JP2011159551A - Lead-acid storage battery - Google Patents

Lead-acid storage battery Download PDF

Info

Publication number
JP2011159551A
JP2011159551A JP2010021767A JP2010021767A JP2011159551A JP 2011159551 A JP2011159551 A JP 2011159551A JP 2010021767 A JP2010021767 A JP 2010021767A JP 2010021767 A JP2010021767 A JP 2010021767A JP 2011159551 A JP2011159551 A JP 2011159551A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
lead
strap
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010021767A
Other languages
Japanese (ja)
Inventor
Yoshibumi Hisama
義文 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010021767A priority Critical patent/JP2011159551A/en
Publication of JP2011159551A publication Critical patent/JP2011159551A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid storage battery in which an electrode plate is immersed in an electrolyte solution and the current collector of both positive and negative electrodes is made of a lead alloy containing calcium and in which corrosion of a jointing part of a current collector ear on the negative electrode side and a strap and the strap body is suppressed, while capacity recovering property after over-discharge is improved. <P>SOLUTION: At least a part of a strap of both positive and negative electrodes, a positive electrode connecting component, and a negative electrode connecting component is immersed in the electrolyte solution; the strap of the both positive and negative electrodes and the positive electrode connecting component are composed of lead or a lead alloy in which the antimony content is restricted to 0.01 mass% or less, and the negative electrode connecting component is composed of lead or a lead alloy containing antimony of 0.5 mass% or more. By this, corrosion on the negative electrode side is suppressed, and the capacity recovering property after over-discharge is remarkably improved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

近年、車両のエンジン始動用の鉛蓄電池は、電解液中の水分減少を抑制する目的で、両極の集電体用の鉛合金として、鉛−カルシウム合金を用いるものが主流になってきている。これら集電体に、極性に応じた活物質を充填あるいは塗布することによって正極板と負極板が得られる。なお、集電体には集電耳が一体に設けられている。これら正極板と負極板のそれぞれ複数を、セパレータを介して積層してセルを構成し、同極性の集電耳をストラップで集合溶接される。   In recent years, lead storage batteries for starting an engine of a vehicle have become mainstream using lead-calcium alloys as lead alloys for current collectors of both electrodes for the purpose of suppressing moisture reduction in the electrolyte. A positive electrode plate and a negative electrode plate can be obtained by filling or applying an active material corresponding to the polarity to these current collectors. The current collector is integrally provided with current collecting ears. A plurality of these positive electrode plates and negative electrode plates are laminated via a separator to constitute a cell, and current collecting ears of the same polarity are collectively welded with a strap.

また、ストラップには、セルを接続するための接続体および/もしくは外部接続のための極柱が接続される。なお、本明細書において、接続体および極柱を総称し、接続部品という。   In addition, a connection body for connecting cells and / or a pole for external connection is connected to the strap. In the present specification, the connection body and the pole column are collectively referred to as connection parts.

液式の鉛蓄電池においては、ストラップおよび接続部品として鉛−アンチモン合金が用いられてきた。鉛−アンチモン合金は、純鉛に比較して強度および耐食性に優れ、また、鋳造性や溶接性に優れている。   In a liquid lead-acid battery, a lead-antimony alloy has been used as a strap and a connecting part. The lead-antimony alloy is superior in strength and corrosion resistance to pure lead, and is excellent in castability and weldability.

しかしながら、アンチモンを含むストラップとカルシウムを含む集電耳部との接合部において、カルシウムとアンチモンが混合する場合がある。このような、カルシウムとアンチモンとの混合物を含むストラップを負極に適用した場合、このストラップが電解液から露出すると、ストラップと集電耳との接合部が腐食し、この腐食の進行によって、ストラップと集電耳部の間が断線することが知られている。カルシウムとアンチモンは互いに混合されることによって化合物を生成し、この化合物が腐食され易いとされている。   However, in some cases, calcium and antimony are mixed in the joint portion between the strap containing antimony and the current collecting ear portion containing calcium. When a strap containing a mixture of calcium and antimony is applied to the negative electrode, when the strap is exposed from the electrolyte, the joint between the strap and the current collecting ear corrodes, and the progress of this corrosion causes the strap and the It is known that there is a break between current collecting ears. It is said that calcium and antimony are mixed with each other to form a compound, which is easily corroded.

特許文献1では、ストラップを構成するセル間をつなぐコネクターまたは極柱部には鉛−アンチモン合金を用い、負極格子とコネクターまたは極柱部をつなぐ足し鉛部品にスズを0.1質量%以上含む鉛−スズ合金を用いて溶接することが示されている。特許文献1の構成では、溶接時の溶融鉛合金の混じりあいによる、カルシウムとアンチモンとの混合が抑制され、前記したような負極におけるストラップと集電耳の接合部の腐食が抑制される。   In Patent Document 1, a lead-antimony alloy is used for a connector or pole column portion connecting cells constituting a strap, and tin is added to the negative electrode grid and the connector or pole column portion to contain 0.1% by mass or more of tin. It has been shown to weld using a lead-tin alloy. In the configuration of Patent Document 1, mixing of calcium and antimony due to mixing of molten lead alloys during welding is suppressed, and corrosion of the joint between the strap and the current collecting ear in the negative electrode as described above is suppressed.

一方、液式でない、負極吸収式の鉛蓄電池においては、電池内にアンチモンが存在すると電解液中の水分減少や自己放電が著しく実用的でないことから、ストラップや接続部品は、アンチモンを含まないか、ごく微量に制限された純鉛や鉛合金で構成される。   On the other hand, in non-liquid type, negative electrode absorption type lead-acid batteries, if antimony is present in the battery, moisture reduction in the electrolyte and self-discharge are extremely impractical, so do straps and connecting parts contain antimony? It is composed of pure lead and lead alloy limited to a very small amount.

近年、車両の燃費向上を目的として、エンジンのアイドリングを停止するシステムや、従来の車両に比較して鉛蓄電池の過充電電気量を、より抑制したシステムが普及しつつある。これらのシステムを採用した車両では、鉛蓄電池の充電状態(SOC)は、従来の車両に比較して、より低い範囲で制御される。また、鉛蓄電池のSOCが高くない状態で、この鉛蓄電池から、車両に搭載された各種ECUへの暗電流が流れ続けるため、鉛蓄電池が過放電される率も高い。   In recent years, for the purpose of improving the fuel efficiency of vehicles, a system for stopping idling of an engine and a system in which the amount of overcharge electricity of a lead storage battery is further suppressed as compared with a conventional vehicle are becoming widespread. In vehicles employing these systems, the state of charge (SOC) of the lead-acid battery is controlled in a lower range compared to conventional vehicles. Moreover, since the dark current continues to flow from the lead storage battery to various ECUs mounted on the vehicle while the SOC of the lead storage battery is not high, the rate at which the lead storage battery is overdischarged is also high.

本発明の発明者は、負極における集電耳やストラップの腐食を抑制するために、鉛蓄電池内部のストラップや、接続部品に用いる鉛合金として、負極吸収式鉛蓄電池で使用するような、アンチモンを含まない鉛あるいは鉛合金を使用した場合、鉛蓄電池を過放電した際の容量回復性が著しく低下することを確認した。   The inventor of the present invention uses antimony as used in a negative electrode absorption lead acid battery as a lead alloy used in a lead acid battery strap or a connection component in order to suppress corrosion of current collecting ears and straps in the negative electrode. When lead or lead alloys not included were used, it was confirmed that the capacity recoverability when lead-acid batteries were overdischarged was significantly reduced.

特許文献2には、正負のストラップおよび接続部品にアンチモン(Sb)を含まない鉛合金を使用した際の、鉛蓄電池の充電受入れ性の低下を抑制するため、負極の格子骨部表面もしくは負極の活物質中にアンチモンを含有させる構成が示されている。このような構成によれば、充電受け入れ性が改善されることから、鉛蓄電池を過放電した後の容量回復性も改善すると推測される。   In Patent Document 2, in order to suppress a decrease in charge acceptability of a lead storage battery when a lead alloy containing no antimony (Sb) is used for positive and negative straps and connecting parts, the surface of the negative electrode lattice or the negative electrode A configuration in which antimony is contained in the active material is shown. According to such a configuration, since the charge acceptance is improved, it is presumed that the capacity recoverability after the lead storage battery is overdischarged is also improved.

本発明の発明者が、前記したような、正負のストラップおよび接続部材にアンチモンを含まない鉛合金を使用し、かつ負極格子骨部表面もしくは負極活物質中にアンチモンを含有させた鉛蓄電池の過放電時の容量回復性を確認したところ、前記したような部位へのアンチモンの添加によっても、過放電時の容量回復性は、正負のストラップおよび接続部材にアンチモンを含む、従来の鉛蓄電池に比較して劣ったものであった。これは、アンチモンと負極活物質(海面状鉛)とが近接あるいは接触して存在するため、局部電池が形成されることによる現象と推測できる。   The inventor of the present invention uses a lead alloy that does not contain antimony for the positive and negative straps and the connecting member as described above, and the lead storage battery contains antimony on the surface of the negative electrode lattice or on the negative electrode active material. As a result of confirming the capacity recoverability at the time of discharge, the capacity recoverability at the time of overdischarge is also compared with the conventional lead storage battery that contains antimony in the positive and negative straps and the connecting member even by addition of antimony to the site as described above. It was inferior. This can be presumed to be a phenomenon caused by the formation of a local battery because antimony and the negative electrode active material (sea surface lead) are present in close proximity or in contact with each other.

特開平5−275074号公報JP-A-5-275074 特開2003−346888号公報JP 2003-346888 A

本発明は、負極集電耳および負極集電耳と巣極ストラップの接合部の腐食を抑制するとともに、過放電後の容量回復性を改善した鉛蓄電池を提供するものである。   The present invention provides a lead-acid battery that suppresses corrosion of the negative electrode current collector ear and the junction between the negative electrode current collector ear and the nest electrode strap and has improved capacity recovery after overdischarge.

前記した課題を解決するために、本発明の請求項1に係る発明は、正極板と負極板が電解液に浸漬され、前記正極板および/もしくは前記負極板から放出されるガスを排出するための経路を電池外装に有した液式の鉛蓄電池であって、前記正極板および前記負極板は、鉛−カルシウム合金からなる正極集電体および負極集電体をそれぞれ備え、前記正極集電体に一体に設けられた正極集電耳を集合溶接する正極ストラップと、前記正極ストラップに設けられたセル間接続用および/もしくは端子接続用の正極接続部品を備え、前記負極集電体に一体に設けられた負極集電耳を集合溶接する負極ストラップと、前記負極ストラップに設けられたセル間接続用および/もしくは端子接続用の負極接続部品を備え、前記正極ストラップ、前記正極接続部品、前記負極ストラップおよび前記負極接続部品はいずれも少なくともその一部が電解液に浸漬され、前記正極ストラップ、前記正極接続部品および前記負極ストラップはアンチモン含有量が0.01質量%以下に制限された鉛もしくは鉛合金からなり、前記負極接続部品は0.5質量%以上のアンチモンを含む鉛もしくは鉛合金からなることを特徴とする鉛蓄電池を示すものである。   In order to solve the above-described problem, the invention according to claim 1 of the present invention is to discharge the gas released from the positive electrode plate and / or the negative electrode plate by immersing the positive electrode plate and the negative electrode plate in an electrolytic solution. A liquid lead-acid battery having a path of a battery exterior, wherein the positive electrode plate and the negative electrode plate each include a positive electrode current collector and a negative electrode current collector made of a lead-calcium alloy, and the positive electrode current collector A positive electrode strap integrally welded to the positive electrode current collector ear, and a positive electrode connection part for inter-cell connection and / or terminal connection provided on the positive electrode strap, and integrated with the negative electrode current collector A negative electrode strap for collectively welding the provided negative electrode current collecting ear; and a negative electrode connecting part for inter-cell connection and / or terminal connection provided on the negative electrode strap. At least a part of each of the component, the negative electrode strap, and the negative electrode connection component is immersed in an electrolyte solution, and the positive electrode strap, the positive electrode connection component, and the negative electrode strap are limited to an antimony content of 0.01% by mass or less. The lead storage battery is characterized in that it is made of lead or a lead alloy, and the negative electrode connecting part is made of lead or a lead alloy containing 0.5% by mass or more of antimony.

請求項1の構成によれば、正極ストラップおよび正極接続部品に含有されるアンチモン量が少なく制限されているため、電解液中へのアンチモン溶出と、負極集電耳表面でのアンチモン析出が抑制される。また、負極ストラップ中のアンチモン量も少なく制限されているため、負極集電耳の腐食や、負極集電耳と負極ストラップの接合部の腐食の腐食が抑制される。   According to the configuration of claim 1, since the amount of antimony contained in the positive electrode strap and the positive electrode connecting part is limited to a small amount, antimony elution into the electrolytic solution and antimony precipitation on the surface of the negative electrode current collecting ear are suppressed. The Further, since the amount of antimony in the negative electrode strap is limited to a small amount, corrosion of the negative electrode current collecting ear and corrosion of the joint portion between the negative electrode current collecting ear and the negative electrode strap are suppressed.

一方で、充電時に負極接続部品に含まれるアンチモンにより、充電時の負極側の過電圧が低くなるため、充電電流が増大する。これにより、過放電された正極活物質の充電が可能となる。また、負極活物質あるいは負極集電体に含まれるアンチモンは少量に制限されているため、負極活物質の自己放電による硫酸鉛の蓄積も抑制されることも相まって、鉛蓄電池が過放電した際の容量回復性を顕著に改善できる。このような効果は、負極側にSbが存在するものの、負極活物質と離間した部位に配置されるため、負極活物質とSbとの局部電池の形成が抑制されるためと推測される。   On the other hand, due to the antimony contained in the negative electrode connection component during charging, the overvoltage on the negative electrode side during charging is reduced, so that the charging current increases. Thereby, charging of the overdischarged positive electrode active material becomes possible. In addition, since the antimony contained in the negative electrode active material or the negative electrode current collector is limited to a small amount, the accumulation of lead sulfate due to self-discharge of the negative electrode active material is also suppressed. The capacity recovery can be remarkably improved. Such an effect is presumed to be because, although Sb is present on the negative electrode side, it is disposed at a site separated from the negative electrode active material, and thus the formation of a local battery between the negative electrode active material and Sb is suppressed.

また、本発明の請求項2の鉛蓄電池は、請求項1の構成を有する鉛蓄電池において、正極ストラップ、正極接続部品および負極ストラップは鉛−スズ合金からなる構成をさらに有する鉛蓄電池を示すものである。   A lead storage battery according to claim 2 of the present invention is a lead storage battery having the configuration of claim 1, wherein the positive electrode strap, the positive electrode connecting component, and the negative electrode strap further include a lead-tin alloy. is there.

また、本発明の請求項3の鉛蓄電池は、請求項1もしくは請求項2の構成を有する鉛蓄電池において、複数のセルを有し、セルは直列接続を含み、直列接続された2つのセルの一方のセル間接続用の負極接続部品と、他方のセルのセル間接続用の前記正極接続部品との溶接部は、少なくとも前記した他方のセルの電解液に対して液密に封止された構成をさら有する。   A lead storage battery according to claim 3 of the present invention is the lead storage battery having the configuration according to claim 1 or claim 2, wherein the lead storage battery includes a plurality of cells, the cells include a series connection, and two cells connected in series The welded portion of the negative electrode connection part for connecting one cell and the positive electrode connection part for connecting the cell of the other cell is sealed in a liquid-tight manner at least with respect to the electrolyte solution of the other cell. It also has a configuration.

本発明の請求項3の構成によれば、本発明を、複数セルを直列に接続した鉛蓄電池に適用する際、正極接続部品と負極接続部品との、アンチモンを含んだ接合部が、正極接続部品を含むセルの電解液から封止されている。したがって、アンチモンを含む接合部が陽極酸化によって腐食され、電解液へのアンチモンの溶出と、これによる負極集電耳へのアンチモンの析出および負極集電耳の腐食がより抑制される。   According to the configuration of claim 3 of the present invention, when the present invention is applied to a lead storage battery in which a plurality of cells are connected in series, the joint including antimony between the positive electrode connecting component and the negative electrode connecting component is connected to the positive electrode. Sealed from the electrolyte of the cell containing the part. Therefore, the joint portion containing antimony is corroded by anodic oxidation, and the elution of antimony into the electrolytic solution, the precipitation of antimony on the negative electrode current collector ear, and the corrosion of the negative electrode current collector ear are further suppressed.

本発明によれば、負極集電耳および、負極集電耳と負極ストラップの接合部の腐食を抑制し、かつ、過放電後の容量回復性を改善できるという、顕著な効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, there exists an outstanding effect that the corrosion of the negative electrode current collection ear and the junction part of a negative electrode current collection ear and a negative electrode strap can be suppressed, and the capacity | capacitance recoverability after an overdischarge can be improved.

本発明の第1の実施形態による鉛蓄電池の断面を示す図The figure which shows the cross section of the lead acid battery by the 1st Embodiment of this invention. 本発明の第1の実施形態による鉛蓄電池の他の断面を示す図The figure which shows the other cross section of the lead acid battery by the 1st Embodiment of this invention. 本発明の第2の実施形態による鉛蓄電池の断面を示す図The figure which shows the cross section of the lead acid battery by the 2nd Embodiment of this invention. 本発明の第2の実施形態による鉛蓄電池の要部断面を示す図The figure which shows the principal part cross section of the lead acid battery by the 2nd Embodiment of this invention. 本発明の第2の実施形態による鉛蓄電池のセル間接続前の状態を示す図The figure which shows the state before the connection between the cells of the lead acid battery by the 2nd Embodiment of this invention.

(本発明の第1の実施形態)
以下に本発明の第1の実施形態による鉛蓄電池の構成を説明する。図1および図2は本発明の第1の実施形態による鉛蓄電池1の断面を示す図である。正極板2は、正極集電耳2aを一体に備えた正極集電体(図示せず)に鉛蓄電池用正極活物質を充填した構成を有する。負極板3は、負極集電耳3aを一体に備えた負極集電体(図示せず)に鉛蓄電池用負極活物質を充填した構成を有する。
(First embodiment of the present invention)
The configuration of the lead storage battery according to the first embodiment of the present invention will be described below. 1 and 2 are cross-sectional views of a lead-acid battery 1 according to the first embodiment of the present invention. The positive electrode plate 2 has a configuration in which a positive electrode current collector (not shown) integrally provided with a positive electrode current collector ear 2a is filled with a positive electrode active material for a lead storage battery. The negative electrode plate 3 has a configuration in which a negative electrode current collector (not shown) integrally provided with a negative electrode current collecting ear 3a is filled with a negative electrode active material for a lead storage battery.

本発明の鉛蓄電池1に用いる正極集電体およびこれに一体に設けた正極集電耳2aは、いずれもカルシウムを含む鉛合金である。正極集電耳2aおよび正極集電体の活物質に被覆されない部分のアンチモンの含有量は0.005質量%以下に制限される。これは、溶融鉛中にカルシウム添加した際、カルシウムと溶融鉛中のアンチモンが化合し、上げ滓として、溶融鉛中のアンチモン含有量が低下するためである。   The positive electrode current collector used in the lead storage battery 1 of the present invention and the positive electrode current collector ear 2a provided integrally therewith are both lead alloys containing calcium. The content of antimony in the portion not covered with the active material of the positive electrode current collector ear 2a and the positive electrode current collector is limited to 0.005% by mass or less. This is because when calcium is added to the molten lead, calcium and antimony in the molten lead are combined to reduce the content of antimony in the molten lead as a raised soot.

したがって、カルシウムを含むことによって、正極集電体および正極集電耳2aのバルク中に含まれるアンチモン量は、0.005質量%以下に制限されるが、深放電での寿命改善を目的として、正極集電体の、電体の、正極活物質が接する表面にのみ、正極活物質100質量部に対して0.5質量部程度のアンチモンを含む層を形成してもよい。カルシウムの含有量は、正極集電耳2aおよび正極集電体の機械的特性(引張強度、伸び量)や耐腐食性を勘案して決定され、多くの場合で、0.05質量%〜0.09質量%の範囲で設定されるが、これに限定されるものではない。   Therefore, by containing calcium, the amount of antimony contained in the bulk of the positive electrode current collector and the positive electrode current collector ear 2a is limited to 0.005 mass% or less, but for the purpose of improving the life in deep discharge, A layer containing about 0.5 parts by mass of antimony with respect to 100 parts by mass of the positive electrode active material may be formed only on the surface of the positive electrode current collector that is in contact with the positive electrode active material. The content of calcium is determined in consideration of the mechanical properties (tensile strength, elongation) and corrosion resistance of the positive electrode current collector ear 2a and the positive electrode current collector, and in many cases 0.05 mass% to 0 mass%. Although it is set in the range of 0.09 mass%, it is not limited to this.

また、正極集電体および正極集電耳2aの電位は、電解液(希硫酸)中で、充電によってより貴に移行して、正極集電体と正極集電耳2aが酸化腐食を受けるため、耐食性を勘案して、0.5質量%〜2.0質量%程度のSnを更に含んでも良い。なお、この含有量の範囲は例示であって、この範囲外であってよい。   Further, the potentials of the positive electrode current collector and the positive electrode current collector ear 2a shift more preciously by charging in the electrolyte (dilute sulfuric acid), and the positive electrode current collector and the positive electrode current collector ear 2a are subjected to oxidative corrosion. In consideration of corrosion resistance, Sn may be further included in an amount of about 0.5% to 2.0% by mass. In addition, the range of this content is an illustration, Comprising: You may be outside this range.

本発明の鉛蓄電池1に用いる負極集電体およびこれに一体に設けた負極集電耳3aは、いずれもカルシウムを含む鉛合金であり、アンチモンの含有量は0.005質量%以下に制限される。カルシウムの含有量は、正極集電体および正極集電耳2aと同様の範囲に設定することができ、また、さらにSnを含むものであってよい。負極集電体および負極集電耳3aにおけるSnは、公知の通り、機械的強度や生産性(鋳造性、エキスパンド加工性)を勘案して0.1質量%〜0.5質量%程度の含有量で選択される。なお、この含有量の範囲は例示であって、この範囲外であってよい。   The negative electrode current collector used in the lead storage battery 1 of the present invention and the negative electrode current collecting ear 3a provided integrally therewith are both lead alloys containing calcium, and the content of antimony is limited to 0.005% by mass or less. The The calcium content can be set in the same range as that of the positive electrode current collector and the positive electrode current collector ear 2a, and may further contain Sn. Sn in the negative electrode current collector and the negative electrode current collection ear 3a is, as is well known, about 0.1% by mass to 0.5% by mass in consideration of mechanical strength and productivity (castability, expandability). Selected by quantity. In addition, the range of this content is an illustration, Comprising: You may be outside this range.

鉛蓄電池1では、それぞれ複数の正極板2と負極板3との間にセパレータ8が配置される。複数の正極集電耳2aは正極ストラップ2bによって互いに電気的に接続される。また、複数の負極集電耳3aは負極ストラップ3bによって互いに電気的に接続される。   In the lead storage battery 1, separators 8 are disposed between the plurality of positive plates 2 and negative plates 3, respectively. The plurality of positive electrode current collecting ears 2a are electrically connected to each other by a positive electrode strap 2b. The plurality of negative electrode current collecting ears 3a are electrically connected to each other by a negative electrode strap 3b.

正極板2、負極板3およびセパレータ8で構成されるセル9は、電池外装4の内部に電解液5とともに収納される。電解液5は、周知の通り希硫酸であって、例として、20℃における密度が1.200g/cm3〜1.400g/cm3のものが用いられる。なお、電解液5は、硫酸の他、充電受入れ性の改善あるいはサイクル寿命改善効果を目的として、硫酸ナトリウム、4ホウ酸ナトリウム、硫酸アルミニウム等の塩類を含んでもよい。 A cell 9 composed of the positive electrode plate 2, the negative electrode plate 3, and the separator 8 is accommodated together with the electrolytic solution 5 in the battery exterior 4. As is well known, the electrolytic solution 5 is dilute sulfuric acid, and, for example, one having a density at 20 ° C. of 1.200 g / cm 3 to 1.400 g / cm 3 is used. In addition to the sulfuric acid, the electrolytic solution 5 may include salts such as sodium sulfate, sodium tetraborate, and aluminum sulfate for the purpose of improving charge acceptability or improving cycle life.

正極ストラップ2bと端子7との間は、正極柱とも呼称される正極接続部品2cによって電気的に接続される。負極ストラップ3bと端子7´との間は、負極柱とも呼称される負極接続部品3cによって電気的に接続される。   The positive strap 2b and the terminal 7 are electrically connected by a positive connection component 2c, which is also called a positive pole. The negative electrode strap 3b and the terminal 7 'are electrically connected by a negative electrode connecting component 3c, also called a negative electrode column.

本発明の鉛蓄電池1は、液式であり、電池外装4の内部空間4bと、電池外装4の外部空間、すなわち大気との間を連通するための排気経路を有する。排気経路の構成例として、公知の通り、電池外装4に液口4aを設け、この液口4aに、排気経路を内包した液口栓6を装着した構成を用いることができる。液口栓6の内部には、電解液5の液沫の電池外部への漏出を抑制するための防沫体6a、あるいはフレームアレスタとして機能するフィルタ6bを配置してもよい。また、必ずしも液口栓6の内部に排気経路を内包しなくてもよく、電池外装4の内部に迷路構造を有した排気経路を配置してもよい。   The lead storage battery 1 of the present invention is a liquid type and has an exhaust path for communicating between the internal space 4b of the battery exterior 4 and the external space of the battery exterior 4, that is, the atmosphere. As a configuration example of the exhaust path, as is well known, a configuration in which a liquid port 4a is provided in the battery exterior 4 and a liquid port plug 6 including the exhaust path is attached to the liquid port 4a can be used. Inside the liquid spout 6, a splash-proof body 6 a for suppressing leakage of liquid electrolyte 5 to the outside of the battery, or a filter 6 b that functions as a frame arrester may be arranged. Further, it is not always necessary to include the exhaust path inside the liquid spout 6, and an exhaust path having a labyrinth structure may be arranged inside the battery exterior 4.

本発明の鉛蓄電池1では、電解液5の、初期状態における液面5aは、図1および図2に示したように、正極板2、負極板3、正極ストラップ2bおよび負極ストラップ3bを浸漬し、正極接続部品2cおよび負極接続部品3cの少なくとも一部を浸漬する位置に設定される。   In the lead storage battery 1 of the present invention, the liquid surface 5a in the initial state of the electrolyte 5 is immersed in the positive electrode plate 2, the negative electrode plate 3, the positive electrode strap 2b, and the negative electrode strap 3b, as shown in FIGS. The positive electrode connecting component 2c and the negative electrode connecting component 3c are set at a position to immerse at least a part thereof.

本発明の鉛蓄電池1では、正極接続部品2c、正極ストラップ2bおよび負極ストラップ3bにアンチモン含有量が0.01質量%以下に制限された鉛あるいは鉛合金を用いる。一方で、負極接続部品3cには、0.5質量%以上のアンチモンを含む鉛合金を用いる。   In the lead storage battery 1 of the present invention, lead or a lead alloy whose antimony content is limited to 0.01% by mass or less is used for the positive electrode connecting component 2c, the positive electrode strap 2b, and the negative electrode strap 3b. On the other hand, a lead alloy containing 0.5% by mass or more of antimony is used for the negative electrode connection part 3c.

本発明の構成では、正極接続部品2cおよび正極ストラップ2bに含有されるアンチモン含有量が0.01質量%以下の少量に制限されているため、正極接続部品2cおよび正極ストラップ2bからの電解液5へのアンチモンの溶出が抑制される。そのため、負極集電耳3aの表面でのアンチモンの析出と、これによる負極集電耳3aの腐食が抑制される。   In the configuration of the present invention, since the antimony content contained in the positive electrode connecting component 2c and the positive electrode strap 2b is limited to a small amount of 0.01% by mass or less, the electrolytic solution 5 from the positive electrode connecting component 2c and the positive electrode strap 2b. Antimony elution into the water is suppressed. Therefore, precipitation of antimony on the surface of the negative electrode current collector ear 3a and corrosion of the negative electrode current collector ear 3a due to this are suppressed.

また、カルシウムを含む負極集電耳3aと接触する負極ストラップ3bのアンチモン含有量は0.01質量%以下の少量に制限されているため、負極集電耳3aと負極ストラップ3bの接合部におけるカルシウムとアンチモンの化合物の生成が抑制され、接合部の腐食が抑制される。また、負極ストラップ3bの腐食も抑制される。   In addition, since the antimony content of the negative electrode strap 3b in contact with the negative electrode current collector ear 3a containing calcium is limited to a small amount of 0.01% by mass or less, the calcium at the junction between the negative electrode current collector ear 3a and the negative electrode strap 3b is reduced. And the formation of antimony compounds are suppressed, and corrosion of the joints is suppressed. Further, corrosion of the negative strap 3b is also suppressed.

一方、負極接続部品3cは0.5質量%以上のアンチモンを含み、かつその一部が電解液5に接触しているため、充電時におけるセルの過電圧が低下し、過放電後の容量回復性が改善される。負極接続部品3cに含まれるアンチモンは、負極活物質と電気的に接続されているものの、その間の抵抗成分によって、負極活物質や負極集電体にアンチモンが含まれる場合とは異なり、負極活物質とアンチモンによって形成される局部電池の放電が抑制され、負極活物質の硫酸鉛の蓄積を抑制しうると推測される。   On the other hand, since the negative electrode connecting part 3c contains 0.5% by mass or more of antimony and a part thereof is in contact with the electrolytic solution 5, the overvoltage of the cell at the time of charging is lowered, and the capacity recoverability after overdischarge is reduced. Is improved. Although the antimony contained in the negative electrode connecting part 3c is electrically connected to the negative electrode active material, the negative electrode active material differs from the case where the negative electrode active material or the negative electrode current collector contains antimony depending on the resistance component between them. It is presumed that the discharge of the local battery formed by the antimony and the antimony can be suppressed, and the accumulation of lead sulfate as the negative electrode active material can be suppressed.

したがって、本発明によれば、正負両極の集電体がカルシウムを含む、液式の鉛蓄電池において、負極集電耳、負極集電耳と負極ストラップの接合部および負極ストラップの腐食が抑制されるとともに、過放電後の容量回復性を顕著に改善できる。   Therefore, according to the present invention, in a liquid type lead storage battery in which the positive and negative electrode current collectors contain calcium, corrosion of the negative electrode current collector ear, the junction between the negative electrode current collector ear and the negative electrode strap, and the negative electrode strap is suppressed. In addition, the capacity recovery after overdischarge can be remarkably improved.

正極接続部品2c、正極ストラップ2bおよび負極ストラップ3bのアンチモン含有量が0.01質量%を超えると負極集電耳3a、負極集電耳3aと負極ストラップ3bの接合部の腐食が進行しやすくなるため、回避すべきである。なお、これらの部材は、純鉛であってもよいが、車両用等、機械的強度を要求される場合、0.2質量%〜5.0質量%程度のスズを含むものであってよい。   When the antimony content of the positive electrode connection component 2c, the positive electrode strap 2b, and the negative electrode strap 3b exceeds 0.01% by mass, the corrosion of the negative electrode current collecting ear 3a, and the junction between the negative electrode current collecting ear 3a and the negative electrode strap 3b easily proceeds. Therefore, it should be avoided. In addition, although these members may be pure lead, when mechanical strength is requested | required, such as for vehicles, you may contain about 0.2 mass%-5.0 mass% tin. .

上記した程度のスズを含有した鉛合金は、溶接性も良好であり、ストラップ中の溶接欠陥が抑制される。また、0.03質量%〜0.1質量%程度のカルシウムを含むものであってよい。なお、カルシウムを含む鉛合金を溶融する場合、カルシウムの酸化によって、溶接欠陥が生じる場合があるため、溶接雰囲気をアルゴン等の不活性ガス雰囲気とすることが好ましい。   The lead alloy containing tin as described above has good weldability and suppresses welding defects in the strap. Moreover, you may contain about 0.03 mass%-about 0.1 mass% calcium. Note that when a lead alloy containing calcium is melted, welding defects may occur due to oxidation of calcium. Therefore, the welding atmosphere is preferably an inert gas atmosphere such as argon.

一方、負極接続部品3cのアンチモン含有量が0.5質量%未満であれば、鉛蓄電池1の過放電後の容量回復性が低下するため、アンチモン含有量は0.5質量%以上とすべきである。なお、本発明は、このアンチモン含有量の上限を規定するものではないが、一例として5.0質量%を上限の目安とすることができる。また、鉛−アンチモン合金とした際の合金強度を確保する目的で0.05質量%〜0.35質量%程度のヒ素、0.001質量%〜0.01質量%程度のセレンを含有するものであってもよい。また、さらに溶接性を加味して0.01質量%〜0.5質量%程度のスズを含むものであってよく、鉛−アンチモン−ヒ素合金に不純物として含まれる、硫黄、銅、ビスマス、鉄、ニッケル、亜鉛を含むものであってよい。但し、これらの不純物は、鉛蓄電池の自己放電特性や減液特性を損なわない程度の含有量に制限されるべきである。   On the other hand, if the antimony content of the negative electrode connecting part 3c is less than 0.5% by mass, the capacity recoverability after the overdischarge of the lead storage battery 1 is deteriorated, so the antimony content should be 0.5% by mass or more. It is. In addition, although this invention does not prescribe | regulate the upper limit of this antimony content, 5.0 mass% can be made into the standard of an upper limit as an example. In addition, for the purpose of ensuring the strength of the alloy when a lead-antimony alloy is used, it contains about 0.05 mass% to 0.35 mass% of arsenic and about 0.001 mass% to 0.01 mass% of selenium. It may be. Further, it may contain about 0.01% by mass to 0.5% by mass of tin in consideration of weldability, and is contained as an impurity in the lead-antimony-arsenic alloy, sulfur, copper, bismuth, iron , Nickel and zinc. However, these impurities should be limited to a content that does not impair the self-discharge characteristics and liquid reducing characteristics of the lead-acid battery.

(本発明の第2の実施形態)
本発明の第2の実施形態による鉛蓄電池10は、前記した第1の実施形態の鉛蓄電池1に加えて、以下に説明する構成を有する。図3は、本発明の第2の実施形態による鉛蓄電池10の断面を示す図である。鉛蓄電池10は、電池外装11の内部が隔壁11aによって複数の内部空間4bに区画されており、この内部空間4bに、第1の実施形態で述べたと同様の構成を有するセル9が電解液5とともに収納されている。液面5aの初期的な位置は、第1の実施形態と同様である。
(Second embodiment of the present invention)
The lead storage battery 10 according to the second embodiment of the present invention has a configuration described below in addition to the lead storage battery 1 of the first embodiment described above. FIG. 3 is a view showing a cross section of the lead-acid battery 10 according to the second embodiment of the present invention. In the lead storage battery 10, the interior of the battery exterior 11 is partitioned into a plurality of internal spaces 4 b by partition walls 11 a, and the cells 9 having the same configuration as described in the first embodiment are provided in the internal space 4 b with the electrolyte 5. It is stored with. The initial position of the liquid surface 5a is the same as in the first embodiment.

前記した第1の実施形態において、正極接続部品2cと負極接続部品3cとして、端子7,7´と、正極ストラップ2bもしくは負極ストラップ3bとの間を接続する正負の極柱のみが用いられる。一方、第2の実施形態による鉛蓄電池10は、複数のセルが電池外装11の内部で直列接続されているため、直列接続の両端のセルにおいては、正負いずれかの一方の接続部品が極柱であり、他方の接続部品がセル9とセル9とを接続するために用いられる接続体とも呼称される部品である。   In the first embodiment described above, only the positive and negative pole columns that connect between the terminals 7 and 7 'and the positive strap 2b or the negative strap 3b are used as the positive connection component 2c and the negative connection component 3c. On the other hand, in the lead storage battery 10 according to the second embodiment, since a plurality of cells are connected in series inside the battery casing 11, in the cells at both ends of the series connection, either one of the positive and negative connection parts is a pole column. The other connection component is also a component called a connection body used to connect the cell 9 and the cell 9.

また、セル9の数が3以上の場合には、直列接続の両端のセル9を除いた中間のセル9は、正極接続部品2c、負極接続部品3cともに、セル間接続のための接続体である。本明細書では、正極接続部品2cは、正極柱と正極接続体の総称であり、同様に、負極接続部品3cは、負極柱と負極接続体の総称である。   When the number of cells 9 is three or more, the intermediate cell 9 excluding the cells 9 at both ends of the series connection is a connection body for inter-cell connection, both of the positive electrode connection component 2c and the negative electrode connection component 3c. is there. In the present specification, the positive electrode connection component 2c is a generic name for the positive electrode column and the positive electrode connection body, and similarly, the negative electrode connection component 3c is a generic name for the negative electrode column and the negative electrode connection body.

本発明の第2の実施形態による鉛蓄電池10は、直列接続されるセル9の対において、一方のセル間接続用の負極接続部品3cと、他方のセル9のセル間接続用の正極接続部品2cとの溶接部は、少なくとも正極接続部品2cが属するセル9の電解液5に対して液密に封止された構成を有する。   In the lead storage battery 10 according to the second embodiment of the present invention, in a pair of cells 9 connected in series, a negative electrode connection part 3c for connection between one cell and a positive electrode connection part for connection between cells of the other cell 9 The welded portion with 2c has a configuration that is sealed in a liquid-tight manner with respect to the electrolyte solution 5 of the cell 9 to which the positive electrode connection component 2c belongs.

図2に示した形態例では、隔壁11aの、正極接続部品2cと負極接続部品3cに対応した位置に貫通孔11bが形成され、貫通孔11bを通して正極接続部品2cと負極接続部品3cとが接合部12で接合される。両者の接合方法としては、抵抗溶接法、プラズマ溶接法が適用できる。   In the embodiment shown in FIG. 2, a through hole 11b is formed in the partition 11a at a position corresponding to the positive electrode connecting component 2c and the negative electrode connecting component 3c, and the positive electrode connecting component 2c and the negative electrode connecting component 3c are joined through the through hole 11b. Joined at part 12. A resistance welding method and a plasma welding method can be applied as a joining method of both.

アンチモン量が制限された正極接続部品2cと、アンチモンを含む負極接続部品3cが溶融凝固して、接合部12が形成される。したがって、接合部12は、少なくとも正極接続部品2cよりも高濃度のアンチモンを含む。このような、アンチモンを多く含む接合部12が正極接続部2cの一部として電解液5に接した場合、電解液5へアンチモンが溶出し、負極側の腐食の要因となるため、接合部12は、図4に示したように、少なくとも正極接続部品2cが属するセル9の電解液5に接触しないよう、電解液5に対して液密に封止した位置に配置する。   The positive electrode connection part 2c in which the amount of antimony is limited and the negative electrode connection part 3c containing antimony are melted and solidified to form the joint portion 12. Therefore, the joining part 12 contains antimony at a higher concentration than at least the positive electrode connecting component 2c. When such a joint 12 containing a large amount of antimony is in contact with the electrolytic solution 5 as a part of the positive electrode connecting portion 2c, antimony is eluted into the electrolytic solution 5 and causes corrosion on the negative electrode side. As shown in FIG. 4, at least the positive electrode connection component 2c is disposed at a position hermetically sealed with respect to the electrolyte solution 5 so as not to contact the electrolyte solution 5 of the cell 9 to which the positive electrode connection component 2c belongs.

このような構成は、例えば、抵抗溶接法においては、溶接熱量(溶接時の通電電力と正の相関あり)と、正極接続部品2cおよび負極接続部品3cの熱容量を規定することにより実現可能である。すなわち、溶接熱量Qに対する、正極接続部品2cおよび負極接続部品3cの熱容量Cの比率(C/Q)を大とすることにより、接続部12の体積を減少させ、溶接後の正極接続部品3cの表面でのアンチモンの露出を抑制できる。また、抵抗溶接時の加圧力を高くすることにより、正極接続部品2cと隔壁11aとの間の密着が保持され、接合部12への電解液5の染み込みによる接合部12と電解液との接触を未然に防止できる。なお、接合部12が負極接続部品3cの表面に露出することは許容できる。   For example, in the resistance welding method, such a configuration can be realized by defining the welding heat amount (which has a positive correlation with the energization power during welding) and the heat capacities of the positive electrode connecting component 2c and the negative electrode connecting component 3c. . That is, by increasing the ratio (C / Q) of the heat capacity C of the positive electrode connecting component 2c and the negative electrode connecting component 3c to the welding heat quantity Q, the volume of the connecting portion 12 is reduced, and the positive electrode connecting component 3c after welding is reduced. Antimony exposure on the surface can be suppressed. Further, by increasing the pressure during resistance welding, the close contact between the positive electrode connecting component 2c and the partition wall 11a is maintained, and the contact between the joint 12 and the electrolyte due to the penetration of the electrolyte 5 into the joint 12 is achieved. Can be prevented. In addition, it is permissible for the joint portion 12 to be exposed on the surface of the negative electrode connection component 3c.

また、プラズマ溶接法においては、図5に示したように、正極接続部材2cに予め凸部2dを設け、負極接続部品3cに凸部2dと嵌合する貫通孔3dを設けて、この貫通孔3dに凸部2dが貫通した状態で、凸部2dと貫通孔3dとの境界部をプラズマアークにより加熱溶融すれば、セル間接続後の正極接続部品2cの表面のアンチモンの含有量は、セル間接続前に正極接続部品2cに含まれるアンチモン含有量よりも増加せず、本発明の第2の実施形態とすることができる。このような場合、セル間接続後の負極接続部品3cの表面に、アンチモン量が制限された凸部2dが露出するが、本発明の効果を損ねるものではなく、許容しうるものである。   Further, in the plasma welding method, as shown in FIG. 5, the positive electrode connecting member 2c is provided with a convex portion 2d in advance, and the negative electrode connecting component 3c is provided with a through hole 3d that fits the convex portion 2d. If the boundary between the convex portion 2d and the through hole 3d is heated and melted by plasma arc in the state where the convex portion 2d penetrates 3d, the content of antimony on the surface of the positive electrode connecting component 2c after inter-cell connection is The antimony content contained in the positive electrode connection component 2c before the inter-connection is not increased, and the second embodiment of the present invention can be obtained. In such a case, the convex portion 2d having a limited amount of antimony is exposed on the surface of the negative electrode connection part 3c after inter-cell connection, but this does not impair the effect of the present invention and is acceptable.

本発明の第2の実施形態によれば、複数のセルを直列接続した鉛蓄電池においても、第1の実施形態と同様、本発明の効果を得ることができる。   According to the second embodiment of the present invention, even in a lead storage battery in which a plurality of cells are connected in series, the effect of the present invention can be obtained as in the first embodiment.

本発明例および比較例による始動用鉛蓄電池(12V48Ah)を作成し、過充電試験および過放電試験を行うころによって、減液性能、負極耳部の腐食の有無および充電受入性の評価を行った。   The lead acid battery (12V48Ah) for starting by the example of this invention and a comparative example was created, and the liquid reduction performance, the presence or absence of corrosion of the negative electrode ear part, and charge acceptance were evaluated by the roller which performs an overcharge test and an overdischarge test. .

本発明例および比較例の鉛蓄電池(以下、電池)の構成を以下に説明する。本発明例および比較例の電池に用いた集電体は、正負両極とも、鉛−カルシウム−スズ合金である。本発明例および比較例ともに、正極集電体中のカルシウム含有量は0.07質量%、スズ含有量は1.3質量%、負極集電体中のカルシウム含有量は0.07質量%、スズ含有量は0.25質量%である。なお、正極集電体、負極集電体ともに、アンチモン含有量は0.001質量%未満であった。   The configurations of the lead storage batteries (hereinafter referred to as batteries) of the present invention and comparative examples will be described below. The current collector used in the batteries of the present invention and the comparative example is a lead-calcium-tin alloy for both positive and negative electrodes. In both the inventive examples and the comparative examples, the calcium content in the positive electrode current collector is 0.07% by mass, the tin content is 1.3% by mass, the calcium content in the negative electrode current collector is 0.07% by mass, The tin content is 0.25% by mass. The antimony content of both the positive electrode current collector and the negative electrode current collector was less than 0.001% by mass.

正極集電体、負極集電体ともにエキスパンド法によるものである。本実施例では、上記の成分を含む鉛合金を溶融して帯状のスラブを鋳造した後、このスラブを熱間圧延して長尺状の鉛合金シートとし、この鉛合金シートに千鳥状のスリットを形成し、展開してエキスパンド法によるラス網目を形成した。ラス網目には、極性に応じた鉛蓄電池用活物質ペーストを充填した後、鉛合金シートを所定の寸法形状に切断加工した後、熟成乾燥を行ない、未化成状態の正極板と負極板を得た。   Both the positive electrode current collector and the negative electrode current collector are obtained by the expanding method. In this example, after melting a lead alloy containing the above components to cast a strip-shaped slab, the slab is hot-rolled into a long lead alloy sheet, and a staggered slit is formed in the lead alloy sheet. And developed to form a lath network by the expanding method. The lath mesh is filled with a lead-acid battery active material paste according to the polarity, then the lead alloy sheet is cut into a predetermined size and shape, and then aged and dried to obtain an unformed positive electrode plate and negative electrode plate. It was.

上記で得た正極板と負極板および微孔性ポリエチレンセパレータを組み合わせた後、正極集電耳と負極集電耳を櫛歯状鋳型に設置した後、それぞれの極性の集電耳の上に後述する組成を有した足し鉛を載置するとともに、それぞれの櫛歯状鋳型の所定位置内に後述する組成を有した正極接続部品および負極接続部品を配置した。   After combining the positive electrode plate, the negative electrode plate and the microporous polyethylene separator obtained above, the positive electrode current collector ear and the negative electrode current collector ear were placed on a comb-shaped mold, and then placed on the current collector ear of each polarity. The lead lead having the composition to be placed was placed, and the positive electrode connecting component and the negative electrode connecting component having the composition to be described later were disposed in a predetermined position of each comb-like mold.

足し鉛をバーナー火炎によって溶融して、集電耳間の間隙、および集電耳と接続部品の間隙に溶融鉛を重力によって流し込み、溶融鉛が冷却凝固した後、櫛歯状鋳型を集電耳から取り外した。本実施例では、足し鉛が溶融凝固したものが正極ストラップおよび負極ストラップに相当する。   The additional lead is melted by the burner flame, and molten lead is poured by gravity into the gap between the current collecting ears and the gap between the current collecting ears and the connecting parts. After the molten lead is cooled and solidified, the comb-shaped mold is collected into the current collecting ears. Removed from. In this embodiment, the lead lead melted and solidified corresponds to the positive strap and the negative strap.

正極ストラップおよび負極ストラップの形成が完了したセルは、電池外装の内部で隔壁によって区画されたセル室に収納され、図3に示したように、隔壁に設けた貫通孔を介して隣接しあうセルの正極接続部品と負極接続部品とを抵抗溶接によって電気的に接続した。本実施例では、電池外装の内部で、6個のセルが直列接続された。なお、抵抗溶接時に溶融し、冷却凝固した接続部は、正極接続部品側の電解液に接触しないよう、正極接続部品と隔壁との間を密着させた。   The cells in which the formation of the positive strap and the negative strap are completed are stored in a cell chamber partitioned by a partition inside the battery exterior, and adjacent to each other through a through hole provided in the partition as shown in FIG. The positive electrode connecting component and the negative electrode connecting component were electrically connected by resistance welding. In this example, six cells were connected in series inside the battery exterior. In addition, the connection part melted at the time of resistance welding and cooled and solidified was brought into close contact with the positive electrode connection part and the partition so as not to contact the electrolyte solution on the positive electrode connection part side.

その後、電池外装を蓋で閉じ、蓋に形成した端子と、直列接続されたセル列の両端のセルに設けられた正極接続部品(正極柱)と負極接続部品(負極柱)とを溶接によって接続し、未注液状態の電池とした。   After that, the battery exterior is closed with a lid, and the terminal formed on the lid is connected to the positive electrode connection component (positive column) and the negative electrode connection component (negative column) provided in the cells at both ends of the series-connected cell rows by welding. The battery was not poured.

次に、セルに対応して蓋に設けた液口から、電池内部に電解液(希硫酸)を注液し、端子間に通電することにより、電槽化成を行なった後、電解液の密度が1.280g/cm3(20℃)となるよう、硫酸濃度を調節した。また、電解液の液面位置は、図1〜3に示したと同様、正極板と負極板の極板面および正負両極のストラップをすべて浸漬し、正極接続部品および負極接続部品のすべて、あるいは一部が電解液に接触した状態とした。 Next, an electrolytic solution (dilute sulfuric acid) is injected into the battery from the liquid port provided in the lid corresponding to the cell, and the battery is formed between the terminals. The sulfuric acid concentration was adjusted so as to be 1.280 g / cm 3 (20 ° C.). In addition, as shown in FIGS. 1 to 3, the liquid surface position of the electrolytic solution is immersed in all of the positive electrode plate surface and the positive and negative electrode straps, and all of the positive electrode connecting component and the negative electrode connecting component. The part was in contact with the electrolyte.

ここで、溶融凝固して正極ストラップあるいは負極ストラップとなる足し鉛としては、アンチモン含有量が0.005質量%であり、スズを2.5質量%含む鉛−スズ合金(以下、合金A)と、アンチモン含有量が2.5質量%であり、さらにヒ素を0.2質量%含む鉛−アンチモン合金(以下、合金B)のいずれかを使用した。   Here, as lead added to be melted and solidified to become a positive electrode strap or a negative electrode strap, a lead-tin alloy (hereinafter referred to as alloy A) having an antimony content of 0.005 mass% and containing 2.5 mass% of tin One of lead-antimony alloys (hereinafter referred to as Alloy B) having an antimony content of 2.5% by mass and further containing 0.2% by mass of arsenic was used.

また、正極接続部品および負極接続部品も、前記した足し鉛と同様の合金Aおよび合金Bによる2種類のものを用いた。   In addition, the positive electrode connecting component and the negative electrode connecting component were also two types of alloys A and B similar to the above-described lead.

表1に、本発明例および比較例の電池の、正極ストラップ、負極ストラップ、正極接続部品および負極接続部品に用いた合金の組み合わせを示す。   Table 1 shows combinations of alloys used for the positive electrode strap, the negative electrode strap, the positive electrode connecting component, and the negative electrode connecting component of the batteries of the present invention and the comparative example.

Figure 2011159551
Figure 2011159551

表1に示した各電池について、以下に示す条件で過充電試験を行なった。   Each battery shown in Table 1 was subjected to an overcharge test under the following conditions.

(過充電試験)
本実施例における過充電試験は、各電池の減液特性と負極集電耳、負極集電耳と負極ストラップの接合部および負極ストラップにおける腐食の比較評価を目的とするものであり、電池が、過充電傾向の使われ方を想定した試験パターンである。
(Overcharge test)
The overcharge test in this example is intended for comparative evaluation of the liquid reduction characteristics of each battery and the negative electrode current collector ear, the negative electrode current collector ear and the negative electrode strap joint and the negative electrode strap corrosion, This test pattern assumes how the overcharge tendency is used.

過充電試験は、表1に示した各電池を75℃気相雰囲気中において、120時間連続で行なわれる、充電電圧を13.8Vの定電圧に制御して行なわれる充電と、この充電後に行われる75℃気相雰囲気中での48時間の休止からなるサイクルを12回繰り返すことによる。   In the overcharge test, each battery shown in Table 1 was continuously performed in a gas phase atmosphere at 75 ° C. for 120 hours, with the charge voltage controlled to a constant voltage of 13.8 V, and after this charge. By repeating the cycle consisting of a 48-hour rest in a 75 ° C. gas phase atmosphere 12 times.

なお、充電によって減液が進行し、これによって極板上部が電解液から露出した状態を想定するために、電解液を下限水準(正極接続体および負極接続体の下半分が電解液に浸漬され、それぞれの上半分が電解液から露出した状態)に減らした状態で試験を行い、1サイクルが終了した時点で、電解液面が負ストラップ下から10mmまで低下した場合、次のサイクルの充電が開始する直前に、イオン交換水を補水して液面位置を、前記した下限水準に調整した。   In addition, in order to assume a state in which liquid reduction progresses due to charging, and thus the upper part of the electrode plate is exposed from the electrolyte solution, the electrolyte solution is set to the lower limit level (the lower half of the positive electrode connector and the negative electrode connector is immersed in the electrolyte solution). In the state where each upper half is exposed from the electrolyte solution), when one cycle is completed, if the electrolyte surface level drops from the bottom of the negative strap to 10 mm, the next cycle charge is Immediately before the start, ion exchange water was replenished to adjust the liquid surface position to the lower limit level described above.

この補水は、最後の12回目の充電の後にも行った。また、補水したイオン交換水の質量は、各電池別に記録し、過充電試験を終了した時点までに補水したイオン交換水の累積の質量を算出した。各電池の、補水したイオン交換水の累積質量は、それぞれ各電池の、累積の減液量に相当する。そして、各電池の減液量の、電池Pの減液量に対する百分率を減液量(%)として求めた。   This rehydration was also done after the last 12th charge. Moreover, the mass of ion-exchanged water supplemented was recorded for each battery, and the cumulative mass of ion-exchanged water supplemented up to the time when the overcharge test was completed was calculated. The accumulated mass of supplemented ion-exchanged water in each battery corresponds to the accumulated liquid reduction amount of each battery. Then, the percentage of the liquid reduction amount of each battery with respect to the liquid reduction amount of the battery P was determined as the liquid reduction amount (%).

前記した過充電を終了した各電池を分解し、セル間の接続を切断するとともに、負極集電耳と負極板とを、負極集電耳の基部で切断して、負極ストラップおよび負極集電耳をサンプリングした。負極ストラップおよび負極集電耳を水洗乾燥後、負極ストラップの状態、負極ストラップと負極集電耳との接合状態の目視確認と、負極集電耳の厚み計測を行なった。   Disassembling each battery that has been overcharged, disconnecting the connection between the cells, and cutting the negative electrode current collector ear and the negative electrode plate at the base of the negative electrode current collector ear, the negative electrode strap and the negative electrode current collector ear Was sampled. The negative electrode strap and the negative electrode current collector ear were washed with water and dried, and then the state of the negative electrode strap, the joint state between the negative electrode strap and the negative electrode current collector ear were visually confirmed, and the thickness of the negative electrode current collector ear was measured.

負極集電耳の厚み計測については、負極集電耳の表面に生成した腐食生成物を除去した後、負極集電耳の最も厚みが薄い部位の厚みを計測し、この計測した厚みの、試験前の、初期状態の負極集電耳の厚みに対する百分率を求め、この百分率の値を負極集電耳残存率とした。腐食が全くない場合に、負極集電耳残存率は100(%)となり、腐食によって負極集電耳の厚みに0の部分が生じた場合には、負極集電耳残存率は0(%)となる。   Regarding the thickness measurement of the negative electrode current collector ear, after removing the corrosion products generated on the surface of the negative electrode current collector ear, the thickness of the thinnest portion of the negative electrode current collector ear is measured, and this measured thickness is tested. The previous percentage of the thickness of the negative electrode current collector ear in the initial state was determined, and the value of this percentage was defined as the negative electrode current collector ear remaining rate. When there is no corrosion, the negative electrode current collecting ear remaining rate is 100 (%), and when the corrosion causes a portion of the negative electrode current collecting ear thickness to be 0, the negative electrode current collecting ear remaining rate is 0 (%). It becomes.

上記で求めた、各電池の減液量、負極集電耳残存率の計測結果および負極ストラップの状態観察結果を表2に示す。   Table 2 shows the liquid reduction amount, the measurement result of the negative electrode current collecting ear remaining rate, and the state observation result of the negative electrode strap obtained above.

Figure 2011159551
Figure 2011159551

表2に示した結果から、特に比較例の電池E〜Pは、初期における減液は少なかったものの、サイクルが進行するに従って正極側の接続部品(正極接続体および正極柱)に含有しているアンチモンが溶出して負極に析出し、水素過電圧が低下して水素ガスが発生しやすくなることに起因していると考えられる。   From the results shown in Table 2, in particular, the batteries E to P of the comparative example contained less in the initial stage of liquid reduction, but contained in the positive electrode side connection parts (positive electrode connection body and positive electrode column) as the cycle progressed. It is thought that this is because antimony is eluted and deposited on the negative electrode, the hydrogen overvoltage is lowered, and hydrogen gas is easily generated.

比較例の電池E〜Hは、比較例の電池I〜Lより相対的に減液量が少なく、比較例の電池I〜Lが比較例の電池M〜Pより相対的に減液量が少ない。このような減液量の差異は、本実施例の電池においては、接続体部品よりストラップ部品の表面積の方が大きいことから、正極において、アンチモンを含む部位の表面積が大きくなるにつれて、負極側に析出するアンチモン量が多くなることにより生じたものと考えられる。   The batteries E to H of the comparative example have a relatively small amount of liquid reduction than the batteries IL to the comparative example, and the batteries I to L of the comparative example have a relatively small amount of liquid reduction than the batteries M to P of the comparative example. . In the battery of this example, such a difference in the amount of liquid reduction is that the surface area of the strap part is larger than that of the connection body part, and therefore, in the positive electrode, the surface area of the portion containing antimony increases toward the negative electrode side. This is considered to be caused by the increased amount of antimony deposited.

また、負極側についても、前記した正極側ほどではないが、アンチモンを多く含む部位の表面積の大きな方が減液量が多くなる傾向が見られた。   Further, the negative electrode side was not as large as the positive electrode side described above, but there was a tendency that the amount of liquid reduction increased as the surface area of the portion containing a large amount of antimony increased.

これに対して比較例の電池A、C、Dおよび本発明例の電池Bは、正極ストラップおよび正極の接続部品中のアンチモン量を少量に制限することにより、サイクル進行に伴う減液の増大を解消する効果が見られ、最終的な減液量は、比較例の電池Pの40〜53%まで抑制できる。   On the other hand, the batteries A, C and D of the comparative examples and the battery B of the example of the present invention increase the liquid reduction with the progress of the cycle by limiting the amount of antimony in the positive electrode strap and the connecting part of the positive electrode to a small amount. The effect which eliminates is seen and the final liquid reduction amount can be suppressed to 40 to 53% of the battery P of a comparative example.

また、本試験における負極集電耳の腐食については、比較例の電池E〜Pで顕著で特に顕著であった。比較例電池Bと本発明例の電池Aは、負極集電耳、負極ストラップおよび負極集電耳と負極ストラップの接合部の腐食が抑制されていた。これは、比較例の電池E〜Pにおいては、過充電試験中に正極のストラップおよび/もしくは接続部品に多く含まれるアンチモンが負極集電耳に析出し、このアンチモンの作用によって、負極集電耳が腐食したものと考えられる。この点で、比較例の電池A、C、Dおよび本発明例の電池Bについては、負極集電耳へのアンチモンの析出が抑制され、負極集電耳部の腐食が顕著に抑制されたと考えられる。   Further, the corrosion of the negative electrode current collecting ear in this test was remarkable and particularly remarkable in the batteries E to P of the comparative examples. In the comparative battery B and the battery A of the present invention, corrosion of the negative electrode current collector ear, the negative electrode strap, and the junction between the negative electrode current collector ear and the negative electrode strap was suppressed. This is because, in the batteries E to P of the comparative examples, antimony contained in a large amount in the positive electrode strap and / or the connecting component is deposited on the negative electrode current collector ear during the overcharge test. Is considered to have corroded. In this respect, regarding the batteries A, C, and D of the comparative examples and the battery B of the example of the present invention, it was considered that the antimony deposition on the negative electrode current collector ear was suppressed and the corrosion of the negative electrode current collector ear was significantly suppressed. It is done.

また、比較例の電池CおよびDについては、上記のように、負極集電耳部の腐食は抑制されるものの、負極集電耳とストラップとの接合部での腐食の進行が認められた。これは、足し鉛にアンチモンを多く含む場合、足し鉛を溶融してストラップを形成する際に、足し鉛に多く含まれるアンチモンと、負極集電耳に含まれるカルシウムとが反応して、容易に腐食するカルシウムとアンチモンの化合物が形成することによると考えられる。   Further, in the batteries C and D of the comparative example, as described above, although the corrosion of the negative electrode current collector ear portion was suppressed, the progress of corrosion at the joint portion between the negative electrode current collector ear and the strap was recognized. This is because if the lead contains a lot of antimony, when the lead is melted to form a strap, the antimony contained in the lead and the calcium contained in the negative current collector ear react easily. This is thought to be due to the formation of corrosive calcium and antimony compounds.

一方、比較例の電池Aと本発明例の電池Bは、正極の接続部品と、正負両極のストラップ中のアンチモンが0.005質量%に制限されており、負極集電耳や負極集電耳と負極ストラップとの接合部に、上記の腐食反応が発生する要因がなく、このような負極集電耳および負極集電耳と負極ストラップの耐腐食性が良好であったと考えられる。   On the other hand, the battery A of the comparative example and the battery B of the example of the present invention are limited to 0.005% by mass of antimony in the positive electrode connecting part and the positive and negative electrode straps. There is no cause of the above-described corrosion reaction at the joint between the negative electrode strap and the negative electrode strap, and it is considered that the negative electrode current collector ear and the negative electrode current collector ear and the negative electrode strap had good corrosion resistance.

(過放電試験)
次に、表1に示した各電池について、過放電放置を想定した、過放電試験を行った。過放電試験は、25℃に温度調整された各電池を、9.6Aの定電流で、電池電圧が10.5Vに到達するまで連続放電して、5時間率放電における完全放電状態とした(初回放電)後、各電池の端子間に10Wランプを接続し、10Wランプを接続した状態の電池を、40℃の気相雰囲気中に14日間放置し、この14日間の放置後、10Wランプを端子間から取り外し、開路状態とした電池をさらに同雰囲気下で、14日間放置(過放電放置)した。
(Overdischarge test)
Next, an overdischarge test was performed on each battery shown in Table 1 assuming that it was left overdischarged. In the overdischarge test, each battery whose temperature was adjusted to 25 ° C. was continuously discharged at a constant current of 9.6 A until the battery voltage reached 10.5 V to obtain a complete discharge state in 5-hour rate discharge ( After the first discharge), a 10 W lamp is connected between the terminals of each battery, and the battery with the 10 W lamp connected is left in a gas phase atmosphere at 40 ° C. for 14 days. The battery which was removed from between the terminals and opened was left to stand (overdischarge left) for 14 days under the same atmosphere.

過放電放置した後の電池を、さらに、25℃の気相雰囲気中に24時間放置して電池の温度を25℃に調整した。電池を25℃の気相雰囲気で回復充電を行った。回復充電の条件は、最大充電電流25Aで、最大充電電圧が15.0Vに制御された定電圧充電である。この回復充電を4時間連続して実施した。回復充電終了後、各電池を、9.6Aの定電流で、電池電圧が10.5Vに到達するまで連続放電して、放電持続時間を計測した。放電持続時間と放電電流(9.6A)の積が、電池の過放電後の回復容量である。表3に回復容量の計測結果を示す。なお、表3に示した回復容量は、電池Pの回復容量に対する百分率で表示している。   The battery after being left overdischarged was further left in a gas phase atmosphere at 25 ° C. for 24 hours to adjust the temperature of the battery to 25 ° C. The battery was recovered and charged in a gas phase atmosphere at 25 ° C. The conditions for recovery charging are constant voltage charging with a maximum charging current of 25 A and a maximum charging voltage controlled to 15.0V. This recovery charge was carried out continuously for 4 hours. After the completion of the recovery charge, each battery was continuously discharged at a constant current of 9.6 A until the battery voltage reached 10.5 V, and the discharge duration was measured. The product of the discharge duration and the discharge current (9.6 A) is the recovery capacity after overdischarge of the battery. Table 3 shows the measurement results of the recovery capacity. The recovery capacity shown in Table 3 is expressed as a percentage of the recovery capacity of the battery P.

Figure 2011159551
Figure 2011159551

表3に示した結果から、比較例の電池Aのみが、本発明例の電池Bおよび他の比較例の電池C〜Pに対して、回復容量が顕著に劣っていた。この差は、電池内に存在するアンチモンにより生じていると考えられる。特に、負極側の接続部品および/もしくは負極ストラップに多くアンチモンを含有することによるものは、充電時の負極板の充電電位をより貴な方向にシフトさせ、正極板の充電効率を向上させたために生じたものと考えられる。なお、正極側の接続部品および/もしくは正極ストラップにアンチモンを含むもの電池Aに比較して良好な回復容量を示すが、これは正極側の接続部品および/もしくは正極ストラップに含まれるアンチモンが電解液に溶出し、負極側に再析出したためと考えられる。   From the results shown in Table 3, the recovery capacity of only the battery A of the comparative example was significantly inferior to the battery B of the present invention example and the batteries CP of other comparative examples. This difference is considered to be caused by antimony present in the battery. In particular, the negative electrode side connection component and / or the negative electrode strap containing a large amount of antimony has shifted the charging potential of the negative electrode plate during charging in a more noble direction and improved the charging efficiency of the positive electrode plate. It is thought to have occurred. The positive electrode side connection component and / or the positive electrode strap containing antimony shows a better recovery capacity than the battery A. This is because the antimony contained in the positive electrode side connection component and / or the positive electrode strap is an electrolyte. This is thought to be due to elution into the negative electrode and re-deposited on the negative electrode side.

以上のように、本発明による電池Aは、正負の集電体を用いた鉛蓄電池における負極集電耳および/もしくは負極集電耳と負極ストラップの接合部の腐食抑制効果と、アンチモンによる過放電後の容量回復性改善効果を両立して得ることができる。また、従来の正負のストラップにアンチモンを含む鉛合金を用いた鉛蓄電池に比較して減液量も抑制されている。   As described above, the battery A according to the present invention has the effect of inhibiting the corrosion of the negative electrode current collector and / or the junction between the negative electrode current collector and the negative electrode strap in the lead-acid battery using the positive and negative current collectors, and the overdischarge caused by antimony. The effect of improving the subsequent capacity recovery can be obtained at the same time. Moreover, the amount of liquid reduction is also suppressed as compared with the conventional lead storage battery using a lead alloy containing antimony in the positive and negative straps.

次に、表1に示した電池Bについて、抵抗溶接電流を、溶融鉛の飛散が発生しない程度までに大きくしてセル間の抵抗溶接を行なった電池(本発明例の電池Q)を作成した。この電池Qでは、セル間の溶接時に隣接するセルの負極接続体に含まれるアンチモンの一部が、正極接続体の一部に露出し、この部分が電解液に接触している。   Next, for the battery B shown in Table 1, the resistance welding current was increased to such an extent that no molten lead was scattered, and a battery (battery Q of the example of the present invention) in which resistance welding was performed between cells was created. . In this battery Q, a part of the antimony contained in the negative electrode connection body of the adjacent cells at the time of welding between the cells is exposed to a part of the positive electrode connection body, and this part is in contact with the electrolytic solution.

この電池Qについて、前記した過充電試験および過放電試験を実施したところ、減液量は、電池Pに対して41%、負極集電耳残存率96%、負極ストラップの状態は良好であり、過放電放置後の回復容量は99%であった。電池Qの特性は、過放電放置後の回復容量を除いた特性で、本発明例の電池Bに対して、若干劣るものの、比較例の各電池に比較して、減液量、負極集電耳残存率、負極ストラップの状態および過放電放置後の回復容量が同時に両立できていた。   When the above-described overcharge test and overdischarge test were performed on this battery Q, the liquid reduction amount was 41% with respect to the battery P, the negative electrode current collecting ear remaining rate was 96%, and the state of the negative electrode strap was good. The recovery capacity after being left overdischarged was 99%. The characteristics of the battery Q are the characteristics excluding the recovery capacity after being left overdischarged, and are slightly inferior to the battery B of the present invention example, but the amount of liquid reduction and the negative electrode current collection compared with each battery of the comparative example The ear remaining rate, the state of the negative electrode strap, and the recovery capacity after being left overdischarged were compatible at the same time.

電池Qが電池Bに若干劣るのは、負極接続体と正極接続体との接合部の一部が正極接続体側のセルの電解液に接触し、接合部よりアンチモンが微量溶出したと推測される。このような微量のアンチモンは、本発明の効果を大きく損なうものではないが、本発明の効果を最も顕著に得る上で、接合部の一部が正極集電体側の電解液に対して電解液に対して液密の状態とすることが最も好ましい。   The reason why the battery Q is slightly inferior to the battery B is presumed that a part of the junction between the negative electrode connector and the positive electrode connector is in contact with the electrolyte solution of the cell on the positive electrode connector, and a small amount of antimony is eluted from the junction. . Such a small amount of antimony does not greatly impair the effect of the present invention. However, in order to obtain the effect of the present invention most remarkably, a part of the joint is an electrolyte solution with respect to the electrolyte solution on the positive electrode current collector side. Most preferably, it is in a liquid-tight state.

本実施例において、本発明例の電池Bおよび電池Qの正極ストラップ、正極柱、正極接続体および負極ストラップに含まれるアンチモンは0.005質量%、負極接続体、負極柱中に含まれるアンチモンは2.5質量%としたが、前者においては、0.01質量%以下、後者においては0.5質量%以上とすることにより、本発明例の電池Bおよび電池Qと同様の特性が得られ、本発明の効果が得られた。   In this example, 0.005% by mass of antimony contained in the positive electrode strap, the positive electrode column, the positive electrode connector, and the negative electrode strap of the battery B and the battery Q of the present invention example, and the antimony included in the negative electrode connector and the negative electrode column was Although the content is 2.5% by mass, the same characteristics as those of the battery B and the battery Q of the present invention example can be obtained by setting the former to 0.01% by mass or less and the latter to 0.5% by mass or more. The effect of the present invention was obtained.

本発明は、始動用鉛蓄電池をはじめ、様々な用途の液式の鉛蓄電池に適用できる。   The present invention can be applied to liquid lead acid batteries for various uses, including lead acid batteries for starting.

1 鉛蓄電池
2 正極板
2a 正極集電耳
2b 正極ストラップ
2c 正極接続部品
2d 凸部
3 負極板
3a 負極集電耳
3b 負極ストラップ
3c 負極接続部品
3d 貫通孔
4 電池外装
4a 液口
4b 内部空間
5 電解液
5a 液面
6 液口栓
6a 防沫体
6b フィルタ
7,7´ 端子
8 セパレータ
9 セル
10 鉛蓄電池
11 電池外装
11a 隔壁
11b 貫通孔
12 接合部
DESCRIPTION OF SYMBOLS 1 Lead acid battery 2 Positive electrode plate 2a Positive electrode current collection ear 2b Positive electrode strap 2c Positive electrode connection component 2d Convex part 3 Negative electrode plate 3a Negative electrode current collection ear 3b Negative electrode strap 3c Negative electrode connection component 3d Through-hole 4 Battery exterior 4a Liquid port 4b Internal space 5 Electrolysis Liquid 5a Liquid surface 6 Liquid stopper 6a Splash-proof body 6b Filter 7, 7 'Terminal 8 Separator 9 Cell 10 Lead storage battery 11 Battery exterior 11a Partition 11b Through-hole 12 Joint part

Claims (3)

正極板と負極板が電解液に浸漬され、
前記正極板および/もしくは前記負極板から放出されるガスを排出するための経路を電池外装に有した液式の鉛蓄電池であって、
前記正極板および前記負極板は、鉛−カルシウム合金からなる正極集電体および負極集電体をそれぞれ備え、
前記正極集電体に一体に設けられた正極集電耳を集合溶接する正極ストラップと、
前記正極ストラップに設けられたセル間接続用および/もしくは端子接続用の正極接続部品を備え、
前記負極集電体に一体に設けられた負極集電耳を集合溶接する負極ストラップと、
前記負極ストラップに設けられたセル間接続用および/もしくは端子接続用の負極接続部品を備え、
前記正極ストラップ、前記正極接続部品、前記負極ストラップおよび前記負極接続部品はいずれも少なくともその一部が電解液に浸漬され、
前記正極ストラップ、前記正極接続部品および前記負極ストラップはアンチモン含有量が0.01質量%以下に制限された鉛もしくは鉛合金からなり、
前記負極接続部品は0.5質量%以上のアンチモンを含む鉛もしくは鉛合金からなることを特徴とする鉛蓄電池。
The positive electrode plate and the negative electrode plate are immersed in the electrolytic solution,
A liquid lead-acid battery having a path for discharging gas released from the positive electrode plate and / or the negative electrode plate in a battery exterior,
The positive electrode plate and the negative electrode plate each include a positive electrode current collector and a negative electrode current collector made of a lead-calcium alloy,
A positive electrode strap that collectively welds positive electrode current collecting ears provided integrally with the positive electrode current collector;
Provided with a positive electrode connection part for inter-cell connection and / or terminal connection provided on the positive electrode strap,
A negative electrode strap that collectively welds negative electrode current collector ears provided integrally with the negative electrode current collector;
Provided with a negative electrode connection part for inter-cell connection and / or terminal connection provided in the negative electrode strap,
The positive electrode strap, the positive electrode connecting component, the negative electrode strap and the negative electrode connecting component are all at least partially immersed in an electrolyte solution,
The positive electrode strap, the positive electrode connection component and the negative electrode strap are made of lead or a lead alloy whose antimony content is limited to 0.01% by mass or less,
The lead-acid battery, wherein the negative electrode connecting component is made of lead or a lead alloy containing 0.5% by mass or more of antimony.
前記正極ストラップ、前記正極接続部品および前記負極ストラップは鉛−スズ合金からなる請求項1に記載の鉛蓄電池。 The lead acid battery according to claim 1, wherein the positive electrode strap, the positive electrode connecting component, and the negative electrode strap are made of a lead-tin alloy. 複数のセルを有し、
前記セルは直列接続を含み、
直列接続された2つのセルの一方のセル間接続用の前記負極接続部品と、
他方のセルのセル間接続用の前記正極接続部品との溶接部は、少なくとも前記した他方のセルの電解液に対して液密に封止された請求項1あるいは2に記載の鉛蓄電池。
Have multiple cells,
The cell comprises a series connection;
The negative electrode connection part for inter-cell connection of one of two cells connected in series;
The lead-acid battery according to claim 1 or 2, wherein a welded portion between the other cell and the positive electrode connection part for inter-cell connection is sealed in a liquid-tight manner at least with respect to the electrolyte of the other cell.
JP2010021767A 2010-02-03 2010-02-03 Lead-acid storage battery Pending JP2011159551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021767A JP2011159551A (en) 2010-02-03 2010-02-03 Lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021767A JP2011159551A (en) 2010-02-03 2010-02-03 Lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2011159551A true JP2011159551A (en) 2011-08-18

Family

ID=44591318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021767A Pending JP2011159551A (en) 2010-02-03 2010-02-03 Lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2011159551A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167095A (en) * 2019-03-29 2020-10-08 古河電池株式会社 Lead-acid battery
CN116544626A (en) * 2023-07-03 2023-08-04 上海瑞浦青创新能源有限公司 Energy storage device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020167095A (en) * 2019-03-29 2020-10-08 古河電池株式会社 Lead-acid battery
CN116544626A (en) * 2023-07-03 2023-08-04 上海瑞浦青创新能源有限公司 Energy storage device
CN116544626B (en) * 2023-07-03 2023-10-20 上海瑞浦青创新能源有限公司 energy storage device

Similar Documents

Publication Publication Date Title
JP5522444B2 (en) Lead acid battery
JP5477288B2 (en) Lead-acid battery and method for manufacturing the same
JP5061451B2 (en) Anode current collector for lead acid battery
JP4501330B2 (en) Lead acid battery
JP2008130516A (en) Liquid lead-acid storage battery
WO2006049295A1 (en) Negative electrode current collector for lead storage battery and lead storage battery including the same
JP2010170939A (en) Lead storage battery
JP5050309B2 (en) Lead acid battery
JP2006114417A (en) Lead-acid storage battery
JP2011159551A (en) Lead-acid storage battery
JP2006210210A (en) Lead-acid battery
CN104067414B (en) Lead battery
JP6002141B2 (en) Molten salt battery and operation method thereof
JP2008218258A (en) Lead acid battery
JP2010205572A (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP4356321B2 (en) Lead acid battery
JP4904658B2 (en) Method for producing lead-acid battery
JP6921037B2 (en) Lead-acid battery
JP6197426B2 (en) Lead acid battery
JP2008146960A (en) Lead-acid battery
JP3637603B2 (en) Lead acid battery
JP2006114416A (en) Lead-acid battery
JPH06267529A (en) Monoblock storage battery
JP4678117B2 (en) Lead acid battery