liquid reduction characteristics.

本発明の鉛蓄電池は、正極格子として鉛−カルシウム−スズ合金の格子体表面にアンチモンと0.25質量%以上の銀を含み、残部鉛とする鉛−アンチモン−銀合金を配したものを用いる。   The lead acid battery of the present invention uses a lead-calcium-tin alloy lattice body surface containing antimony and 0.25% by mass or more of silver as the positive electrode lattice, with a lead-antimony-silver alloy serving as the balance lead. .

格子母材としての鉛−カルシウム−スズ合金は、鉛蓄電池の正極格子体に必要とされる、機械的強度および耐食性を有したものが用いられる。従来から知られているように、カルシウムは主に機械的強度を確保するために添加され、その適切な添加量は0.03質量%〜0.15質量%である。また、スズは機械的強度とともに、耐食性を確保するために添加され、その適切な添加量は0.5質量%〜2.0質量%である。   The lead-calcium-tin alloy used as the lattice base material has mechanical strength and corrosion resistance required for the positive electrode lattice of the lead storage battery. As is conventionally known, calcium is added mainly to ensure mechanical strength, and the appropriate addition amount is 0.03% by mass to 0.15% by mass. Moreover, tin is added in order to ensure corrosion resistance with mechanical strength, The suitable addition amount is 0.5 mass%-2.0 mass%.

なお、鉛−カルシウム−スズ合金中には、不純物として、ビスマス、アンチモン、硫黄、セレン、ニッケル、銅等の元素が含まれる場合があるが、いずれも正極格子合金に必要な耐食性や強度が維持される範囲内での含有は差し支えない。なお、これらの元素の中にはアンチモン、銅の如く、負極に移行して自己放電特性や減液特性を低下させるものも存在するため、これらの特性が低下しない範囲で、これら元素の含有量を制限すべきであることは言うまでもない。   The lead-calcium-tin alloy may contain elements such as bismuth, antimony, sulfur, selenium, nickel, and copper as impurities, all of which maintain the corrosion resistance and strength required for the positive electrode lattice alloy. It does not matter if it is contained within the range. In addition, some of these elements, such as antimony and copper, migrate to the negative electrode and degrade the self-discharge characteristics and liquid reduction characteristics. Therefore, the content of these elements is within the range where these characteristics do not deteriorate. Needless to say, it should be limited.

また、鉛−カルシウム−スズ合金中に機械的強度を高めたり、耐食性を高める他の元素を添加することもできる。たとえば、0.01質量%〜0.07質量%程度のバリウム添加は格子の機械的強度を高めるのに有用であり、0.005質量%〜0.5質量%程度の銀添加は格子の耐食性を高めるのに有用であるため、必要に応じて添加することができる。   In addition, other elements that increase mechanical strength or increase corrosion resistance can also be added to the lead-calcium-tin alloy. For example, barium addition of about 0.01% to 0.07% by mass is useful for increasing the mechanical strength of the lattice, and silver addition of about 0.005% to 0.5% by mass is corrosion resistance of the lattice. Therefore, it can be added as necessary.

また、従来から知られているように、鉛−カルシウム−スズ合金溶湯を調合する際、カルシウムの酸化によるドロスの発生と、合金溶湯中のカルシウム含有量の低下を抑制するため、0.005質量%〜0.1質量%程度のアルミニウムを添加してもよい。   In addition, as conventionally known, when preparing a lead-calcium-tin alloy molten metal, 0.005 mass to suppress dross generation due to oxidation of calcium and a decrease in calcium content in the molten alloy. You may add about 0.1-0.1 mass% aluminum.

本発明では、正極格子表面に形成する鉛−アンチモン合金層中のアンチモンは正極活物質中に溶出してその効果を発揮しうる程度、たとえば、0.8質量%〜20質量%程度に設定することができる。そして、さらに正極格子表面に形成する鉛−アンチモン合金層中に少なくとも0.25質量%以上の銀を添加する。これにより鉛蓄電池のメンテナンスフリー性を改善しつつ、高温雰囲気下での寿命特性を顕著に改善することができる。 In the present invention, the antimony in the lead-antimony alloy layer formed on the surface of the positive electrode lattice is set to such an extent that it can be eluted into the positive electrode active material and exert its effect, for example, about 0.8% by mass to 20% by mass. be able to. In the lead-antimony alloy layer further formed on the surface of the positive electrode lattice, at least 0 . 2 Add 5% by weight or more of silver. Thereby, the lifetime characteristic in a high temperature atmosphere can be improved notably, improving the maintenance-free property of lead acid battery.

このメカニズムについては定かではないが、以下のように推測できる。すなわち、鉛−アンチモン合金層中に添加された銀は、鉛−アンチモン合金層の耐食性を高める作用をする。その結果、鉛−アンチモン合金層からのアンチモン溶出量は低下すると考えられる。   Although it is not certain about this mechanism, it can be estimated as follows. That is, silver added to the lead-antimony alloy layer acts to increase the corrosion resistance of the lead-antimony alloy layer. As a result, it is considered that the antimony elution amount from the lead-antimony alloy layer decreases.

従来のように、正極格子表面層としての鉛−アンチモン合金層中に銀を含まないか、あるいは含んだとしても0.2質量%以下に制限されている場合、鉛−アンチモン合金層の腐食と、これによるアンチモンの正極活物質への移行は比較的早期に完了すると推測される。   If the lead-antimony alloy layer as the positive electrode lattice surface layer does not contain silver or is restricted to 0.2% by mass or less as in the conventional case, the corrosion of the lead-antimony alloy layer Thus, the transition of antimony to the positive electrode active material is presumed to be completed relatively early.

正極活物質中に移行したアンチモンは正極活物質同士の結合性を維持し、充放電サイクルによる活物質の劣化を抑制するが、その一部は負極に移行する。極微量のアンチモンの移行は負極の充電受け入れ性を改善するが、適切な量を超えると鉛蓄電池のメンテナンスフリー性を急激に劣化させてしまう。   Antimony transferred into the positive electrode active material maintains the bonding property between the positive electrode active materials and suppresses the deterioration of the active material due to the charge / discharge cycle, but part of it moves to the negative electrode. The transfer of a very small amount of antimony improves the charge acceptability of the negative electrode, but if it exceeds an appropriate amount, the maintenance-free property of the lead-acid battery is rapidly deteriorated.

また正極活物質中に留まったアンチモンは、その周囲の活物質が硫酸鉛化等により不活性化すると、アンチモンは不活性な硫酸鉛に取り込まれた状態に陥り、その活物質同士の結合性を維持する作用を失ってしまうと推測される。   Antimony remaining in the positive electrode active material falls into a state where the antimony is taken into the inactive lead sulfate when the surrounding active material is inactivated by lead sulfate or the like, and the binding property between the active materials is reduced. It is presumed that the function of maintaining will be lost.

本発明では、正極格子表面に形成する鉛−アンチモン合金層中に0.25質量%以上の銀を添加することにより、鉛−アンチモン合金層の酸化速度が適度に抑制され、アンチモンの溶出速度は抑制されるため、長期間にわたって正極格子表面から正極活物質にアンチモンが供給されると考えられる。したがって、アンチモンによる正極活物質の改質効果が長期間持続するため、鉛蓄電池の寿命特性が改善すると推測される。 In the present invention, in the lead-antimony alloy layer formed on the positive electrode lattice surface, 0 . By adding 2 5 mass% or more silver, lead - oxidation rate of the antimony alloy layer is moderately suppressed, since the dissolution rate of the antimony is suppressed, antimony from the positive electrode grid surface of the cathode active material over an extended period of time It is considered to be supplied. Therefore, it is estimated that the life characteristics of the lead storage battery are improved because the modification effect of the positive electrode active material by antimony lasts for a long time.

従来、アンチモンの溶出が比較的早期に完了するが故に、正極活物質中のアンチモンが一時期過剰となり、この過剰なアンチモンが負極に移行し、メンテナンスフリー性を低下させていたと考えられる。本発明では正極活物質中のアンチモン濃度の急激な増加が抑制され、メンテナンスフリー性を低下させるようなアンチモンの負極への移行が抑制されると推測できる。   Conventionally, since elution of antimony is completed relatively early, it is considered that antimony in the positive electrode active material is excessive for a period of time, and this excess antimony is transferred to the negative electrode, reducing the maintenance-free property. In the present invention, it can be presumed that the rapid increase in the concentration of antimony in the positive electrode active material is suppressed, and the migration of antimony to the negative electrode, which reduces the maintenance-free property, is suppressed.

さらに格子表面に形成された鉛−アンチモン合金層中の銀の腐食抑制効果により、充電時に正極格子に流れる鉛の酸化に用いられる電流、すなわち酸化電流が抑制され、正極格子全体として腐食量が抑制され、鉛蓄電池の寿命改善効果に寄与すると考えられる。   Furthermore, due to the effect of inhibiting the corrosion of silver in the lead-antimony alloy layer formed on the lattice surface, the current used to oxidize the lead flowing in the positive electrode lattice during charging, that is, the oxidation current is suppressed, and the amount of corrosion is suppressed as a whole of the positive electrode lattice. Therefore, it is thought that it contributes to the life improvement effect of the lead storage battery.

格子母材に銀による腐食抑制効果を発揮させる場合、格子母材全体に銀を添加する必要があるが、本発明では表面に集中的に銀を配置できるため、銀の使用量を削減でき、鉛蓄電池価格抑制の点で有効である。   In order to exert the corrosion inhibition effect due to silver on the lattice base material, it is necessary to add silver to the entire lattice base material, but in the present invention, since silver can be concentrated on the surface, the amount of silver used can be reduced, This is effective in reducing the price of lead-acid batteries.

なお、本発明の構成を得るために、鉛−カルシウム−スズ合金格子上に前述の組成を有する鉛−アンチモン−銀合金を溶射やディッピングすることができるが、最も簡便には、鉛−カルシウム−スズ合金の母材ストリップ上に鉛−アンチモン−銀合金ストリップを配置し、同時圧延等により、表面に鉛−アンチモン−銀合金層が形成された圧延鉛合金シートとし、この圧延鉛合金シートにパンチング加工やエキスパンド加工等の穴あけ加工を施したものを正極格子体として用いることができる。   In order to obtain the configuration of the present invention, the lead-antimony-silver alloy having the above-mentioned composition can be sprayed or dipped on the lead-calcium-tin alloy lattice. A lead-antimony-silver alloy strip is disposed on a tin alloy base strip, and a rolled lead alloy sheet having a lead-antimony-silver alloy layer formed on the surface by simultaneous rolling or the like is punched. What gave drilling processes, such as a process and an expand process, can be used as a positive electrode grid.

なお、前記したように、同時圧延により表面に鉛−アンチモン−銀合金層を形成する場合には、図1に示した、正極格子1における格子骨2の厚み(B)および鉛−アンチモン−銀合金層3の厚み(A)において、より好ましくは格子骨2の厚み(B)の1.3%〜5.0%に相当する厚み(A)の鉛−アンチモン−銀合金層3を形成する。このような厚み(A)の設定により、鉛−アンチモン−銀合金層3と鉛−カルシウム−スズ合金母材4との密着性をより良好なものとすることができる。   As described above, when the lead-antimony-silver alloy layer is formed on the surface by simultaneous rolling, the thickness (B) of the lattice bone 2 in the positive electrode lattice 1 and the lead-antimony-silver shown in FIG. More preferably, in the thickness (A) of the alloy layer 3, the lead-antimony-silver alloy layer 3 having a thickness (A) corresponding to 1.3% to 5.0% of the thickness (B) of the lattice bone 2 is formed. . By setting the thickness (A) as described above, the adhesion between the lead-antimony-silver alloy layer 3 and the lead-calcium-tin alloy base material 4 can be improved.

特に、厚み(A)が厚み(B)の5.0%を超える場合および1.3%未満とした場合には、鉛−アンチモン−銀合金層3と鉛−カルシウム−スズ合金母材4との間に剥離が生じる場合があるため、好ましくは厚み(A)を厚み(B)の5.0%以下とする。   In particular, when the thickness (A) exceeds 5.0% of the thickness (B) and less than 1.3%, the lead-antimony-silver alloy layer 3 and the lead-calcium-tin alloy base material 4 Therefore, the thickness (A) is preferably 5.0% or less of the thickness (B).

(実施例1)
以下、実施例により、本発明の効果を説明する。
Example 1
Hereinafter, the effects of the present invention will be described with reference to examples.

実施例1では、本発明例および比較例による鉛蓄電池(以下、電池)を作成し、75℃気相雰囲気下での充放電寿命試験を行った。なお、本発明例および比較例の電池ともに、JIS D5301(始動用鉛蓄電池)で規定する80D26形鉛蓄電池(12V55Ah)とした。   In Example 1, lead acid batteries (hereinafter referred to as batteries) according to the present invention and comparative examples were prepared, and a charge / discharge life test was performed in a gas phase atmosphere at 75 ° C. In addition, it was set as the 80D26 type lead acid battery (12V55Ah) prescribed | regulated by JISD5301 (lead acid battery for start-up) with the battery of the example of this invention and the comparative example.

本実施例における本発明例および比較例の電池の組み立ておよび化成充電は以下の手順で行った。   The assembly and chemical charging of the batteries of the present invention example and the comparative example in this example were performed according to the following procedure.

正極板および負極板は鉛−カルシウム−スズ合金の圧延鉛合金シートをエキスパンド加工した格子に定法の鉛粉、水、硫酸、さらに負極の場合には硫酸バリウム、リグニン等の添加剤も加えて練合したペースト状の活物質を充填し、熟成乾燥を行い、それぞれ正極板および負極板(いずれも未化成状態)とした。   The positive and negative plates are kneaded by adding regular lead powder, water, sulfuric acid, and additives such as barium sulfate and lignin in the case of an expanded grid of a lead-calcium-tin alloy rolled lead alloy sheet. The combined paste-like active material was filled and aged and dried to form a positive electrode plate and a negative electrode plate (both in an unformed state), respectively.

この時、正極格子体は、母材ストリップを0.05質量%のカルシウム、1.60質量%のスズを含む鉛−カルシウム−スズ合金ストリップの片面にそれぞれ後述する表1に示す組成の鉛合金ストリップを重ね合わせ、圧延一体化して得た圧延鉛合金シートを用いた。なお、格子状態において、格子表面に形成した鉛合金層の厚み(A)は、正極格子骨の厚み(B)の2.0%とした。   At this time, the positive electrode grid is composed of a lead alloy having a composition shown in Table 1 described later on one surface of a lead-calcium-tin alloy strip containing 0.05% by mass of calcium and 1.60% by mass of tin. A rolled lead alloy sheet obtained by superimposing strips and rolling and integrating them was used. In the lattice state, the thickness (A) of the lead alloy layer formed on the lattice surface was 2.0% of the thickness (B) of the positive lattice bone.

上記の正極板および負極板の各7枚とセパレータとを組み合わせて極板群を作成した。なお、セパレータとして、メカシールにより袋状にした微孔性ポリエチレンシートを用い、この袋状セパレータに負極板を挿入し、正極板と負極板が交互となるように配置した。   An electrode plate group was prepared by combining each of the positive electrode plate and the negative electrode plate with a separator. In addition, the microporous polyethylene sheet made into the bag shape by the mechanical seal was used as a separator, the negative electrode plate was inserted in this bag-shaped separator, and it arrange | positioned so that a positive electrode plate and a negative electrode plate might become alternate.

同じ極性の極板耳をバーニング方式で溶接し、ストラップとセル間のための接続体および/もしくは電池出力を導出するための極柱を形成することで極板群を得た。この極板群を電槽に収納した後、従来と同様に各セル間を抵抗溶接により連結し、電槽上部に蓋を熱溶着にて接合することにより、電池を組み立てた。   Electrode tabs having the same polarity were welded by a burning method to form a connector for connecting between the strap and the cell and / or a pole column for deriving battery output, thereby obtaining a plate group. After this electrode plate group was housed in the battery case, the cells were assembled by connecting the cells by resistance welding as in the prior art and joining the lid to the upper part of the battery case by heat welding.

組み立て済みの電池に密度が1.165g/cm3(20℃換算値)の希硫酸電解液を注液し、通電化成を行った後、残留電解液を排出し、再度希硫酸を注液し、電解液密度を1.285g/cm3(20℃換算値)に調整した。最後に液口部に液栓を取り付けたものを試験電池とした。 A dilute sulfuric acid electrolyte solution having a density of 1.165 g / cm 3 (converted to 20 ° C.) is injected into the assembled battery, and after conducting the energization conversion, the residual electrolyte solution is discharged, and dilute sulfuric acid solution is injected again. The electrolyte density was adjusted to 1.285 g / cm 3 (20 ° C. converted value). Finally, a battery with a liquid stopper attached to the liquid mouth was used as a test battery.

本実施例の電池における正極格子表面上に形成した鉛合金層の組成を表1に示す。   Table 1 shows the composition of the lead alloy layer formed on the surface of the positive electrode lattice in the battery of this example.

Figure 0005135692
表1に示した各電池について、以下の手順により寿命試験を行った。なお、同時に寿命試験における電解液の減液量についても評価した。
(寿命試験方法)
放電:25A、2分間(75℃)
充電:14.8V定電圧(最大電流25A)、10分間(75℃)
上記の放電−充電サイクルの480サイクル毎に582Aの定電流で判定放電を行い、判定放電の30秒目電圧が7.2Vを下回った時点で寿命試験終了とした。寿命サイクル数は以下の通り求めた。
Figure 0005135692
Each battery shown in Table 1 was subjected to a life test according to the following procedure. At the same time, the amount of electrolyte decreased in the life test was also evaluated.
(Life test method)
Discharge: 25A, 2 minutes (75 ° C)
Charging: 14.8V constant voltage (maximum current 25A), 10 minutes (75 ° C)
A judgment discharge was performed at a constant current of 582 A every 480 cycles of the above discharge-charge cycle, and the life test was completed when the voltage at the 30th second of the judgment discharge fell below 7.2V. The number of life cycles was determined as follows.

すなわち、n回目の判定放電における放電30秒目電圧Vnが7.2Vを下回ったとする。この場合、横軸(サイクル数)−縦軸(判定放電30秒目電圧)のグラフ上に座標(480n,Vn)をプロットする。同様に前回の判定放電である(n−1)回目の判定放電における放電30秒目電圧Vn-1から、座標(480(n−1),Vn-1)をプロットし、これら2つの座標間を直線で結び、この直線と判定放電30秒目電圧=7.2Vの直線とが交わる点の横軸座標を電池の寿命サイクル数とする。 That is, it is assumed that the discharge 30-second voltage V n in the n-th determination discharge is lower than 7.2V. In this case, coordinates (480 n , V n ) are plotted on a graph with the horizontal axis (number of cycles) -vertical axis (voltage at 30 seconds of determination discharge). Similarly, coordinates (480 (n−1), V n−1 ) are plotted from the voltage V n−1 at the discharge 30 seconds in the (n−1) th determination discharge which is the previous determination discharge, and these two The coordinates are connected by a straight line, and the horizontal axis coordinate of the point where the straight line intersects the straight line of the determination discharge 30 second voltage = 7.2 V is defined as the battery life cycle number.

さらに減液量については以下の方法により評価した。すなわち、480サイクルの充放電サイクル毎(以下、一連の480サイクルの充放電を480サイクル単位とする)に電池質量を計測し、各480サイクル単位の充放電前後の電池質量差から減液量を計算した。なお、減液量計算後は、減液した分の蒸留水を電池に補給した。   Further, the amount of liquid reduction was evaluated by the following method. That is, the battery mass is measured every charge / discharge cycle of 480 cycles (hereinafter, a series of 480 cycles of charge / discharge is assumed to be 480 cycle units), and the amount of liquid reduction is calculated from the battery mass difference before and after each 480 cycle unit. Calculated. In addition, after the liquid reduction amount calculation, distilled water corresponding to the liquid reduction was supplied to the battery.

前記した各電池の寿命サイクル数と、減液量を表2に示す。なお、表2において、減液量については、481サイクルに始まり960サイクルで終わる2度目の480サイクル単位における減液量(減液量1)と、寿命試験最終の480サイクル単位における減液量(減液量2)について示した。   Table 2 shows the number of life cycles and the amount of liquid reduction of each battery described above. In Table 2, with regard to the liquid reduction amount, the liquid reduction amount in the second 480 cycle unit (liquid reduction amount 1) starting from 481 cycles and ending in 960 cycles, and the liquid reduction amount in the last 480 cycle units (life cycle test) It showed about the liquid reduction amount 2).

Figure 0005135692
表2に示した結果から、正極格子表面に形成する鉛合金層にアンチモンを含み、かつ銀を0.25質量以上添加することにより、寿命サイクル数は伸び、減液量は減少する傾向にあった。なお、鉛合金層にアンチモンを含まない、電池13〜16では、減液量が抑制されているが、寿命特性に劣っている。鉛合金層にアンチモンを単独で含む電池1および電池9は電池13〜16よりも寿命特性は大幅に改善するものの、減液量が増大する。
Figure 0005135692
From the results shown in Table 2, when the lead alloy layer formed on the surface of the positive electrode lattice contains antimony and 0.25 mass or more of silver is added, the number of life cycles tends to increase and the amount of liquid reduction tends to decrease. It was. In addition, in the batteries 13 to 16 in which the lead alloy layer does not contain antimony, the amount of liquid reduction is suppressed, but the life characteristics are inferior. Although the battery 1 and the battery 9 containing antimony alone in the lead alloy layer have significantly improved life characteristics as compared with the batteries 13 to 16, the amount of liquid reduction increases.

本発明の電池4〜8および電池11〜12では、減液量は電池13〜16に比較して若干増大するものの、電池1および電池9に比較して減液量は大幅に抑制され、かつ寿命特性にもっとも優れていた。   In the batteries 4 to 8 and the batteries 11 to 12 of the present invention, the liquid reduction amount is slightly increased as compared with the batteries 13 to 16, but the liquid reduction amount is significantly suppressed as compared with the battery 1 and the battery 9, and Excellent life characteristics.

以上のことから、前述したように、表面に形成した鉛合金層中の銀はアンチモンの溶出速度を低下させ、負極へのアンチモンの移行を抑制すると考えられる。また、正極格子から正極活物質へのアンチモンの移行が少しづつ進行するため、アンチモンによる正極活物質の改質効果が長期間にわたって得られ、その結果、優れた寿命特性が得られたと推測できる。   From the above, as described above, it is considered that silver in the lead alloy layer formed on the surface reduces the elution rate of antimony and suppresses migration of antimony to the negative electrode. Moreover, since the transition of antimony from the positive electrode lattice to the positive electrode active material proceeds little by little, it can be presumed that the effect of modifying the positive electrode active material by antimony was obtained over a long period of time, and as a result, excellent life characteristics were obtained.

また、表面層のアンチモンを5.0質量%から、0.8質量%まで減少させた場合においても、表面層中に銀を0.25質量%以上含有させないと、寿命性能と減液特性が低下することがわかる。このことは、単に表面層中のアンチモン量を減らしても、比較的早期に表面層中のアンチモンが溶出しつくし、アンチモンの正極活物質改質効果が早期に失われること、また、一度に溶出したアンチモンが正極活物質で一時期過剰に存在し、正極活物質内で捕捉されないアンチモンが負極に移行して減液特性を低下させることを示していると考えられる。   Even when antimony in the surface layer is reduced from 5.0% by mass to 0.8% by mass, if the silver is not contained in the surface layer in an amount of 0.25% by mass or more, the life performance and the liquid reducing property are obtained. It turns out that it falls. This means that even if the amount of antimony in the surface layer is simply reduced, the antimony in the surface layer elutes relatively early, and the positive electrode active material modification effect of antimony is lost early. It is considered that the antimony is present in excess in the positive electrode active material for a period of time, and antimony that is not trapped in the positive electrode active material moves to the negative electrode and deteriorates the liquid reduction property.

したがって、減液性能を改善するためには、表面層のアンチモン量を減らすだけでは不十分であり、表面層からのアンチモン溶出速度の制御が必要であると考えられる。本発明では鉛−アンチモン合金中に0.25質量%以上の銀を添加することによって、鉛−アンチモン合金の腐食速度と低下させ、アンチモン溶出速度をコントロールできたものと考えられる。また、これにより、正極活物質中にアンチモンが長期間にわたって適量存在するようになり、鉛蓄電池の高温寿命が顕著に改善したと考えられる。   Therefore, in order to improve the liquid reduction performance, it is not sufficient to reduce the amount of antimony in the surface layer, and it is considered necessary to control the antimony elution rate from the surface layer. In the present invention, it is considered that by adding 0.25% by mass or more of silver to the lead-antimony alloy, the corrosion rate of the lead-antimony alloy is reduced and the antimony elution rate can be controlled. In addition, as a result, an appropriate amount of antimony is present in the positive electrode active material over a long period of time, and it is considered that the high-temperature life of the lead storage battery is remarkably improved.

(実施例2)
次に、実施例2では、本発明例の電池4、電池6および電池8について正極格子表面に形成した鉛−アンチモン−銀合金層の厚みを種々に変更させて圧延鉛合金シートを作成し、エキスパンド加工して正極格子体を得た。この正極格子体の格子骨を実体顕微鏡で観察し、格子表面に形成した鉛−アンチモン−銀合金層の格子骨との密着状態を確認した。鉛−アンチモン−銀合金層の厚みは母材ストリップ(厚み10.00mm)に重ね合わされる鉛−アンチモン−銀合金ストリップの厚みを変更することによって変化させた。
(Example 2)
Next, in Example 2, a rolled lead alloy sheet was prepared by variously changing the thickness of the lead-antimony-silver alloy layer formed on the surface of the positive electrode lattice for the battery 4, the battery 6 and the battery 8 of the present invention. The positive electrode lattice body was obtained by expanding. The lattice bone of this positive electrode lattice was observed with a stereomicroscope, and the contact state of the lead-antimony-silver alloy layer formed on the lattice surface with the lattice bone was confirmed. The thickness of the lead-antimony-silver alloy layer was varied by changing the thickness of the lead-antimony-silver alloy strip superimposed on the base material strip (thickness 10.00 mm).

実施例2で用いた母材ストリップの組成、厚みは実施例1のものと全く同じものであり、0.05質量%のカルシウム、1.60質量%のスズを含む鉛−カルシウム−スズ合金である。なお、密着状態は各10枚の格子体について上下方向の10箇所、合計100箇所確認し、鉛−アンチモン−銀合金層の剥離の発生率を測定した。   The composition and thickness of the base material strip used in Example 2 are exactly the same as those of Example 1, and are lead-calcium-tin alloys containing 0.05% by mass of calcium and 1.60% by mass of tin. is there. In addition, the contact | adherence state confirmed 10 places of the up-down direction about 10 lattice bodies each, and a total of 100 places, and measured the incidence rate of peeling of a lead-antimony-silver alloy layer.

また、同じ条件で得た正極格子体を用いて、実施例1と同様の80D26形鉛蓄電池を作成し、実施例1と同じ条件で寿命試験を行った。鉛−アンチモン−銀合金層の剥離発生率と寿命試験結果を表3に示す。   Moreover, 80D26 type lead acid battery similar to Example 1 was created using the positive electrode grid obtained on the same conditions, and the life test was done on the same conditions as Example 1. FIG. Table 3 shows the peel occurrence rate and the life test result of the lead-antimony-silver alloy layer.

Figure 0005135692
表3に示した結果から、正極格子表面層厚(A)を正極格子厚(B)の1.30〜5.00%の範囲とすることにより、正極格子表面に形成した鉛−アンチモン−銀合金層の格子骨からの剥離が顕著に抑制され、これに応じてより優れた寿命特性を得ることができる。
Figure 0005135692
From the results shown in Table 3, lead-antimony-silver formed on the surface of the positive electrode lattice by setting the positive electrode lattice surface layer thickness (A) to 1.30 to 5.00% of the positive electrode lattice thickness (B). Peeling of the alloy layer from the lattice bone is remarkably suppressed, and in accordance with this, better life characteristics can be obtained.

正極格子表面層厚(A)を正極格子厚(B)の1.00%としたものは、鉛−アンチモン−銀合金層が点状の穴あきが発生し、この部分で母材が表面に露出した状態となっていた。また、穴周囲の一部で鉛−アンチモン−銀合金層の剥離が発生していた。   When the positive electrode lattice surface layer thickness (A) is 1.00% of the positive electrode lattice thickness (B), the lead-antimony-silver alloy layer has dot-like perforations, and the base material is on the surface at this portion. It was in an exposed state. Moreover, peeling of the lead-antimony-silver alloy layer occurred in part of the periphery of the hole.

正極格子表面層厚(A)を正極格子厚(B)の7.00%としたものは、エキスパンド加工前は、一見、鉛−アンチモン−銀合金ストリップと母材ストリップとが密着していたが、エキスパンド加工後の格子体では、鉛−アンチモン−銀合金ストリップと母材ストリップとの密着性が低下し、剥離している部分が見られた。   When the positive electrode lattice surface layer thickness (A) was 7.00% of the positive electrode lattice thickness (B), the lead-antimony-silver alloy strip and the base material strip were in close contact before the expansion process. In the lattice after the expansion processing, the adhesion between the lead-antimony-silver alloy strip and the base material strip was lowered, and a peeled portion was observed.

したがって、鉛−アンチモン−銀合金ストリップと母材ストリップとを重ね合わせて同時圧延によって両者を接合する場合、最終的な正極格子表面層厚(A)を正極格子厚(B)の1.30%〜5.00%となるよう、鉛−アンチモン−銀合金ストリップと母材ストリップとの厚み比を設定することが、本発明の効果をより顕著に得る上で最も好ましい。   Therefore, when the lead-antimony-silver alloy strip and the base material strip are overlapped and joined together by simultaneous rolling, the final positive electrode lattice surface layer thickness (A) is 1.30% of the positive electrode lattice thickness (B). It is most preferable to set the thickness ratio of the lead-antimony-silver alloy strip and the base material strip so that the effect of the present invention is more remarkable.

なお、本実施例では、母材ストリップ厚み10.0mmの場合について述べたが、母材ストリップ厚み5.0および20.0mmの場合でも、ほぼ同様の結果が得られ、これらの場合においても正極格子表面層厚(A)を正極格子厚(B)の1.30%〜5.00%とすることが最も好ましい。また、母材ストリップ組成としてカルシウム含有量を0.04〜0.08質量%、スズ含有量を0.6〜1.8質量%の範囲で変更した場合においても、同様に、正極格子表面層厚(A)を正極格子厚(B)の1.30%〜5.00%とすることで、正極格子表面層の剥離が抑制された。   In this embodiment, the case where the base material strip thickness is 10.0 mm has been described. However, in the case where the base material strip thickness is 5.0 and 20.0 mm, substantially the same results are obtained. The lattice surface layer thickness (A) is most preferably 1.30% to 5.00% of the positive electrode lattice thickness (B). Similarly, when the base metal strip composition has a calcium content of 0.04 to 0.08 mass% and a tin content of 0.6 to 1.8 mass%, the positive electrode lattice surface layer By making the thickness (A) 1.30% to 5.00% of the positive electrode lattice thickness (B), peeling of the positive electrode lattice surface layer was suppressed.

また、本実施例では、正極格子表面に配置する合金層として、鉛−アンチモン−銀合金について述べたが、特に鉛蓄電池の耐過放電特性を改善することを目的として、この合金中に1.0〜10.0質量%のスズを付加的に添加することもできる。その場合においても本発明の効果を得ることができた。   In this example, a lead-antimony-silver alloy was described as the alloy layer disposed on the surface of the positive electrode grid. However, in order to improve the overdischarge resistance of the lead-acid battery, 1. It is also possible to additionally add 0 to 10.0% by weight of tin. Even in that case, the effect of the present invention could be obtained.

本発明は、鉛蓄電池の高温寿命特性と減液性能を顕著に改善できることから、特に自動車用鉛蓄電池をはじめ、様々な鉛蓄電池に好適である。   Since the present invention can remarkably improve the high-temperature life characteristics and the liquid reduction performance of the lead storage battery, it is particularly suitable for various lead storage batteries including automobile lead storage batteries.

本発明の鉛蓄電池に用いる正極格子を示す図The figure which shows the positive electrode grid used for the lead acid battery of this invention 正極格子骨断面を示す図Diagram showing the cross section of the positive grid

符号の説明Explanation of symbols

1 正極格子
2 格子骨
3 鉛−アンチモン−銀合金層
4 鉛−カルシウム−スズ合金母材
DESCRIPTION OF SYMBOLS 1 Positive electrode grid 2 Lattice bone 3 Lead-antimony-silver alloy layer 4 Lead-calcium-tin alloy base material

Claims (3)

鉛−カルシウム−スズ合金の格子体表面にアンチモンを含み、かつ、0.25質量%以上の銀を含み、残部鉛とした鉛−アンチモン−銀合金を配した格子体を正極板に用いた鉛蓄電池。 Lead using a lead-antimony-silver alloy containing a lead-antimony-silver alloy containing antimony on the surface of a lead-calcium-tin alloy lattice and containing 0.25% by mass or more of silver as the balance lead Storage battery. 前記鉛−カルシウム−スズ合金からなる母材シート上の少なくとも片面に前記鉛−アンチモン−銀合金層を形成した圧延鉛合金シートを前記格子体に用いた請求項1の鉛蓄電池。 The lead acid battery according to claim 1, wherein a rolled lead alloy sheet in which the lead-antimony-silver alloy layer is formed on at least one surface on the base material sheet made of the lead-calcium-tin alloy is used for the lattice body. 前記鉛−カルシウム−スズ合金の母材ストリップ上に前記鉛−アンチモン−銀合金からなるストリップを重ねあわせ、同時圧延により両者を圧着し、かつ前記鉛−アンチモン−銀合金層の厚み(A)を前記格子体の骨の厚み(B)の1.3%〜5.0%の厚みに形成した請求項2の鉛蓄電池。 The lead-antimony-silver alloy layer strip is overlapped on the lead-calcium-tin alloy base strip, the two are pressure-bonded by simultaneous rolling, and the thickness (A) of the lead-antimony-silver alloy layer is determined. The lead acid battery of Claim 2 formed in thickness of 1.3%-5.0% of the thickness (B) of the bone | frame of the said lattice body.
JP2006055838A 2006-03-02 2006-03-02 Lead acid battery Active JP5135692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006055838A JP5135692B2 (en) 2006-03-02 2006-03-02 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006055838A JP5135692B2 (en) 2006-03-02 2006-03-02 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2007234444A JP2007234444A (en) 2007-09-13
JP5135692B2 true JP5135692B2 (en) 2013-02-06

Family

ID=38554816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006055838A Active JP5135692B2 (en) 2006-03-02 2006-03-02 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5135692B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540701B (en) * 2021-06-28 2023-08-04 天能电池集团股份有限公司 Lead storage battery wiring terminal and preparation method thereof

Also Published As

Publication number Publication date
JP2007234444A (en) 2007-09-13

Similar Documents

Publication Publication Date Title
JP4799560B2 (en) Lead-acid battery and method for producing lead-acid battery
KR100305423B1 (en) Expanded Grid For Electrode Plate of Lead-Acid Battery
JP5061451B2 (en) Anode current collector for lead acid battery
JP2008243606A (en) Lead acid storage battery
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP2003346888A (en) Lead-acid battery
JP2002175798A (en) Sealed lead-acid battery
JP5135692B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JPH05290857A (en) Manufacture of electrode plate for lead-acid battery
JP4892827B2 (en) Lead acid battery
JP5145644B2 (en) Lead acid battery
JP4904686B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP5044888B2 (en) Liquid lead-acid battery
JPH0213425B2 (en)
JP2008146960A (en) Lead-acid battery
JPS63148556A (en) Paste type lead acid battery
JP2006114416A (en) Lead-acid battery
JP2011159551A (en) Lead-acid storage battery
JP2006079973A (en) Lead storage battery
JP5115107B2 (en) Lead acid battery
JP3052588B2 (en) Manufacturing method of lead storage battery
JP4503358B2 (en) Lead acid battery
JP2008159510A (en) Lead alloy grid and lead storage battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R151 Written notification of patent or utility model registration

Ref document number: 5135692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350