JP2006210210A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2006210210A
JP2006210210A JP2005022429A JP2005022429A JP2006210210A JP 2006210210 A JP2006210210 A JP 2006210210A JP 2005022429 A JP2005022429 A JP 2005022429A JP 2005022429 A JP2005022429 A JP 2005022429A JP 2006210210 A JP2006210210 A JP 2006210210A
Authority
JP
Japan
Prior art keywords
negative electrode
shelf
alloy
connecting member
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005022429A
Other languages
Japanese (ja)
Inventor
Wakichi Yonezu
和吉 米津
Minoru Asano
稔 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005022429A priority Critical patent/JP2006210210A/en
Publication of JP2006210210A publication Critical patent/JP2006210210A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress corrosion generating on a negative electrode ledge side in a welding part of a connecting member such as a connector or a pole and the negative electrode ledge in a negative electrode ledge welding part of a lead-acid battery. <P>SOLUTION: The lead-acid battery comprises the negative electrode ledge 26 combining a positive plate 22 and a negative plate 23 through a separator 24 and gathering and welding negative electrode lugs 23c taken out of the negative plates, and the connecting member 27 joined to the negative electrode ledge, and the joining part of the negative electrode ledge and the connecting member is immersed in an electrolyte. The negative electrode lug is made of Pb-Ca alloy containing no Sb, the connecting member is made of Pb-Sb alloy, and the negative electrode ledge is made of Pb-Sn-Se alloy containing no Sb. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池、特に自動車のエンジン始動用に用いる鉛蓄電池の極板群の構造としては、図1に示したように、正極板11と負極板12とがセパレータ13を介して組み合わされ、正極板11から導出された正極耳11aと、負極板12から導出された負極耳12aが、それぞれ正極棚14と負極棚15で集合溶接され、正極棚14および負極棚15に、それぞれ隣接するセル間を接続するためのセル間接続体や、セルと電池外に設けられた端子16とを接続するための極柱といった、接続部材17が接合されている。   As shown in FIG. 1, a positive electrode plate 11 and a negative electrode plate 12 are combined through a separator 13 as a structure of an electrode plate group of a lead storage battery, particularly a lead storage battery used for starting an automobile engine. The positive electrode ear 11a derived from the negative electrode plate 12 and the negative electrode ear 12a derived from the negative electrode plate 12 are collectively welded by the positive electrode shelf 14 and the negative electrode shelf 15, respectively, and the adjacent cells are connected to the positive electrode shelf 14 and the negative electrode shelf 15, respectively. A connecting member 17 such as an inter-cell connecting body for connecting the cell and a pole column for connecting the cell and the terminal 16 provided outside the battery is joined.

ここで、負極板は負極格子体12bに負極活物質12cが充填された構成を有し、負極格子体12bに一体に負極耳12aが形成される。したがって、負極格子体12bと負極耳12aとは同一の鉛合金で構成されている。   Here, the negative electrode plate has a configuration in which the negative electrode active body 12c is filled in the negative electrode lattice 12b, and the negative electrode ear 12a is integrally formed on the negative electrode lattice 12b. Therefore, the negative electrode grid 12b and the negative electrode ear 12a are made of the same lead alloy.

従来から、鉛蓄電池の棚や接続部材に用いる合金として、2.0〜4.0質量%のSbを含む、Pb−Sb合金が強度に優れ、溶接性も良好であるため、広く用いられている。   Conventionally, a Pb-Sb alloy containing 2.0 to 4.0% by mass of Sb as an alloy used for a shelf or a connection member of a lead storage battery has been widely used because of its excellent strength and weldability. Yes.

一方、このPb−Sb合金中のSbは負極板の水素過電圧を低下させ、鉛蓄電池の自己放電量を増大させ、電解液中の水分減少を促進する。したがって、自己放電と電解液中水分減少の抑制を目的として、負極格子体として、Sbを含まない鉛合金が用いられるようになってきた。このような鉛合金としては、0.03質量%〜0.10質量%のCaを含むPb−Ca合金が知られており、広く用いられている。   On the other hand, Sb in the Pb—Sb alloy decreases the hydrogen overvoltage of the negative electrode plate, increases the self-discharge amount of the lead storage battery, and promotes the reduction of moisture in the electrolytic solution. Therefore, lead alloys containing no Sb have been used as the negative electrode lattice body for the purpose of suppressing self-discharge and moisture reduction in the electrolyte. As such a lead alloy, a Pb—Ca alloy containing 0.03% by mass to 0.10% by mass of Ca is known and widely used.

このようなPb−Ca合金の負極格子体を用いた負極板を、前記したようなPb−Sb合金の棚で集合溶接する場合、負極耳は負極格子体と一体に設けられているがために、溶接条件によっては、負極耳に含まれるCaと負極棚に含まれるSbとが化合し、Ca3Sb2といった、CaとSbとの金属間化合物を生成する。 When a negative electrode plate using such a Pb—Ca alloy negative electrode grid is jointly welded on the Pb—Sb alloy shelf as described above, the negative electrode ear is provided integrally with the negative electrode grid. Depending on the welding conditions, Ca contained in the negative electrode ear and Sb contained in the negative electrode shelf combine to produce an intermetallic compound of Ca and Sb, such as Ca 3 Sb 2 .

このようなCaとSbとの金属間化合物が生成した場合、特に、負極棚から電解液面から露出し、負極棚表面のpHが増大し、塩基性になると、負極棚に腐食が進行する。このような腐食の進行を抑制するため、特許文献1には、負極格子としてPb−Ca合金、負極棚としてPb−Sn合金、負極のセル間接続体や負極極柱といった接続部材をPb−Sb合金で形成することが示されている。   In the case where such an intermetallic compound of Ca and Sb is generated, particularly when the surface of the negative electrode shelf is exposed from the electrolyte solution surface and the pH of the negative electrode shelf surface increases and becomes basic, corrosion proceeds to the negative electrode shelf. In order to suppress the progress of such corrosion, Patent Document 1 discloses a connection member such as a Pb—Ca alloy as a negative electrode lattice, a Pb—Sn alloy as a negative electrode shelf, a connection between cells of a negative electrode, and a negative electrode pole column. It is shown to be formed from an alloy.

上記した特許文献1に示された構成によれば、負極棚中にSbを含まないため、負極耳中のCaがSbと化合することを防止できる。一方で、接続部材に関しては、セル間溶接や端子溶接強度を確保するために、従来からのPb−Sb合金が用いられる。   According to the configuration disclosed in Patent Document 1 described above, since Sb is not included in the negative electrode shelf, it is possible to prevent Ca in the negative electrode ear from combining with Sb. On the other hand, with respect to the connection member, a conventional Pb—Sb alloy is used in order to ensure inter-cell welding and terminal welding strength.

そして、棚中のCaとSbとの金属間化合物の生成が抑制され、負極棚が電解液から露出した場合において発生する負極棚の腐食が抑制される。   And the production | generation of the intermetallic compound of Ca and Sb in a shelf is suppressed, and the corrosion of the negative electrode shelf generate | occur | produced when a negative electrode shelf is exposed from electrolyte solution is suppressed.

しかしながら、負極棚にSbを含まないPb−Sn合金を用いた場合においても、電池の使用温度が90℃を超えるような高温になると、負極棚と接続部材との接合部の負極棚側で顕著な腐食が見られた。このような腐食は接合部の強度の低下や、電気抵抗の増大による高率放電時の放電電圧の低下を引き起こす。前記したような負極棚部が電解液から露出した場合に起こる腐食とは異なり、負極棚部および負極棚部と接続部材との接合部が電解液に浸漬された状態、すなわち前記した接合部が酸性の状態で発生する現象であった。また、腐食はその進行状態から、接合部の負極棚側に生じた微細な隙間を起点としたものであると考えられる。
特開平5−13065号公報
However, even when a Pb—Sn alloy that does not contain Sb is used for the negative electrode shelf, if the battery operating temperature becomes a high temperature exceeding 90 ° C., it is prominent on the negative electrode shelf side of the joint between the negative electrode shelf and the connecting member. Corrosion was observed. Such corrosion causes a decrease in the strength of the joint and a decrease in the discharge voltage during high rate discharge due to an increase in electrical resistance. Unlike the corrosion that occurs when the negative electrode shelf as described above is exposed from the electrolyte, the negative electrode shelf and the joint between the negative electrode shelf and the connecting member are immersed in the electrolyte, that is, the above-described joint is It was a phenomenon that occurred in an acidic state. Corrosion is considered to start from a minute gap generated on the negative electrode shelf side of the joint from its progress state.
Japanese Patent Laid-Open No. 5-13065

本発明は前記したような、負極棚にPb−Sn合金、負極棚に接合された接続部材にPb−Sb合金を用い、負極棚と接続部材との接合部が希硫酸の電解液に浸漬された鉛蓄電池において発生する、負極棚と接続部材との接合部の腐食を抑制することを目的とする。   In the present invention, the Pb—Sn alloy is used for the negative electrode shelf and the Pb—Sb alloy is used for the connecting member joined to the negative electrode shelf as described above, and the joint between the negative electrode shelf and the connecting member is immersed in an electrolyte of dilute sulfuric acid. It aims at suppressing the corrosion of the junction part of a negative electrode shelf and a connection member which generate | occur | produces in the lead acid battery.

前記した課題を解決するために、本発明の請求項1に係る鉛蓄電池は、正極板と負極板とをセパレータを介して組み合わせ、負極板から導出された負極耳を集合溶接する負極棚と、この負極棚に接合された接続部材を備え、前記負極棚と前記接続部材との接合部が電解液に浸漬された鉛蓄電池であって、前記負極耳はSbを含まないPb−Ca合金からなり、前記接続部材はPb−Sb合金からなり、前記負極棚はSbを含まないPb−Sn−Se合金からなることを特徴とする鉛蓄電池を示すものである。   In order to solve the above-mentioned problem, a lead storage battery according to claim 1 of the present invention combines a positive electrode plate and a negative electrode plate via a separator, and a negative electrode shelf for collectively welding negative electrode ears derived from the negative electrode plate; A lead storage battery comprising a connecting member bonded to the negative electrode shelf, wherein a joint between the negative electrode shelf and the connecting member is immersed in an electrolyte, wherein the negative electrode ear is made of a Pb-Ca alloy containing no Sb. The connecting member is made of a Pb—Sb alloy, and the negative electrode shelf is made of a Pb—Sn—Se alloy containing no Sb.

なお、接続部材とは隣接する極板群間を接続するためのセル間接続体や、外部端子と極板群とを接続するための極柱を意味する。   In addition, a connection member means the pole column for connecting the connection body between cells for connecting between adjacent electrode plate groups, and an external terminal and an electrode plate group.

Pb−Sb合金は結晶粒が微細で、結晶の配向性は各方向に均一であり、粒界も特定の一方向に成長することは少ない。一方、Pb−Sn合金結晶は凝固時の冷却面に対して垂直な方向に柱状の結晶が成長し、Pb−Sb結晶とは全く異なる結晶形態を有する。このように互いに異なる結晶形態を有する合金の接合部で微細な隙間が生じることにより、この隙間を起点として、本発明が課題とする腐食が進行するものと考えられる。   The Pb—Sb alloy has fine crystal grains, the crystal orientation is uniform in each direction, and the grain boundary rarely grows in one specific direction. On the other hand, Pb—Sn alloy crystals have columnar crystals grown in a direction perpendicular to the cooling surface during solidification, and have a completely different crystal form from Pb—Sb crystals. Thus, it is considered that the corrosion that is the subject of the present invention progresses from this gap as a starting point when a minute gap is generated at the joint portion of the alloys having different crystal forms.

本発明では、Pb−Sn合金中にSeを添加することで、負極棚(Pb−Sn−Se合金)と接続部材(Pb−Sb合金)との接合部の負極棚側での微細な隙間の形成を抑制し、この接合部での腐食を抑制できると考えられる。   In the present invention, by adding Se to the Pb—Sn alloy, a fine gap on the negative electrode shelf side of the joint portion between the negative electrode shelf (Pb—Sn—Se alloy) and the connection member (Pb—Sb alloy) is reduced. It is thought that formation can be suppressed and corrosion at this joint can be suppressed.

前記した本発明の構成により、鉛蓄電池の負極棚と接続部材との接合部での腐食を抑制でき、信頼性に優れた鉛蓄電池を提供することができる。   With the configuration of the present invention described above, corrosion at the joint between the negative electrode shelf of the lead storage battery and the connecting member can be suppressed, and a lead storage battery excellent in reliability can be provided.

本発明の実施の形態による鉛蓄電池は、正極板と負極板とをセパレータを介して組み合わせ、負極板から導出された負極耳を集合溶接する負極棚と、この負極棚に接合された接続部材を備え、前記負極棚と前記接続部材との接合部が電解液に浸漬された鉛蓄電池であって、前記負極耳はSbを含まないPb−Ca合金からなり、前記接続部材はPb−Sb合金からなり、前記負極棚はSbを含まないPb−Sn−Se合金からなる。   The lead storage battery according to the embodiment of the present invention combines a positive electrode plate and a negative electrode plate through a separator, and has a negative electrode shelf that collectively welds negative electrode ears derived from the negative electrode plate, and a connecting member joined to the negative electrode shelf. A negative electrode ear is made of a Pb-Ca alloy containing no Sb, and the connecting member is made of a Pb-Sb alloy. The negative electrode shelf is made of a Pb—Sn—Se alloy containing no Sb.

ここでPb−Ca合金は負極での水素過電圧の低下と、これによる自己放電量と減液量の増大を抑制するために用いられる。また、Pb−Sb合金は、接続部材として求められる、溶接性や機械的強度を得るために用いられ、双方ともに本発明の鉛蓄電池の前提の構成である。なお、接続部材として用いるPb−Sb合金中のSbは、従来と同様、1.0〜5.0質量%の範囲のものを用いる。また、Pb−Sb合金中に結晶粒をより微細化する核化剤としてのAsを0.1〜0.4質量%程度含むものであってもよい。   Here, the Pb—Ca alloy is used to suppress a decrease in hydrogen overvoltage at the negative electrode and an increase in self-discharge amount and liquid reduction amount due to this. Further, the Pb—Sb alloy is used for obtaining weldability and mechanical strength required as a connection member, and both are the premise of the lead storage battery of the present invention. In addition, as for Sb in the Pb—Sb alloy used as the connecting member, the one in the range of 1.0 to 5.0 mass% is used as in the conventional case. Moreover, about 0.1-0.4 mass% of As as a nucleating agent which refines | miniaturizes a crystal grain in Pb-Sb alloy may be included.

また、さらに本発明において、さらに好ましくは前記負極棚を構成するPb−Sn−Se合金は、Snを1.0〜3.0質量%、かつSeを0.0005質量%〜0.05質量%含む。   Further, in the present invention, more preferably, the Pb—Sn—Se alloy constituting the negative electrode shelf has Sn of 1.0 to 3.0 mass% and Se of 0.0005 mass% to 0.05 mass%. Including.

さらに上記の本発明の鉛蓄電池を図面を用いて説明する。   Further, the above lead storage battery of the present invention will be described with reference to the drawings.

本発明の鉛蓄電池21は図2に示したように、正極板22と負極板23とをセパレータ24を介して組み合わされた極板群25を有する。負極板23は負極格子体23aに海綿状鉛を主体とする鉛蓄電池用の負極活物質23bが充填された構成を有し、負極格子体23aには負極活物質に充電電流を入力し、負極活物質から放電電流を出力するための負極耳23cが一体に設けられている。   As shown in FIG. 2, the lead storage battery 21 of the present invention has an electrode plate group 25 in which a positive electrode plate 22 and a negative electrode plate 23 are combined through a separator 24. The negative electrode plate 23 has a configuration in which a negative electrode active material 23b for a lead storage battery mainly composed of spongy lead is filled in a negative electrode lattice 23a, and a charging current is input to the negative electrode active material into the negative electrode active material 23a. A negative electrode ear 23c for outputting a discharge current from the active material is integrally provided.

本発明においては、負極板の水素過電圧の低下を抑制することを目的とし、負極格子体23aがSbを含まない、Pb−Ca合金で構成されており、負極格子体23aに一体に設けられた負極耳23cも同様のPb−Ca合金で構成される。Pb−Ca合金中のCaは負極格子体および負極耳の機械的強度を確保する目的で添加するものであり、合金中のCa含有濃度は0.03質量%〜0.10質量%程度の範囲とすることが好ましい。Ca含有濃度が0.03質量%未満では、所望とする強度が得られない。また、0.10質量%を越えるCaの添加は、却ってPb−Ca合金の耐食性が低下したり、エキスパンド格子として用いる場合には、エキスパンド加工時の伸びが十分でなく、格子骨に骨切れが発生する場合があり、好ましくない。   In the present invention, for the purpose of suppressing a decrease in hydrogen overvoltage of the negative electrode plate, the negative electrode grid body 23a is made of a Pb—Ca alloy containing no Sb, and is provided integrally with the negative electrode grid body 23a. The negative electrode ear 23c is also made of the same Pb—Ca alloy. Ca in the Pb-Ca alloy is added for the purpose of ensuring the mechanical strength of the negative electrode lattice body and the negative electrode ear, and the Ca content concentration in the alloy is in the range of about 0.03% by mass to 0.10% by mass. It is preferable that If the Ca-containing concentration is less than 0.03% by mass, the desired strength cannot be obtained. On the other hand, the addition of Ca exceeding 0.10% by mass reduces the corrosion resistance of the Pb—Ca alloy or, when used as an expanded lattice, the elongation during expansion is not sufficient, and the lattice bone is broken. It may occur and is not preferable.

また、負極格子体23aや負極耳23cに微量のSbが存在する場合には、鉛蓄電池の自己放電特性が悪化したり、負極格子体23aおよび負極耳23cに含まれるCaとSbとが化合し、腐食性の金属間化合物(Ca3Sb2)が生成し、負極耳23cが腐食を受ける。したがって、負極格子体23aおよび負極耳23cのSb含有濃度は0.001質量%未満とすることにより、実質上、Sbが含まれない状態とすべきである。 In addition, when a small amount of Sb is present in the negative electrode grid 23a or the negative electrode ear 23c, the self-discharge characteristics of the lead storage battery are deteriorated, or Ca and Sb contained in the negative electrode grid 23a and the negative electrode ear 23c are combined. Corrosive intermetallic compound (Ca 3 Sb 2 ) is generated, and the negative electrode ear 23c is corroded. Therefore, the Sb-containing concentration of the negative electrode lattice body 23a and the negative electrode ear 23c should be substantially free of Sb by making it less than 0.001% by mass.

負極耳23cを集合溶接する負極棚は、Sbを含まない、Pb−Sn−Se合金とする。Sbを含む場合、負極耳23c中のCaとSbが反応し、負極耳23cの腐食が発生するため、負極棚合金は、負極格子体23aおよび負極耳23cと同様、Sb含有濃度を0.001質量%未満とすることにより、実質上Sbが含まれない状態とする。   The negative electrode shelf for collective welding of the negative electrode ears 23c is made of a Pb—Sn—Se alloy that does not contain Sb. When Sb is included, Ca and Sb in the negative electrode ear 23c react to cause corrosion of the negative electrode ear 23c, so that the negative electrode shelf alloy has an Sb content of 0.001 as in the case of the negative electrode lattice body 23a and the negative electrode ear 23c. By making it less than mass%, it is set as the state which does not contain Sb substantially.

負極棚合金としてのPb−Sn合金にSeを添加することにより、Pb−Sn合金結晶で顕著に発生する腐食を抑制し、特に、負極棚26とこれに接合した極柱やセル間接続体といった、溶接性・強度を考慮してPb−Sb合金とした接続部材27との接合部での腐食を抑制することができる。   By adding Se to the Pb—Sn alloy as the negative electrode shelf alloy, the corrosion that is remarkably generated in the Pb—Sn alloy crystal is suppressed, and in particular, the negative electrode shelf 26 and the pole columns and inter-cell connected bodies joined thereto. Corrosion at the joint with the connecting member 27 made of a Pb—Sb alloy in consideration of weldability and strength can be suppressed.

負極棚合金に含まれるSn含有濃度は強度・耐食性の観点から、1.0質量%〜3.0質量%の範囲とすることが好ましい。Sn含有濃度1.0質量%未満では、負極棚としての強度に不足する。また、3.0質量%を越えるSnの添加は負極棚腐食量が若干増大するため、上記の範囲とすることが好ましい。   From the viewpoint of strength and corrosion resistance, the Sn content concentration contained in the negative electrode shelf alloy is preferably in the range of 1.0 mass% to 3.0 mass%. If the Sn content concentration is less than 1.0 mass%, the strength as the negative electrode shelf is insufficient. Moreover, since addition of Sn exceeding 3.0 mass% increases the amount of negative electrode shelf corrosion slightly, it is preferable to set it as said range.

また、負極棚合金中に含まれるSe含有濃度は、0.0005質量%の添加で腐食抑制の効果が認められる。一方、0.05質量%以上のSeの添加は、腐食抑制効果が増大せず、Seの添加量増大に応じて材料コストが増加するため、0.0005質量%〜0.05質量%の範囲とすればよい。   Moreover, the effect of inhibiting corrosion is recognized when the Se content concentration contained in the negative electrode shelf alloy is 0.0005% by mass. On the other hand, the addition of 0.05% by mass or more of Se does not increase the corrosion-inhibiting effect, and the material cost increases as the addition amount of Se increases, so the range is from 0.0005% to 0.05% by mass. And it is sufficient.

なお、本発明の課題とする接続部材27と負極棚26との接合部の腐食は、この接合部が希硫酸電解液中に浸漬された状態で生じるため、本発明は、この接合部が電解液で浸漬された状態とした、液式の鉛蓄電池に適用すべきものである。   Note that the corrosion of the joint portion between the connection member 27 and the negative electrode shelf 26, which is the subject of the present invention, occurs in a state in which the joint portion is immersed in dilute sulfuric acid electrolyte solution. It should be applied to a liquid lead-acid battery that has been immersed in a liquid.

以下、実施例により、本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

図3に示した負極溶接部31において、表1に示したように、負極耳32の組成をPb−0.07質量%Ca、負極の接続部材33の合金組成をPb−2.5質量%とし、負極棚34の合金組成を種々変化させ、自動車始動用の12V48Ahの鉛蓄電池を作成した。ちなみに、図3の例では、負極の接続部材としてセル間接続体とした例を示しているが、負極端子側に位置する極板群では、接続部材として負極極柱が接続される。なお、負極耳32中のSb定性分析を行ったところ、Sb含有濃度は検出限界(0.0001質量%)未満であり、実質上Sbを含まないものとした。なお、負極棚34として用いたPb−Sn合金中のSb定性分析を行ったところ、Sb含有濃度は検出限界(0.0001質量%)未満であり、実質上Sbを含まないものとした。   In the negative electrode weld 31 shown in FIG. 3, as shown in Table 1, the composition of the negative electrode ear 32 is Pb-0.07 mass% Ca, and the alloy composition of the negative electrode connection member 33 is Pb-2.5 mass%. Then, the alloy composition of the negative electrode shelf 34 was variously changed, and a 12V48Ah lead storage battery for starting an automobile was produced. Incidentally, in the example of FIG. 3, an example in which an inter-cell connection body is used as the negative electrode connection member is shown, but in the electrode plate group located on the negative electrode terminal side, the negative electrode pole column is connected as the connection member. When the Sb qualitative analysis in the negative electrode ear 32 was performed, the Sb-containing concentration was less than the detection limit (0.0001% by mass) and was substantially free of Sb. In addition, when the Sb qualitative analysis in the Pb-Sn alloy used as the negative electrode shelf 34 was conducted, the Sb-containing concentration was less than the detection limit (0.0001% by mass), and was substantially free of Sb.

Figure 2006210210
Figure 2006210210

なお、上記の鉛蓄電池では、正極板として、Pb−0.06質量%Ca−1.60質量%Snのエキスパンド格子体にPbO2の正極活物質を充填したものを用いた。また負極板として、前記したように、Pb−0.07質量%Caのエキスパンド格子体に、海綿状Pbの負極活物質を充填したものを用いた。 In the above lead storage battery, a positive electrode plate in which an expanded lattice body of Pb-0.06 mass% Ca-1.60 mass% Sn was filled with a positive electrode active material of PbO 2 was used. Further, as described above, a negative electrode plate in which a Pb-0.07 mass% Ca expanded lattice was filled with a spongy Pb negative electrode active material was used.

そして、負極板を微孔性の袋状ポリエチレンセパレータに収納し、正極板5枚、負極板6枚で構成された極板群を作成した。この極板群の6個を6個のセル室を有した電槽に収納し、各極板群間を抵抗溶接により、直列接続し、電槽開口部に蓋を接合し、蓋にインサート成型された一対の鉛ブッシング端子の一方に正極の極柱を溶接し、他の一方の鉛ブッシング端子に負極の極柱を溶接することによって、未化成状態の鉛蓄電池を作成した。   And the negative electrode plate was accommodated in the microporous bag-like polyethylene separator, and the electrode group comprised by five positive electrode plates and six negative electrode plates was created. Six of these electrode plate groups are housed in a battery case having six cell chambers, each electrode plate group is connected in series by resistance welding, a lid is joined to the opening of the battery case, and insert molding is performed on the lid. The positive electrode pole column was welded to one of the paired lead bushing terminals, and the negative electrode pole column was welded to the other one lead bushing terminal to produce an unformed lead storage battery.

なお、負極溶接部31の形成は、負極耳32の複数を櫛刃状の鋳型の櫛の部分にはめ込み、櫛から露出した負極耳32の上部に負極棚合金の足し鉛と、負極耳32の側部に接続部材33を載置し、足し鉛をバーナー火炎で溶融凝固することにより、行った。   The negative electrode welded portion 31 is formed by inserting a plurality of negative electrode ears 32 into the comb portion of the comb blade-shaped mold, and adding the lead shelf alloy of the negative electrode shelf alloy to the upper portion of the negative electrode ear 32 exposed from the comb and the negative electrode ears 32. The connecting member 33 was placed on the side and added lead was melted and solidified with a burner flame.

そして、6個のセル室内にそれぞれ希硫酸電解液を注液し、上記の鉛ブッシング端子間に通電することにより、充電状態の鉛蓄電池とした。この状態で、負極棚34と接続部材33との接合部は密度1.290g/cm3(20℃換算時)の希硫酸電解液に浸漬された状態とした。 Then, a dilute sulfuric acid electrolyte solution was poured into each of the six cell chambers, and electricity was applied between the lead bushing terminals to obtain a charged lead-acid battery. In this state, the joint between the negative electrode shelf 34 and the connection member 33 was immersed in a dilute sulfuric acid electrolyte solution having a density of 1.290 g / cm 3 (when converted to 20 ° C.).

これら表1の鉛蓄電池において、電解液面を1)負極棚−接続部材接合部が電解液より露出した状態、2)負極棚−接続部材接合部が電解液に浸漬した状態の2通りの状態とし、それぞれ、15.0Vの定電圧トリクル充電を4週間連続して行った。なお、電解液面を上記1)としたものは、試験温度を85℃とし、電解液面を上記2)としたものは、試験温度を95℃とした。なお、負極棚−接続部材接合部が電解液から露出している場合、負極耳と負極棚との接合部も電解液から露出しており、負極棚−接続部材接合部が電解液に浸漬している場合には負極耳と負極棚との接合部も電解液に浸漬した状態であった。   In these lead-acid batteries of Table 1, the electrolyte surface is 1) a state in which the negative electrode shelf-connecting member joint is exposed from the electrolytic solution, and 2) a state in which the negative electrode shelf-connecting member joint is immersed in the electrolytic solution. And a constant voltage trickle charge of 15.0 V was performed continuously for 4 weeks. In the case where the electrolyte surface was 1), the test temperature was 85 ° C., and in the case where the electrolyte surface was 2), the test temperature was 95 ° C. When the negative electrode shelf-connecting member junction is exposed from the electrolyte, the junction between the negative electrode ear and the negative electrode shelf is also exposed from the electrolyte, and the negative electrode shelf-connecting member junction is immersed in the electrolyte. In this case, the joint between the negative electrode ear and the negative electrode shelf was also immersed in the electrolyte.

トリクル充電終了後、電池を分解し、負極棚溶接部を取り出し、負極棚−接続部材間の腐食の有無とその状態、負極耳−負極棚間の腐食断線の発生率(%)を調査した。なお、負極棚−接合部間の腐食の有無については、試験後の電池において、負極棚−接続部材間の接合部の断面積(S)を求め、この断面積(S)の、試験前の電池における負極棚−接続部材間の接合部面積(S0)に対する百分率((S/S0)×100)を接続部残存率(%)として算出することにより、定量的に評価した。この比率が100%の場合は、腐食が皆無であり、50%である場合には、腐食により接合部の面積が初期の50%にまで低下したことを示す。これらの結果を表2に示す。   After the trickle charge was completed, the battery was disassembled, the negative electrode shelf welded portion was taken out, and the presence or absence of corrosion between the negative electrode shelf and the connecting member and the state thereof, and the occurrence rate (%) of corrosion disconnection between the negative electrode ear and the negative electrode shelf were investigated. In addition, about the presence or absence of corrosion between a negative electrode shelf and a junction part, in the battery after a test, the cross-sectional area (S) of the junction part between a negative electrode shelf and a connection member was calculated | required, and this cross-sectional area (S) of a test is before The percentage ((S / S0) × 100) with respect to the joint area (S0) between the negative electrode shelf and the connection member in the battery was calculated as a connection part remaining rate (%), and was evaluated quantitatively. When this ratio is 100%, there is no corrosion, and when it is 50%, it indicates that the area of the joint has been reduced to 50% due to corrosion. These results are shown in Table 2.

Figure 2006210210
Figure 2006210210

表2に示した結果から、負極棚をPb−Sb合金とした電池は、電解液面から負極棚−接続部材接合部が電解液より露出した状態で、負極耳の腐食断線が発生していた。一方、上記の接合部が電解液面に浸漬した状態では、負極耳の腐食断線は発生していなかった。負極耳の腐食断線は負極棚に含まれるSbと負極耳に含まれるCaとが化合して生じる金属間化合物が腐食の要因であると推測される。   From the results shown in Table 2, in the battery in which the negative electrode shelf was made of Pb—Sb alloy, the corrosion breakage of the negative electrode ear occurred with the negative electrode shelf-connecting member junction exposed from the electrolytic solution surface. . On the other hand, no corrosion breakage of the negative electrode ear occurred in the state where the above-mentioned joint was immersed in the electrolyte surface. Corrosion disconnection of the negative electrode ear is presumed to be caused by an intermetallic compound produced by combining Sb contained in the negative electrode shelf and Ca contained in the negative electrode ear.

また、これらの電池では、負極棚と接続部材間の腐食は電解液面の位置に関わらず、殆ど認められなかった。   In these batteries, corrosion between the negative electrode shelf and the connecting member was hardly recognized regardless of the position of the electrolyte surface.

一方、負極棚をSbを含まない、Pb−Sn合金とした電池では、電解液面の位置に関わらず、負極耳の腐食断線は発生していなかった。これは、負極棚にSbを含まないことによって、負極耳中のCaがSbに接触しないため、負極耳の腐食とこれによる断線が抑制されたと考えられる。また、この電解液面の位置では、負極棚と接続部材間の腐食も殆ど進行していなかった。   On the other hand, in the battery in which the negative electrode shelf is made of a Pb—Sn alloy containing no Sb, no corrosion breakage of the negative electrode ear occurred regardless of the position of the electrolyte surface. This is probably because Ca in the negative electrode ear does not come into contact with Sb by not including Sb in the negative electrode shelf, so that corrosion of the negative electrode ear and disconnection due to this were suppressed. Moreover, the corrosion between the negative electrode shelf and the connection member hardly progressed at the position of the electrolytic solution surface.

ところが、電解液面が負極棚と接続部材との接合部を浸漬した状態で、負極棚のPb−Sn合金中にSeを添加しない、比較例の電池は、上記の接合部において腐食が進行し、接合部の面積が初期状態の40%もしくは45%にまで低下していた。この腐食は接合部の負極棚側で顕著に進行していた。この状態では十分な強度が確保されず、また、通電時の電気抵抗が増大するため、高率放電時の放電電圧が低下する恐れがある。   However, in the battery of the comparative example in which the electrolytic solution surface immerses the joint between the negative electrode shelf and the connection member and Se is not added to the Pb—Sn alloy of the negative electrode shelf, the corrosion proceeds at the joint. The area of the joint portion was reduced to 40% or 45% of the initial state. This corrosion progressed remarkably on the negative electrode shelf side of the joint. In this state, sufficient strength is not ensured, and the electrical resistance during energization increases, so that the discharge voltage during high-rate discharge may decrease.

一方、負極棚としてPb−Sn−Se合金を用いた本発明の鉛蓄電池では、残存率は86〜96%であり、顕著に負極棚と接続部材の接合部での腐食が抑制される。Sn濃度1.0質量%および3.0質量%のいずれの場合においても、Se含有濃度は0.0005質量%の添加で腐食抑制効果が認められる。   On the other hand, in the lead storage battery of the present invention using the Pb—Sn—Se alloy as the negative electrode shelf, the remaining rate is 86 to 96%, and corrosion at the joint between the negative electrode shelf and the connecting member is remarkably suppressed. In both cases of Sn concentration of 1.0% by mass and 3.0% by mass, the addition of 0.0005% by mass of Se content shows a corrosion inhibiting effect.

また、Se含有濃度0.05質量%を越える0.07質量%の場合も、顕著な腐食抑制効果が認められるが、Se含有濃度0.05質量%の場合に比較して、負極棚−接続部材の接合部の断面積が若干減少するため、0.05質量%以下とすることが好ましい。   Further, in the case of 0.07% by mass exceeding Se content concentration of 0.05% by mass, a remarkable corrosion-inhibiting effect is recognized, but compared with the case of Se content concentration of 0.05% by mass, negative electrode shelf-connection Since the cross-sectional area of the joint portion of the member is slightly reduced, it is preferably 0.05% by mass or less.

本発明の鉛蓄電池では、上記したように、負極棚のPb−Sn合金中にSeを添加することにより、接続部材としてのPb−Sb合金との接合部で発生する腐食を抑制することができる。そもそも、この部位で発生する腐食は、接続部材側と負極棚側で組成が不連続であることにより、接合部を形成する際、すなわち溶接後の凝固時にこの接合部に隣接する負極棚側で微細な隙間が発生したことによると考えられる。本発明ではPb−Sn合金中にSeを添加することにより、この隙間の発生を防止し、腐食の進行を抑制すると考えられる。   In the lead storage battery of the present invention, as described above, by adding Se to the Pb—Sn alloy of the negative electrode shelf, it is possible to suppress corrosion that occurs at the joint with the Pb—Sb alloy as the connecting member. . In the first place, the corrosion that occurs in this part is due to the discontinuous composition on the connecting member side and the negative electrode shelf side, so that when forming a joint, that is, on the negative electrode shelf side adjacent to this joint during solidification after welding. This is thought to be due to the occurrence of fine gaps. In the present invention, it is considered that the addition of Se to the Pb—Sn alloy prevents the formation of this gap and suppresses the progress of corrosion.

また、負極棚と接続部材との接合部が希硫酸電解液に浸漬された電池において、電解液中の水分減少により、この接合部が希硫酸電解液から露出する場合がある。このような場合においても、本発明の鉛蓄電池では、負極耳の腐食断線を抑制することができる。   In addition, in a battery in which the joint between the negative electrode shelf and the connection member is immersed in dilute sulfuric acid electrolyte, the joint may be exposed from the dilute sulfuric acid electrolyte due to a decrease in water in the electrolyte. Even in such a case, the lead storage battery of the present invention can suppress corrosion disconnection of the negative electrode ear.

上記したように、本発明によれば、高温使用時に発生する負極棚−接続部材間の腐食を顕著に抑制することから、自動車に用いられる、始動用の鉛蓄電池をはじめ、高温使用される鉛蓄電池に好適である。   As described above, according to the present invention, the corrosion between the negative electrode shelf and the connecting member that occurs at the time of high temperature use is remarkably suppressed, so that lead used in automobiles, such as lead acid batteries for starting, is used at high temperatures. Suitable for storage batteries.

鉛蓄電池の極板群を示す図The figure which shows the electrode group of lead acid battery 本発明の鉛蓄電池を示す図The figure which shows the lead acid battery of this invention 実施例の鉛蓄電池の負極溶接部を示す図The figure which shows the negative electrode welding part of the lead acid battery of an Example

符号の説明Explanation of symbols

11 正極板
11a 正極耳
12 負極板
12a 負極耳
12b 負極格子体
12c 負極活物質
13 セパレータ
14 正極棚
15 負極棚
16 端子
17 接続部材
21 鉛蓄電池
22 正極板
23 負極板
23a 負極格子体
23b 負極活物質
23c 負極耳
24 セパレータ
25 極板群
26 負極棚
27 接続部材
31 負極溶接部
32 負極耳
33 (負極の)接続部材
34 負極棚
DESCRIPTION OF SYMBOLS 11 Positive electrode plate 11a Positive electrode ear 12 Negative electrode plate 12a Negative electrode ear 12b Negative electrode active body 13c Negative electrode active material 13 Separator 14 Positive electrode shelf 15 Negative electrode shelf 16 Terminal 17 Connection member 21 Lead storage battery 22 Positive electrode plate 23 Negative electrode plate 23a Negative electrode lattice body 23b Negative electrode active material 23c Negative electrode ear 24 Separator 25 Electrode plate group 26 Negative electrode shelf 27 Connection member 31 Negative electrode welded portion 32 Negative electrode ear 33 (of negative electrode) connection member 34 Negative electrode shelf

Claims (2)

正極板と負極板とをセパレータを介して組み合わせ、負極板から導出された負極耳を集合溶接する負極棚と、この負極棚に接合された接続部材を備え、前記負極棚と前記接続部材との接合部が電解液に浸漬された鉛蓄電池であって、前記負極耳はSbを含まないPb−Ca合金からなり、前記接続部材はPb−Sb合金からなり、前記負極棚はSbを含まないPb−Sn−Se合金からなることを特徴とする鉛蓄電池。 A positive electrode plate and a negative electrode plate are combined via a separator, and a negative electrode shelf for collectively welding negative electrode ears led out from the negative electrode plate, and a connecting member joined to the negative electrode shelf, the negative electrode shelf and the connecting member A lead-acid battery having a joint immersed in an electrolyte, wherein the negative electrode ear is made of a Pb—Ca alloy containing no Sb, the connecting member is made of a Pb—Sb alloy, and the negative electrode shelf is made of Pb containing no Sb. -Lead-acid battery characterized by consisting of a Sn-Se alloy. 前記負極棚を構成するPb−Sn−Se合金は、Snを1.0〜3.0質量%、かつSeを0.0005質量%〜0.05質量%含むことを特徴とする請求項1に記載の鉛蓄電池。 The Pb-Sn-Se alloy constituting the negative electrode shelf includes 1.0 to 3.0 mass% of Sn and 0.0005 mass% to 0.05 mass% of Se. Lead acid battery of description.
JP2005022429A 2005-01-31 2005-01-31 Lead-acid battery Pending JP2006210210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022429A JP2006210210A (en) 2005-01-31 2005-01-31 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022429A JP2006210210A (en) 2005-01-31 2005-01-31 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2006210210A true JP2006210210A (en) 2006-08-10

Family

ID=36966800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022429A Pending JP2006210210A (en) 2005-01-31 2005-01-31 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2006210210A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108682A (en) * 2008-10-29 2010-05-13 Panasonic Corp Lead-acid battery
JP2015028901A (en) * 2012-12-18 2015-02-12 パナソニックIpマネジメント株式会社 Lead battery
CN105671362A (en) * 2016-03-22 2016-06-15 安徽华铂再生资源科技有限公司 Lanthanum mother alloy for positive electrode grid of lead-acid storage battery and preparation process
JP2019204790A (en) * 2019-07-10 2019-11-28 株式会社Gsユアサ Control valve type lead-acid battery
WO2023054524A1 (en) * 2021-09-30 2023-04-06 古河電池株式会社 Bipolar storage battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388752A (en) * 1986-10-01 1988-04-19 Yuasa Battery Co Ltd Lead storage battery
JPH0529017A (en) * 1991-07-18 1993-02-05 Matsushita Electric Ind Co Ltd Lead acid battery
JPH05325939A (en) * 1992-05-19 1993-12-10 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH08339794A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Lead acid battery
JPH09192820A (en) * 1996-01-18 1997-07-29 Japan Storage Battery Co Ltd Production of hybrid lead battery
JP2001015097A (en) * 1999-06-30 2001-01-19 Yuasa Corp Manufacture of lead-acid battery terminal
JP2002008624A (en) * 2000-06-22 2002-01-11 Japan Storage Battery Co Ltd Strap for lead-acid battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6388752A (en) * 1986-10-01 1988-04-19 Yuasa Battery Co Ltd Lead storage battery
JPH0529017A (en) * 1991-07-18 1993-02-05 Matsushita Electric Ind Co Ltd Lead acid battery
JPH05325939A (en) * 1992-05-19 1993-12-10 Matsushita Electric Ind Co Ltd Sealed lead-acid battery
JPH08339794A (en) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd Lead acid battery
JPH09192820A (en) * 1996-01-18 1997-07-29 Japan Storage Battery Co Ltd Production of hybrid lead battery
JP2001015097A (en) * 1999-06-30 2001-01-19 Yuasa Corp Manufacture of lead-acid battery terminal
JP2002008624A (en) * 2000-06-22 2002-01-11 Japan Storage Battery Co Ltd Strap for lead-acid battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010108682A (en) * 2008-10-29 2010-05-13 Panasonic Corp Lead-acid battery
JP2015028901A (en) * 2012-12-18 2015-02-12 パナソニックIpマネジメント株式会社 Lead battery
CN105671362A (en) * 2016-03-22 2016-06-15 安徽华铂再生资源科技有限公司 Lanthanum mother alloy for positive electrode grid of lead-acid storage battery and preparation process
JP2019204790A (en) * 2019-07-10 2019-11-28 株式会社Gsユアサ Control valve type lead-acid battery
WO2023054524A1 (en) * 2021-09-30 2023-04-06 古河電池株式会社 Bipolar storage battery

Similar Documents

Publication Publication Date Title
JP2006156371A (en) Negative electrode collector for lead-acid battery
JP2006210210A (en) Lead-acid battery
WO2013114822A1 (en) Lead-acid battery
JP6836315B2 (en) Control valve type lead acid battery
JP2002175798A (en) Sealed lead-acid battery
US4166155A (en) Maintenance-free battery
JP5050309B2 (en) Lead acid battery
CN104067414B (en) Lead battery
JP5359193B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP2008218258A (en) Lead acid battery
WO2011027383A1 (en) Lead acid battery
JP6601654B2 (en) Control valve type lead acid battery
JP2000315519A (en) Lead acid storage battery
JP4896392B2 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP2005228685A (en) Lead-acid storage battery
JP2011159551A (en) Lead-acid storage battery
JP2006114416A (en) Lead-acid battery
JP2002093457A (en) Lead-acid battery
JP6830615B2 (en) Control valve type lead acid battery
JP3134466B2 (en) Lead storage battery
JP2012109194A (en) Molten salt battery pack
JPH05251074A (en) Manufacture of lead-acid battery
JP2003323881A (en) Control valve lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120828