JP2002175798A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JP2002175798A
JP2002175798A JP2000374746A JP2000374746A JP2002175798A JP 2002175798 A JP2002175798 A JP 2002175798A JP 2000374746 A JP2000374746 A JP 2000374746A JP 2000374746 A JP2000374746 A JP 2000374746A JP 2002175798 A JP2002175798 A JP 2002175798A
Authority
JP
Japan
Prior art keywords
mass
lead
positive electrode
strap
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000374746A
Other languages
Japanese (ja)
Other versions
JP2002175798A5 (en
Inventor
Shigeharu Osumi
重治 大角
Takao Omae
孝夫 大前
Atsushi Uemura
敦司 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000374746A priority Critical patent/JP2002175798A/en
Publication of JP2002175798A publication Critical patent/JP2002175798A/en
Publication of JP2002175798A5 publication Critical patent/JP2002175798A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable and long-life sealed lead-acid battery whose positive electrode grid and positive and negative straps are all excellent in the corrosion resistance. SOLUTION: In the sealed lead-acid battery, a lead (Pb)-Ca-Sn alloy comprising 0.025-0.065 mass % of calcium(Ca) and 0.25-1.0 mass % of tin(Sn) is used as the negative electrode grid, and a Pb-Sn alloy comprising 1.3 mass % or less of pure lead or Sn is used as the added lead to form the straps for connecting lug parts of electrode plates.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉型鉛蓄電池に
関する。
The present invention relates to a sealed lead-acid battery.

【0002】[0002]

【従来の技術】電池の充電中に発生する酸素ガスを負極
板で吸収する、いわゆる酸素サイクルを利用した密閉型
鉛蓄電池には現在リテーナ式と呼ばれる方式が一般的に
採用されている。リテーナ式密閉型鉛蓄電池とは正極
板、負極板およびこれらの間に挿入した微細なガラス繊
維を主な素材とするマット状セパレータ(以下ガラスセ
パレータという)に電池の充放電に必要な硫酸電解液を
保持し、余剰な流動電解液を有さず、かつ、ガラスセパ
レータで両極の隔離をおこなうものである。
2. Description of the Related Art A closed lead storage battery utilizing a so-called oxygen cycle in which oxygen gas generated during charging of a battery is absorbed by a negative electrode plate, a method called a retainer type is currently generally employed. Retainer-type sealed lead-acid battery is a sulfuric acid electrolyte required for charging and discharging batteries in a mat-shaped separator (hereinafter referred to as a glass separator) mainly composed of a positive electrode plate, a negative electrode plate, and fine glass fibers inserted between them. , No excess flowing electrolyte, and both electrodes are separated by a glass separator.

【0003】そしてこの密閉型鉛蓄電池は、無保守、無
漏液、ポジションフリーなどの特徴を生かしてポータブ
ル機器、コンピュータのバックアップ電源等に用いられ
ている。
[0003] The sealed lead-acid battery is used as a portable power source, a backup power source for a computer, and the like by utilizing features such as no maintenance, no liquid leakage, and position free.

【0004】これらの密閉型鉛蓄電池における集電体
(格子)には、自己放電や電解液の減少を抑制し、メン
テナンスフリー化を図るため、Pb−Ca系合金が広く
用いられている。また、この格子体の耳部を接続するス
トラップを形成するための足し鉛には通常アンチモン
(Sb)を含まない純鉛またはPb―Sn系合金が用い
られている。
[0004] Pb-Ca alloys are widely used as current collectors (grids) in these sealed lead-acid batteries in order to suppress self-discharge and decrease in electrolyte and to make maintenance free. In addition, pure lead or Pb-Sn based alloy not containing antimony (Sb) is usually used as an additional lead for forming a strap connecting the ears of the lattice body.

【0005】[0005]

【発明が解決しようとする課題】格子の機械的強度をあ
げるため、Ca量が0.07〜0.12重量(質量)%
添加されると、Caが酸化されやすいため、特に耳部と
ストラップとの溶接部分の耐食性が低下すること、ま
た、耳部とストラップとの溶接部分の機械的強度の低下
を防ぐためとして、たとえば特開平6−196145で
は、格子中のCa量を低減し、ストラップ形成用足し鉛
にSnを1.0〜5.0質量%含むPb−Sn合金を使
用することが提案されている。特開平6−196145
では、耐食性が低下するのが正極ストラップなのか、あ
るいは負極ストラップなのかは明記されていないが、当
該公報第1欄に、
In order to increase the mechanical strength of the lattice, the Ca content is 0.07 to 0.12% by weight (mass)%.
When added, Ca is easily oxidized, so that the corrosion resistance of the welded portion between the ear and the strap is reduced, and also as to prevent the mechanical strength of the welded portion between the ear and the strap from being reduced. JP-A-6-196145 proposes to reduce the amount of Ca in the lattice and use a Pb-Sn alloy containing 1.0 to 5.0% by mass of Sn as a lead for forming a strap. JP-A-6-196145
Then, it is not specified whether the corrosion resistance is reduced by the positive electrode strap or the negative electrode strap.

【0006】[0006]

【発明が解決しようとする課題】(略)格子体あるいは
極板としての機械的強度を向上させるため、Caが約
0.07〜12重量%含まれている。そして、このCa
は酸化腐食されやすいため、格子体中のCaの含有量が
多くなると、格子体の耳部とストラップとの溶接部分の
耐食性が低下するという問題が生じていた。」と、記載
されており、流動電解液のない密閉型であれ、流動電解
液のある開放型であれ、通常、鉛蓄電池の格子が酸化腐
食するのが正極であることを考慮すると、当該特許公報
で解決すべき課題であると認識しているのは、正極スト
ラップであると考えられる。
[Problems to be Solved] Ca is contained in an amount of about 0.07 to 12% by weight in order to improve the mechanical strength of the grid or the electrode plate. And this Ca
However, since the corrosion resistance is easily oxidized and corroded, when the content of Ca in the lattice increases, there arises a problem that the corrosion resistance of the welded portion between the ear portion and the strap of the lattice decreases. Regarding whether the closed type without the flowing electrolyte or the open type with the flowing electrolyte, it is generally considered that the grid of the lead storage battery is oxidized and corroded by the positive electrode, It is considered that what is recognized as a problem to be solved in the gazette is a positive electrode strap.

【0007】さらに、該特許公報第1欄に、Further, in the first column of the patent publication,

【0008】[0008]

【従来の技術】密閉型鉛蓄電池の正,負極の格子体に
は、電解液の減少を抑制することができ、メンテナンス
フリー化に有効である鉛―カルシウム−錫(Pb−ここ
で格子体の耳部を接続するストラップには、特公平3−
25895号公報に開示されているように、アンチモン
(Sb)を含まない純鉛または鉛合金が用い
2. Description of the Related Art Lead-calcium-tin (Pb), which is effective for maintenance-free operation, is capable of suppressing a decrease in the amount of electrolyte and is provided on the positive and negative grids of a sealed lead-acid battery. The strap connecting the ears has a
As disclosed in Japanese Patent No. 25895, pure lead or a lead alloy containing no antimony (Sb) is used.

【0009】[0009]

【発明が解決しようとする課題】(略)このCaは酸化
腐食されやすいため、格子体中のCaの含有量が多くな
ると、格子体の耳部とストラップとの溶接部分のまた、
エキスパンド格子体を構成するPb−Ca―Sn合金の
合金組成に対して、ストラップを構成するSbを含まな
い鉛合金の合金組成を適切に選ばないと、前記各合金間
の溶接性が低下し、格子体の耳部とストラップとの溶接
部分の機械本発明は、このような課題を解決するもので
あり、(略)」と、あること、および当該公報で引用さ
れている特公平3−25895号公報第1、2欄には
「発明の詳細な説明 産業上の利用分野 (略)しか
し、上記構造の鉛蓄電池には下記の欠点がある。(1)
鉛−カルシウム合金(二元合金)製の格子体を用いた極
板を使用しているため、極板の耐食性が悪く、サイクル
寿命が短い。(2)鉛―アンチモン合金(二元合金)か
らなる極柱あるいは端子を使用しているため、極柱ある
いは端子の強度が十分ではない。 発明の目的 本発明
は上記欠点を解消したもので、極板の耐食性を向上させ
ると共に極柱あるいは端子の強度を更に向上させた鉛蓄
電池を提供するものである。」と、あり、その目的を達
成するために、「発明の構成 本発明は、極板2と、極
柱3または端子7と、接続片4とを有し、前記極板2
は、鉛−カルシウムー錫系合金からなる格子体を用いて
いるものであり、(略)前記接続片4は、アンチモンを
含まない純鉛または鉛合金からなり、前記極板2と、前
記極柱3または端子7とを接続していることを特徴とす
るものである。」と、あることから、合金組成によって
極板の耐食性が悪いことがあるというのは、鉛蓄電池に
おいては正極板でのテーマであることを考慮すると、特
公平3−25895号公報で解決すべき課題であると認
識しているのが、正極であること、したがって、特開平
6−196145で解決すべき課題であると認識されて
いる耐食性改善の対象も、また、正極ストラップである
ことが明らかである。
Since the Ca is easily oxidized and corroded, if the content of Ca in the lattice increases, the welded portion between the ears of the lattice and the straps may be damaged.
If the alloy composition of the lead alloy that does not contain Sb that constitutes the strap is appropriately selected with respect to the alloy composition of the Pb—Ca—Sn alloy that constitutes the expanded lattice, the weldability between the alloys is reduced, The present invention solves such a problem, and the present invention solves such a problem. "(Omitted)" is described in Japanese Patent Application Publication No. 3-25895. In the first and second columns of the publication, “Detailed description of the invention, Industrial application field (omitted)) However, the lead storage battery having the above structure has the following disadvantages.
Since an electrode using a grid made of a lead-calcium alloy (binary alloy) is used, the electrode has poor corrosion resistance and a short cycle life. (2) Since poles or terminals made of a lead-antimony alloy (binary alloy) are used, the strength of the poles or terminals is not sufficient. SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned drawbacks and to provide a lead-acid battery in which the corrosion resistance of the electrode plate is improved and the strength of the poles or terminals is further improved. According to the present invention, there is provided an electrode plate 2, an electrode pole 3 or a terminal 7, and a connection piece 4, wherein the electrode plate 2
Is a lattice body made of a lead-calcium-tin alloy, and the connection piece 4 is made of pure lead or a lead alloy not containing antimony. 3 or the terminal 7 is connected. Therefore, the fact that the corrosion resistance of the electrode plate may be poor depending on the alloy composition should be solved in Japanese Patent Publication No. 3-25895, considering that this is a theme of the positive electrode plate in the lead storage battery. It is clear that what is recognized as a problem is the positive electrode, and therefore, the object of improving corrosion resistance, which is recognized as a problem to be solved in JP-A-6-196145, is also a positive electrode strap. It is.

【0010】しかし、これらの密閉型鉛蓄電池を長期間
使用すると、何ら問題なく期待寿命まで使用できるもの
のほかに、正極格子の腐食によって寿命に到るものや、
正極あるいは負極ストラップが腐食し、寿命に到るもの
がみられた。これらの原因について、鋭意調査・研究し
た結果、これら腐食の原因が、格子合金組成と足し鉛合
金中のSnとであることが判明した。
However, when these sealed lead-acid batteries are used for a long period of time, in addition to those that can be used without any problem up to the expected life, those whose life is extended due to corrosion of the positive electrode grid,
The positive electrode or negative electrode strap was corroded, and some of them reached their end of life. As a result of intensive investigation and research on these causes, it was found that the causes of these corrosions were the lattice alloy composition and Sn in the lead alloy.

【0011】本発明は、上記の課題を解決するものであ
り、正極格子には耐食性に優れたPb−Ca−Sn系合
金を使用し、負極には経済的なPb−Ca−Sn系合金
を使用すると同時に、これら格子耳部に、ストラップ形
成用鉛合金を加え形成したストラップの、特に、耳部と
ストラップとの溶接部分の耐食性およびストラップ本体
の耐食性を向上させ、正極格子および正・負極ストラッ
プのいずれもが耐食性にすぐれ、これらの効果があいま
って、信頼性の高い長寿命の密閉型鉛蓄電池を提供する
ものである。
The present invention solves the above-mentioned problems, and uses a Pb-Ca-Sn-based alloy excellent in corrosion resistance for a positive electrode grid and an economical Pb-Ca-Sn-based alloy for a negative electrode. At the same time as using the strap, a lead alloy for forming a strap is added to the ears of the strap, thereby improving the corrosion resistance of the welded portion between the ear and the strap, and the corrosion resistance of the strap body. All have excellent corrosion resistance, and together with these effects, provide a highly reliable and long life sealed lead-acid battery.

【0012】なお、一般的に、鉛蓄電池では負極は充電
されれば金属鉛になり、腐食されないはずである。しか
し、密閉型鉛蓄電池では上述のように、余分な流動電解
液がなく、充放電に必要な電解液は正・負極板およびガ
ラスセパレータに保持されているため、正・負極板は電
解液に接しているものの、正・負極ストラップは両者と
も電解液面から離れている。そのため、これらストラッ
プはわずかには電解液で濡れるものの、十分な電解液の
補給がない状態に置かれている。このようなときに、正
極で発生した酸素ガスによって負極ストラップが腐食さ
れるものと考えられる。充電しても十分な電解液が周囲
にないため、腐食された負極ストラップは金属鉛に還元
されず、腐食が進行するものと思われる。
Generally, in a lead storage battery, the negative electrode becomes metallic lead when charged, and should not be corroded. However, as described above, the sealed lead-acid battery has no excess flowing electrolyte, and the electrolyte required for charging and discharging is held by the positive and negative plates and the glass separator. Although in contact, both the positive and negative straps are remote from the electrolyte surface. For this reason, these straps are slightly wetted with the electrolytic solution, but are not sufficiently supplied with the electrolytic solution. In such a case, it is considered that the negative electrode strap is corroded by the oxygen gas generated in the positive electrode. It is considered that the corroded negative electrode strap is not reduced to metallic lead and corrosion proceeds because there is not enough electrolyte solution in the surroundings even after charging.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するた
め、請求項1に記載の発明による密閉型鉛蓄電池は、負
極格子に、カルシウム(Ca)を0.025〜0.06
5質量%、錫(Sn)を0.25〜1.0質量%含む鉛
(Pb)−Ca−Sn系合金を用い、極板耳部を接続す
るストラップを形成するための足し鉛として、純鉛、あ
るいはSnを1.3質量%以下含むPb―Sn合金を用
いたものである。
In order to solve the above-mentioned problems, a sealed lead-acid battery according to the first aspect of the present invention has a negative electrode grid containing calcium (Ca) in an amount of 0.025 to 0.06.
A lead (Pb) -Ca-Sn-based alloy containing 5% by mass and 0.25 to 1.0% by mass of tin (Sn) is used, and pure lead is used as a lead for forming a strap for connecting the electrode plate ears. A Pb-Sn alloy containing 1.3 mass% or less of lead or Sn is used.

【0014】請求項2に記載の発明は、請求項1に記載
の密閉型鉛蓄電池において、正極格子に、Caを0.0
25〜0.065質量%、Snを1.1〜2.0質量%
含むPb−Ca−Sn系合金を用いたものである。
According to a second aspect of the present invention, there is provided the sealed lead-acid battery according to the first aspect, wherein Ca is added to the positive electrode grid by 0.0%.
25 to 0.065% by mass, Sn: 1.1 to 2.0% by mass
Containing a Pb-Ca-Sn-based alloy.

【0015】請求項3に記載の発明は、請求項1または
2に記載の密閉型鉛蓄電池において、正極格子および/
または負極格子がアルミニウム(Al)を0.003〜
0.03質量%含むものである。
According to a third aspect of the present invention, in the sealed lead-acid battery according to the first or second aspect, the positive electrode grid and / or
Or, the negative electrode grid contains aluminum (Al) in a range of 0.003 to
It contains 0.03% by mass.

【0016】請求項4に記載の発明は、請求項2または
3に記載の密閉型鉛蓄電池において、正極格子が銀(A
g)を0.03〜0.09質量%含むものである。
According to a fourth aspect of the present invention, in the sealed lead-acid battery according to the second or third aspect, the positive electrode grid is made of silver (A).
g) in an amount of 0.03 to 0.09% by mass.

【0017】請求項5に記載の発明は、請求項1、2、
3または4に記載の密閉型鉛蓄電池において、正極格子
および/または負極格子を圧延シートあるいは鋳造シー
トをエキスパンド加工あるいは打ち抜き加工したもので
ある。
The invention according to claim 5 is the invention according to claims 1, 2,
3. The sealed lead-acid battery according to 3 or 4, wherein the positive electrode grid and / or the negative electrode grid are obtained by expanding or punching a rolled sheet or a cast sheet.

【0018】[0018]

【発明の実施の形態】本発明は、負極格子にはSn量の
少ない経済的なPb−Ca−Sn系合金を使用し、同時
に、格子中のCa量を少なくし、足し鉛には純鉛あるい
はSn量の少ないPb−Sn合金を用いているので、ス
トラップ中の、特に、耳部とストラップとの溶接部分の
耐食性を向上させるとともに、ストラップ本体の耐食性
も向上させ、信頼性の高い長寿命の密閉型鉛蓄電池を提
供することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention uses an economical Pb-Ca-Sn-based alloy with a small amount of Sn for the negative electrode grid, at the same time reduces the amount of Ca in the grid and adds pure lead to the lead. Alternatively, since a Pb-Sn alloy with a small amount of Sn is used, the corrosion resistance of the strap, particularly the welded portion between the ear and the strap, is improved, and the corrosion resistance of the strap main body is also improved, resulting in a reliable long life. Can be provided.

【0019】負極格子合金中のCa量は、ストラップ内
での腐食を抑えるため、0.065質量%以下が望まし
いが、格子の強度の点からは0.025質量%以上が望
ましい。
The amount of Ca in the negative electrode lattice alloy is desirably 0.065% by mass or less to suppress corrosion in the strap, but is desirably 0.025% by mass or more from the viewpoint of lattice strength.

【0020】負極格子は、電池使用中には正極格子ほど
耐食性は必要でないため正極格子の場合ほど多くのSn
量は必要ではないが、あまり少なくなると強度が低下
し、電池製造工程中の取扱性が悪くなるので、負極格子
中のSn量は0.25質量%以上が望ましい。上限は、
経済的な観点からは取扱性に問題がない範囲で少ないほ
うが望ましく、通常は1.0質量%以下が好ましい。
The negative grid does not require as much corrosion resistance as the positive grid during use of the battery.
Although the amount is not necessary, if the amount is too small, the strength is reduced and the handleability during the battery manufacturing process is deteriorated. The upper limit is
From an economic viewpoint, it is desirable that the amount is small as long as there is no problem in handling properties, and usually it is preferably 1.0% by mass or less.

【0021】一方、正極格子には耐食性に優れた、やや
Sn量を多くしたPb−Ca−Sn系合金を使用し、極
板の長寿命化を図る。正極格子合金中のCa量は、スト
ラップ内での腐食を抑えるため、0.065質量%以下
が望ましいが、格子の強度の点からは0.025質量%
以上が望ましい。
On the other hand, a Pb-Ca-Sn-based alloy having excellent corrosion resistance and a slightly increased Sn content is used for the positive electrode grid to extend the life of the electrode plate. The amount of Ca in the positive electrode lattice alloy is desirably 0.065% by mass or less to suppress corrosion in the strap, but from the viewpoint of lattice strength, 0.025% by mass is preferable.
The above is desirable.

【0022】正極格子合金中のSn量は、電池使用中の
正極格子の耐食性および強度の観点からは1.1質量%
以上が望ましいが、2.0質量%より多くしてもかえっ
て耐食性が劣るだけでなく、費用の面からも不経済で、
1.1〜2.0質量%が適当である。
The amount of Sn in the positive electrode grid alloy is 1.1% by mass from the viewpoint of the corrosion resistance and strength of the positive electrode grid during use of the battery.
The above is desirable, but if it is more than 2.0 mass%, not only corrosion resistance is inferior but also uneconomical in terms of cost,
1.1 to 2.0% by mass is appropriate.

【0023】Pb−Ca−Sn系合金格子を重力鋳造法
で製造する際、あるいはエキスパンド法または打ち抜き
法によって格子を製造する場合の圧延シート用スラブ
(平板)を鋳造する、あるいは鋳造シートを製造する際
に、Alを0.003〜0.03質量%添加し、Caの
酸化を防止するとともに、Ca量の安定化を図ることが
できる。この方法を用いれば、Caの酸化防止のために
アルゴンガス等の不活性ガスを使用する必要はなく、作
業性も良好で、かつ経済的である。
When a Pb-Ca-Sn alloy grid is manufactured by gravity casting, or when a grid is manufactured by an expanding method or a punching method, a slab (flat plate) for a rolled sheet is cast or a cast sheet is manufactured. At this time, 0.003 to 0.03% by mass of Al is added to prevent oxidation of Ca and stabilize the amount of Ca. If this method is used, it is not necessary to use an inert gas such as an argon gas to prevent the oxidation of Ca, and the workability is good and economical.

【0024】ここで、鋳造シートとは、DMシートとも
呼ばれるもので、溶融鉛合金に回転ロールをわずかに浸
せきさせ、ロール表面に直接シートを形成したものであ
る。
Here, the cast sheet is also called a DM sheet, and is obtained by slightly immersing a rotating roll in a molten lead alloy to form a sheet directly on the roll surface.

【0025】また、近年、鉛蓄電池が使用される環境の
温度が高くなってきており、そのような高温下での正極
格子の耐久性を向上させるためには正極格子にAgを
0.02〜0.09質量%添加することが有効であり、
上述のストラップと併用することによってより一層信頼
性の高い、長寿命の鉛蓄電池を得ることができる。
In recent years, the temperature of the environment in which lead-acid batteries are used has been increasing, and in order to improve the durability of the positive electrode grid at such high temperatures, Ag is added to the positive electrode grid in an amount of 0.02 to 0.02. It is effective to add 0.09% by mass,
A more reliable and long-life lead-acid battery can be obtained by using the above-described strap together.

【0026】さらに、Pb−Ca―Sn系合金格子に
は、従来から用いられている重力鋳造法によって製造さ
れた格子だけではなく、近年、その製造量が増大してい
るPb−Ca−Sn系合金圧延シートあるいは鋳造シー
トをエキスパンド加工あるいは打ち抜きによって製造し
た格子を使用することも可能である。これらの方法で
は、従来の重力鋳造法に比べ、その生産速度が速く、経
済的に格子を製造することができる。
Further, the Pb-Ca-Sn-based alloy lattices include not only lattices produced by a conventional gravity casting method but also Pb-Ca-Sn-based alloy lattices whose production volume has been increasing in recent years. It is also possible to use a grid produced by expanding or stamping a rolled alloy sheet or a cast sheet. In these methods, the production speed is higher than in the conventional gravity casting method, and the grid can be manufactured economically.

【0027】[0027]

【実施例】以下、本発明の実施例について説明する。 (実施例1)CaとSnの量を表1のように変化させた
Pb−Ca―Sn系合金を用いた圧延シートを作製し、
それをエキスパンド加工して、正極格子を得た。なお、
圧延用スラブ鋳造時の酸化を防止するため、いずれの場
合にもAlを0.01質量%添加した。
Embodiments of the present invention will be described below. (Example 1) A rolled sheet using a Pb-Ca-Sn-based alloy in which the amounts of Ca and Sn were changed as shown in Table 1 was prepared.
It was expanded to obtain a positive electrode grid. In addition,
In order to prevent oxidation during casting of the slab for rolling, 0.01% by mass of Al was added in each case.

【0028】[0028]

【表1】 [Table 1]

【0029】次に、これらの格子に常法にしたがって正
極ペーストを充填し、熟成・乾燥させた後、正極板4
枚、負極板5枚およびガラスセパレータを組み合わせ、
ガスバーナで加熱・溶接し、ストラップを形成し、注液
・化成して12V、50Ahのリテーナ式密閉型鉛蓄電
池を得た。ストラップ合金には表1に記載のように、純
鉛(Sn添加なし)およびSnが0.8〜5.0質量%
のPb−Sn合金を用いた。
Next, these grids are filled with a positive electrode paste according to a conventional method, aged and dried.
Sheets, 5 negative plates and a glass separator,
Heating and welding were performed with a gas burner to form a strap, and liquid injection and formation were performed to obtain a 12 V, 50 Ah, closed-type lead storage battery of a retainer type. As shown in Table 1, pure lead (without Sn addition) and Sn contained in the strap alloy were 0.8 to 5.0% by mass.
Pb-Sn alloy was used.

【0030】なお、これらの電池の負極板には、表1に
記載のNo.4の格子を使用し、常法にしたがって負極
ペーストを充填し、熟成・乾燥させたものを使用した。
The negative electrodes of these batteries were provided with No. Using a grid of No. 4, a negative electrode paste was filled in accordance with a conventional method, and aged and dried.

【0031】次に、これらの電池を60℃気槽中で、1
3.38Vの定電圧で連続過充電試験を6ケ月間実施
し、試験後の正極格子の腐食状態および正極ストラップ
の腐食状態を観察した。
Next, these batteries were placed in a 60 ° C. air bath for 1 hour.
A continuous overcharge test was performed for 6 months at a constant voltage of 3.38 V, and the corrosion state of the positive electrode grid and the corrosion state of the positive electrode strap after the test were observed.

【0032】過充電試験後の正極格子および正極ストラ
ップの腐食状態をそれぞれ表2に示す。
Table 2 shows the corrosion states of the positive electrode grid and the positive electrode strap after the overcharge test.

【0033】[0033]

【表2】 [Table 2]

【0034】鉛蓄電池においては、正極用部材の腐食は
避けがたいものであるが、表2から明らかなように、特
に正極格子中のSn量が0.70質量%の場合には、過
充電試験後の正極格子の腐食が激しかった。しかし、S
n量が1.10質量%の場合、Ca量が0.065質量
%以下の場合には、腐食量も少なくなり実用上問題ない
レベルであった。さらにSn量を1.50および2.0
0質量%とすると正極格子の腐食はさらに軽微になっ
た。
In a lead storage battery, corrosion of the positive electrode member is inevitable. However, as is apparent from Table 2, particularly when the amount of Sn in the positive electrode grid is 0.70% by mass, overcharging occurs. The corrosion of the positive electrode grid after the test was severe. However, S
When the amount of n was 1.10% by mass and the amount of Ca was 0.065% by mass or less, the amount of corrosion was small, and the level was practically acceptable. Further, the amount of Sn was increased to 1.50 and 2.0.
When the content was 0% by mass, the corrosion of the positive electrode grid was further reduced.

【0035】また、正極格子中のCa量を0.020〜
0.065質量%以としたものでは、過充電試験後にお
いても正極ストラップ(耳部との溶接部近傍)での腐食
はほとんど認められなかった。
Further, the amount of Ca in the positive electrode lattice is set to 0.020 to
When the content was 0.065% by mass or less, almost no corrosion was observed in the positive electrode strap (near the welded portion with the ear) even after the overcharge test.

【0036】足し鉛を純鉛としたものおよびSnが0.
8質量%以下の場合には、正極ストラップ本体の腐食も
ほとんど認められなかった。また、足し鉛にPb−1.
0質量%SnおよびPb−1.3質量%Snを用いたも
のでは、腐食がわずかに観察される程度であった。しか
し、足し鉛にPb−2.0質量%SnおよびPb−5.
0質量%Snを用いたものでは、Snが1.3質量%以
下の場合よりもやや激しい腐食が観察された。
When pure lead is used as the added lead and when Sn is 0.
When the content was 8% by mass or less, almost no corrosion of the positive electrode strap main body was observed. In addition, Pb-1.
In the case of using 0 mass% Sn and Pb-1.3 mass% Sn, corrosion was slightly observed. However, Pb-2.0 mass% Sn and Pb-5.
In the case of using 0 mass% Sn, slightly more severe corrosion was observed than in the case where Sn was 1.3 mass% or less.

【0037】なお、正極格子中のCa量を0.020質
量%とした場合には、格子強度が低く電池製造上の取扱
性が悪く、過充電試験後の極板伸びがCa量0.025
〜0.065質量%のものに比べ、やや大きかった。 (実施例2)CaとSnとの量を表3のように変化させ
たPb−Ca―Sn系合金を用いた圧延シートを作製
し、それをエキスパンド加工して、負極格子を得た。
When the amount of Ca in the positive electrode grid is 0.020% by mass, the lattice strength is low, the handling property in battery production is poor, and the electrode plate elongation after the overcharge test is 0.025% by mass.
It was slightly larger than that of 0.00.065 mass%. (Example 2) A rolled sheet using a Pb-Ca-Sn-based alloy in which the amounts of Ca and Sn were changed as shown in Table 3 was produced and expanded to obtain a negative electrode grid.

【0038】[0038]

【表3】 [Table 3]

【0039】次に、これらの格子に常法にしたがって負
極ペーストを充填し、熟成・乾燥させた後、正極板4
枚、負極板5枚およびガラスセパレータを組み合わせ、
ガスバーナで加熱・溶接し、ストラップを形成し、注液
・化成して12V、50Ahのリテーナ式密閉型鉛蓄電
池を得た。ストラップ合金には表3に記載のように、純
鉛(Sn添加なし)およびSnが0.8〜5.0質量%
のPb−Sn合金を用いた。
Next, these grids are filled with a negative electrode paste according to a conventional method, aged and dried.
Sheets, 5 negative plates and a glass separator,
Heating and welding were performed with a gas burner to form a strap, and liquid injection and formation were performed to obtain a 12 V, 50 Ah, closed-type lead storage battery of a retainer type. As shown in Table 3, pure lead (without Sn addition) and Sn contained in the strap alloy were 0.8 to 5.0% by mass.
Pb-Sn alloy was used.

【0040】なお、これらの電池の正極板には、表1に
記載のNo.14の格子を使用し、常法にしたがって正
極ペーストを充填し、熟成・乾燥させたものを使用し
た。
The positive plates of these batteries were provided with Nos. Using 14 grids, a positive electrode paste was filled according to a conventional method, and aged and dried.

【0041】次に、これらの電池を実施例1と同様、6
0℃気槽中で、13.38Vの定電圧で連続過充電試験
を6ケ月間実施し、試験後の負極ストラップの腐食状態
を観察した。
Next, these batteries were used in the same manner as in Example 1,
A continuous overcharge test was performed for 6 months at a constant voltage of 13.38 V in a 0 ° C. air bath, and the corrosion state of the negative electrode strap after the test was observed.

【0042】過充電試験後の負極ストラップの腐食状態
を表4に示す。
Table 4 shows the corrosion state of the negative electrode strap after the overcharge test.

【0043】[0043]

【表4】 [Table 4]

【0044】表4から明らかなように、負極格子中のC
a量を0.020〜0.065質量%以としたもので
は、過充電試験後においても負極ストラップ(耳部との
溶接部近傍)での腐食はほとんど認められなかった。
As is clear from Table 4, C in the negative electrode lattice
When the amount of a was 0.020 to 0.065% by mass or less, almost no corrosion was observed in the negative electrode strap (near the welded portion with the ear) even after the overcharge test.

【0045】足し鉛を純鉛としたものおよびSnが0.
8質量%以下の場合には、負極ストラップ本体の腐食も
ほとんど認められなかった。また、足し鉛にPb−1.
0質量%SnおよびPb−1.3質量%Snを用いたも
のでは、腐食がわずかに観察される程度であった。しか
し、足し鉛にPb−2.0質量%SnおよびPb−5.
0質量%Snを用いたものでは、Sn量が多いほど腐食
が多くなる傾向が観察された。
[0045] Pure lead was used as the added lead, and Sn was added in an amount of 0.
When the content was 8% by mass or less, almost no corrosion of the negative electrode strap body was observed. In addition, Pb-1.
In the case of using 0 mass% Sn and Pb-1.3 mass% Sn, corrosion was slightly observed. However, Pb-2.0 mass% Sn and Pb-5.
In the case of using 0% by mass of Sn, it was observed that as the amount of Sn increased, corrosion increased.

【0046】なお、負極格子中のCa量を0.02質量
%とした場合には、格子強度が低く電池製造上の取扱性
が悪かった。 (実施例3)Ag量を、表5、A欄のように変化させた
Pb−Ca―Sn―Ag系合金を用い、重力鋳造法によ
って、正極格子を得た。なお、Ca量およびSn量はそ
れぞれ0.03質量%および1.1質量%とし、格子鋳
造時の酸化を防止するためいずれの場合にもAlを0.
01質量%添加した。
When the amount of Ca in the negative electrode grid was set to 0.02% by mass, the grid strength was low and the handleability in battery production was poor. (Example 3) A positive electrode grid was obtained by gravity casting using a Pb-Ca-Sn-Ag-based alloy in which the amount of Ag was changed as shown in Table 5, column A. The amounts of Ca and Sn were set to 0.03% by mass and 1.1% by mass, respectively.
01% by mass was added.

【0047】次に、これらの格子に常法にしたがって正
極ペーストを充填し、熟成・乾燥させた後、正極板4
枚、負極板5枚およびラスセパレータを組み合わせ、ガ
スバーナで加熱・溶接し、ストラップを形成し、注液・
化成して12V、50Ahのリテーナ式密閉型鉛蓄電池
を得た。ストラップ合金には純鉛を用いた。
Next, these grids are filled with a positive electrode paste according to a conventional method, aged and dried.
Sheets, 5 negative plates and a lath separator, heat and weld with a gas burner to form a strap,
A 12 V, 50 Ah retainer-type sealed lead storage battery was obtained. Pure lead was used for the strap alloy.

【0048】なお、これらの電池の負極板には、Pb−
0.065質量%Ca―0.7質量%Sn―0.01質
量%Al合金からなる重力鋳造格子を使用し、常法にし
たがって負極ペーストを充填し、熟成・乾燥させたもの
を使用した。
It should be noted that Pb-
A gravity-cast grid made of 0.065% by mass Ca-0.7% by mass Sn-0.01% by mass Al alloy was used, and a negative electrode paste was filled according to a conventional method, and aged and dried.

【0049】次に、これらの電池を実施例1と同様な方
法で試験し、試験後の正極格子の腐食状態を観察すると
ともに、正極格子の伸び(縦方向)についても測定し
た。
Next, these batteries were tested in the same manner as in Example 1, the corrosion state of the positive electrode grid after the test was observed, and the elongation (vertical direction) of the positive electrode grid was measured.

【0050】過充電試験後の正極格子の腐食状態および
正極格子の縦方向の伸びをそれぞれ表5、B、C欄に示
す。
The corrosion state of the positive electrode grid after the overcharge test and the longitudinal elongation of the positive electrode grid are shown in Tables 5, B and C, respectively.

【0051】[0051]

【表5】 [Table 5]

【0052】表5から明らかなように、Agを0.02
質量%以上含む場合には、Agを含まないか、あるいは
含んでも0.01質量%の場合に比べ、より一層格子の
腐食が少なくなっており、格子の縦方向の伸びも約1/
2以下であった。なお、Agを0.09質量%よりも多
く添加しても正極格子の耐食性は0.09質量%添加し
た場合とあまり変わらず、銀が高価なため不経済である
ばかりでなく、長期間使用すると正極格子からAgが溶
出し、負極板に析出して水素過電圧を下げ、自己放電が
多くなって密閉型鉛蓄電池としての特性が低下する。
As is apparent from Table 5, the Ag content was 0.02.
In the case of containing Ag by mass or more, the corrosion of the lattice is further reduced and the longitudinal elongation of the lattice is also reduced by about 1 / compared to the case of not containing Ag or containing 0.01% by mass of Ag.
2 or less. Even if Ag is added in an amount of more than 0.09% by mass, the corrosion resistance of the positive electrode grid is not so different from that in the case where 0.09% by mass is added. Then, Ag is eluted from the positive electrode grid, deposited on the negative electrode plate, and the hydrogen overvoltage is reduced, self-discharge increases, and the characteristics as a sealed lead-acid battery deteriorate.

【0053】なお、正・負極ストラップ(耳部との溶接
部近傍およびストラップ本体)は、いずれの電池におい
てもほとんど腐食は見られなかった。
The positive and negative electrode straps (near the welded portion to the ear and the strap body) hardly corroded in any of the batteries.

【0054】実施例1〜3では、ガスバーナーで溶接し
たが、ストラップの形状を彫り込んだ鋳型に溶融した足
し鉛を注ぎ込み、そこへ耳を入れ、その後、足し鉛を冷
却・凝固させることによって耳部と足し鉛とを溶接する
と同時にストラップを形成するキャスト・オン・ストラ
ップと呼ばれる溶接方法でも同様の効果が得られる。
In Examples 1 to 3, welding was carried out with a gas burner. However, molten lead was poured into a mold in which the shape of the strap was engraved, an ear was placed therein, and then the lead was cooled and solidified to cool the solid. A similar effect can be obtained by a welding method called a cast-on-strap in which the strap is formed at the same time as the part and the lead are welded.

【0055】また、足し鉛に純鉛を使用した場合には、
その機械的強度がSnを添加した場合に比べ若干低くな
るが、ストラップの厚み、形状等を工夫することによっ
て、何ら問題なく使用可能である。
When pure lead is used as the additional lead,
Although its mechanical strength is slightly lower than that in the case of adding Sn, it can be used without any problem by devising the thickness and shape of the strap.

【0056】さらに、正極格子および/または負極格子
に、回転ロールに格子形状を彫り込み、回転ロールに外
部からシューを押し当て、彫り込んだ格子形状の溝と押
し当てたシューとの間に溶融鉛合金を圧入して回転させ
ながら凝固させる方法(連続鋳造法)で、あるいは、さ
らにこれを圧延して得た格子を用いることも可能であ
る。
Further, the positive electrode lattice and / or the negative electrode lattice are engraved with a grid shape on a rotating roll, and a shoe is pressed against the rotating roll from the outside. A molten lead alloy is interposed between the engraved grid-shaped groove and the pressed shoe. Can be press-fitted and solidified while rotating (continuous casting method), or a grid obtained by rolling this can be used.

【0057】なお、正・負極格子や足し鉛には、密閉型
鉛蓄電池用として使用すれば電池性能の向上に有効であ
ると言われているビスマスを0.05質量%程度含んで
いても、あるいは密閉型鉛蓄電池用として許容されてい
るレベルの不可避の不純物が入っていても上述の効果は
何ら変わることはない。
The positive / negative electrode grid and the additional lead contain about 0.05% by mass of bismuth, which is said to be effective for improving battery performance when used for a sealed lead-acid battery. Alternatively, the above-mentioned effect is not changed at all even if unavoidable impurities at a level permitted for a sealed lead-acid battery are contained.

【0058】[0058]

【発明の効果】上述のように、本発明は、正極格子には
耐食性に優れたPb−Ca−Sn系合金を使用し、極板
の長寿命化を図るとともに、負極には経済的なPb−C
a−Sn系合金を使用し、同時に、正・負極格子中のC
a量を少なくし、さらに足し鉛には純鉛あるいはSn量
が1.3質量%以下のPb−Sn合金を用いているの
で、ストラップ中の、特に、耳部とストラップとの溶接
部分の耐食性を向上させるとともに、ストラップ本体の
耐食性も向上させ、正極格子および正・負極ストラップ
のいずれもが耐食性に優れ、これらの効果があいまっ
て、信頼性の高い長寿命の密閉型鉛蓄電池を提供するこ
とができる。
As described above, according to the present invention, a Pb-Ca-Sn-based alloy having excellent corrosion resistance is used for the positive electrode grid, the life of the electrode plate is extended, and the economical Pb-Pb is used for the negative electrode. -C
a-Sn based alloy, and at the same time, C
Since the amount of a is reduced and pure lead or a Pb-Sn alloy having a Sn content of 1.3% by mass or less is used as the additional lead, the corrosion resistance of the strap, especially the welded portion between the ear and the strap is used. To improve the corrosion resistance of the strap body, and to provide a highly reliable, long-life sealed lead-acid battery with both the positive grid and the positive and negative straps having excellent corrosion resistance. Can be.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/12 H01M 10/12 Z Fターム(参考) 5H017 AA01 AS02 AS10 BB00 BB02 BB06 BB07 CC05 EE03 HH01 5H022 AA02 BB11 CC15 CC20 CC23 CC30 EE02 KK07 5H028 AA01 CC05 CC07 CC08 EE01 FF04 FF05 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/12 H01M 10/12 Z F-term (Reference) 5H017 AA01 AS02 AS10 BB00 BB02 BB06 BB07 CC05 EE03 HH01 5H022 AA02 BB11 CC15 CC20 CC23 CC30 EE02 KK07 5H028 AA01 CC05 CC07 CC08 EE01 FF04 FF05

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 負極格子に、カルシウム(Ca)を0.
025〜0.065質量%、錫(Sn)を0.25〜
1.0質量%含む鉛(Pb)−Ca−Sn系合金を用
い、極板耳部を接続するストラップを形成するための足
し鉛として、純鉛、あるいはSnを1.3質量%以下含
むPb―Sn合金を用いたことを特徴とする密閉型鉛蓄
電池。
1. A method in which calcium (Ca) is added to a negative electrode grid in a concentration of 0.1%.
025 to 0.065 mass%, tin (Sn) 0.25 to
A lead (Pb) -Ca-Sn-based alloy containing 1.0% by mass, and pure lead or Pb containing 1.3% by mass or less of Sn as additional lead for forming a strap for connecting electrode lugs. -A sealed lead-acid battery using an Sn alloy.
【請求項2】 正極格子に、Caを0.025〜0.0
65質量%、Snを1.1〜2.0質量%含むPb−C
a−Sn系合金を用いたことを特徴とする請求項1に記
載の密閉型鉛蓄電池。
2. The cathode grid contains Ca in an amount of 0.025 to 0.02.
Pb-C containing 65% by mass and 1.1 to 2.0% by mass of Sn
The sealed lead-acid battery according to claim 1, wherein an a-Sn-based alloy is used.
【請求項3】 前記負極格子および/または正極格子が
アルミニウム(Al)を0.003〜0.03質量%含
むことを特徴とする請求項1または2に記載の密閉型鉛
蓄電池。
3. The sealed lead-acid battery according to claim 1, wherein the negative electrode grid and / or the positive electrode grid contain 0.003 to 0.03% by mass of aluminum (Al).
【請求項4】 前記正極格子が銀(Ag)を0.02〜
0.09質量%含むことを特徴とする請求項2または3
に記載の密閉型鉛蓄電池。
4. The positive electrode grid contains silver (Ag) in an amount of 0.02 to 0.02.
4. The composition according to claim 2, wherein the content is 0.09% by mass.
A sealed lead-acid battery according to claim 1.
【請求項5】 前記正極格子および/または負極格子が
圧延シートあるいは鋳造シートをエキスパンド加工ある
いは打ち抜き加工した格子であることを特徴とする請求
項1、2、3または4に記載の密閉型鉛蓄電池。
5. The sealed lead-acid battery according to claim 1, wherein the positive electrode grid and / or the negative electrode grid are grids obtained by expanding or stamping a rolled sheet or a cast sheet. .
JP2000374746A 2000-12-08 2000-12-08 Sealed lead-acid battery Pending JP2002175798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000374746A JP2002175798A (en) 2000-12-08 2000-12-08 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000374746A JP2002175798A (en) 2000-12-08 2000-12-08 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JP2002175798A true JP2002175798A (en) 2002-06-21
JP2002175798A5 JP2002175798A5 (en) 2008-01-24

Family

ID=18843878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000374746A Pending JP2002175798A (en) 2000-12-08 2000-12-08 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP2002175798A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034167A (en) * 2006-07-27 2008-02-14 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP2008041473A (en) * 2006-08-08 2008-02-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008071693A (en) * 2006-09-15 2008-03-27 Matsushita Electric Ind Co Ltd Lead storage battery
JP2015079646A (en) * 2013-10-17 2015-04-23 株式会社Gsユアサ Control valve type lead-acid storage battery and negative electrode collector of the same
WO2015056417A1 (en) * 2013-10-15 2015-04-23 株式会社Gsユアサ Valve-regulated lead-acid battery
JP2016173911A (en) * 2015-03-17 2016-09-29 株式会社Gsユアサ Control valve-type lead storage battery
WO2017013822A1 (en) * 2015-07-21 2017-01-26 株式会社Gsユアサ Lead acid storage battery
JP2017092038A (en) * 2016-12-28 2017-05-25 株式会社Gsユアサ Control valve type lead acid battery
WO2017110585A1 (en) * 2015-12-25 2017-06-29 株式会社Gsユアサ Lead storage battery
CN112072060A (en) * 2020-08-12 2020-12-11 小洋电源股份有限公司 High-torsion corrosion-resistant pole forming process
JP7045505B1 (en) 2021-03-26 2022-03-31 古河電池株式会社 Current collecting sheet for lead-acid batteries, lead-acid batteries, bipolar lead-acid batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196145A (en) * 1992-12-22 1994-07-15 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH07169467A (en) * 1993-12-14 1995-07-04 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH07211306A (en) * 1994-01-20 1995-08-11 Matsushita Electric Ind Co Ltd Sealed lead-acid battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196145A (en) * 1992-12-22 1994-07-15 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH07169467A (en) * 1993-12-14 1995-07-04 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH07211306A (en) * 1994-01-20 1995-08-11 Matsushita Electric Ind Co Ltd Sealed lead-acid battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034167A (en) * 2006-07-27 2008-02-14 Matsushita Electric Ind Co Ltd Lead acid storage battery
JP2008041473A (en) * 2006-08-08 2008-02-21 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2008071693A (en) * 2006-09-15 2008-03-27 Matsushita Electric Ind Co Ltd Lead storage battery
JP2019117802A (en) * 2013-10-15 2019-07-18 株式会社Gsユアサ Lead storage battery
WO2015056417A1 (en) * 2013-10-15 2015-04-23 株式会社Gsユアサ Valve-regulated lead-acid battery
JPWO2015056417A1 (en) * 2013-10-15 2017-03-09 株式会社Gsユアサ Control valve type lead acid battery
JP2015079646A (en) * 2013-10-17 2015-04-23 株式会社Gsユアサ Control valve type lead-acid storage battery and negative electrode collector of the same
JP2016173911A (en) * 2015-03-17 2016-09-29 株式会社Gsユアサ Control valve-type lead storage battery
WO2017013822A1 (en) * 2015-07-21 2017-01-26 株式会社Gsユアサ Lead acid storage battery
WO2017110585A1 (en) * 2015-12-25 2017-06-29 株式会社Gsユアサ Lead storage battery
JP2017117758A (en) * 2015-12-25 2017-06-29 株式会社Gsユアサ Lead storage battery
JP2017092038A (en) * 2016-12-28 2017-05-25 株式会社Gsユアサ Control valve type lead acid battery
CN112072060A (en) * 2020-08-12 2020-12-11 小洋电源股份有限公司 High-torsion corrosion-resistant pole forming process
CN112072060B (en) * 2020-08-12 2022-10-04 小洋电源股份有限公司 High-torsion corrosion-resistant pole forming process
JP7045505B1 (en) 2021-03-26 2022-03-31 古河電池株式会社 Current collecting sheet for lead-acid batteries, lead-acid batteries, bipolar lead-acid batteries
WO2022202442A1 (en) * 2021-03-26 2022-09-29 古河電池株式会社 Collector sheet for lead acid storage batteries, lead acid storage battery and bipolar lead acid storage battery
JP2022150943A (en) * 2021-03-26 2022-10-07 古河電池株式会社 Current collecting sheet for lead acid battery, lead acid battery, bipolar lead acid battery

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
US5120620A (en) Binary lead-tin alloy substrate for lead-acid electrochemical cells
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP5061451B2 (en) Anode current collector for lead acid battery
JP2002175798A (en) Sealed lead-acid battery
JP2003346888A (en) Lead-acid battery
CN107579255A (en) A kind of positive electrode grid of lead storage battery alloy and preparation method thereof
JP5050309B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP2006210210A (en) Lead-acid battery
CN104067414B (en) Lead battery
JP2000315519A (en) Lead acid storage battery
JP3052629B2 (en) Sealed lead-acid battery
JP4892827B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
CN1055321C (en) Fully closed maintenance-free lead-acid accumulator super-low antimoney grid alloy material
JP4793518B2 (en) Lead acid battery
JP2007157610A (en) Lead-acid battery
JP3052588B2 (en) Manufacturing method of lead storage battery
JP5375049B2 (en) Lead acid battery
JPH07211306A (en) Sealed lead-acid battery
JP4503358B2 (en) Lead acid battery
JPH0770321B2 (en) Sealed lead acid battery
CN113782747A (en) High-calcium alloy for lead-acid storage battery grid and preparation method thereof
JP2961770B2 (en) Clad lead-acid battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018