JP2010170939A - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP2010170939A
JP2010170939A JP2009014178A JP2009014178A JP2010170939A JP 2010170939 A JP2010170939 A JP 2010170939A JP 2009014178 A JP2009014178 A JP 2009014178A JP 2009014178 A JP2009014178 A JP 2009014178A JP 2010170939 A JP2010170939 A JP 2010170939A
Authority
JP
Japan
Prior art keywords
electrode plate
plates
battery case
rib
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009014178A
Other languages
Japanese (ja)
Inventor
Hirobumi Shimizu
博文 清水
Shuhei Takeshima
修平 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2009014178A priority Critical patent/JP2010170939A/en
Publication of JP2010170939A publication Critical patent/JP2010170939A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long-life lead storage battery capable of restraining stratification of an electrolyte since a Pb-Ca-Sn-Ba system lead-based alloy board is used and a positive electrode plate is stored in a bag-shaped separator and ribs with thickness of 3.0-7.0 mm are arranged on an inner wall and/or a partition wall of a battery case. <P>SOLUTION: In the lead storage battery wherein the Pb-Ca-Sn-Ba system lead-based alloy board is used for a positive electrode and a negative electrode plate and a positive electrode plate stored in the bag-shaped separator are set up to be a group of electrode plates by alternately laminating these and at least one of an end plate of the group of electrode plates is set up to be a negative electrode plate and the group of electrode plates is stored in the battery case and the electrolyte is poured into the battery case while chemical conversion is carried out, the ribs extending to a horizontal direction against a laminated direction of at least the group of electrode plates are arranged in the inner wall and the partition wall forming the battery case, and height of the ribs is set up to be 3.0-7.0 mm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、袋状セパレータ内に収納した正極板を備え、電槽の内壁及び仕切壁にリブを設けた鉛蓄電池に係り、特にサイクル寿命特性の向上を目的とした鉛蓄電池の改良に関する。   The present invention relates to a lead storage battery including a positive electrode plate housed in a bag-shaped separator and provided with ribs on the inner wall and partition wall of a battery case, and more particularly to an improvement of the lead storage battery for the purpose of improving cycle life characteristics.

液式鉛蓄電池は、車両のエンジン始動用やバックアップ電源用などに用いられている。その中でも始動用の液式鉛蓄電池は、始動頻度、電装品負荷等が異なるため、電池の寿命に至る劣化モードがそれぞれ異なっている。一例として挙げると、宅配車、配送車(タクシー、バス等)のような営業用車両では、省エネ、環境対策から頻繁に始動−停止が繰り返されるアイドリングストップスタート(ISS)が実施されている。特に、都市部の車両は店舗が多く間隔が狭いため走行距離が短く、多頻度の始動停止が繰り返される。このような車両では、オルタネータによる充電が十分されず、液式鉛蓄電池は放電サイドで使用される。 Liquid lead-acid batteries are used for vehicle engine starting and backup power supplies. Among them, since the liquid lead-acid storage battery for start-up has different start-up frequencies, electrical component loads, etc., the deterioration modes leading to the battery life are different. As an example, an idling stop start (ISS) in which start-stop is frequently repeated for energy saving and environmental measures is performed in business vehicles such as delivery vehicles and delivery vehicles (taxi, bus, etc.). In particular, urban vehicles have many shops and narrow intervals, so the travel distance is short, and frequent start and stop are repeated. In such a vehicle, charging by an alternator is not sufficient, and a liquid lead acid battery is used on the discharge side.

前記アイドルストップスタート(ISS)には、従来のSLI(始動・照明・イグニション)用途とは比較にならないほど深い放電と充電が繰り返されるため、成層化現象が発生し易いという問題があり、前記過充電防止システムには過充電時に発生する多量のガスによる電解液の攪拌が行われないため前記成層化現象が解消され難いという問題がある。 The idle stop start (ISS) has a problem that a stratification phenomenon is likely to occur because the deep discharge and charging are repeated so as not to be compared with the conventional SLI (starting / lighting / ignition) application. The charge prevention system has a problem that the stratification phenomenon is difficult to be solved because the electrolyte solution is not stirred by a large amount of gas generated during overcharge.

前記成層化現象とは、充電時に生成する硫酸が電槽セル内下部に沈降し、電槽セル内の電解液が下部で硫酸濃度が濃くなり上部で薄くなる現象で、この現象が発生すると、充電効率が低下して電極板下部に硫酸鉛が蓄積するサルフェーションが進行し、また濃淡電池が形成されて自己放電が急速に進み、その結果、鉛蓄電池は寿命が大幅に短くなる。 The stratification phenomenon is a phenomenon in which sulfuric acid generated during charging settles in the lower part of the battery cell, and the electrolytic solution in the battery cell becomes thicker in the lower part and thinner at the upper part. The sulfation in which lead sulfate accumulates at the lower part of the electrode plate progresses due to a decrease in charging efficiency, and a concentration battery is formed, and self-discharge proceeds rapidly. As a result, the life of the lead storage battery is significantly shortened.

そこで、成層化現象を抑制し鉛蓄電池の寿命特性を改善する方法として、セパレータがV字状に折り曲げられたシートであり、該シート内部に負極板を収納すると共に、左右の側縁部が開口し、隣接するセパレータの左右の側縁部と接合され、正極板の左右の側縁部を覆う方法(特許文献1)や、配送車等に用いられる鉛蓄電池として、正極板にPb− Ca−Sn−Ba合金を用いて、袋状セパレータに収納された正極板と負極板とを交互に積層し極板群とし、前記極板群の端板の少なくとも一方を負極板とし、該極板群を電槽に収納し、前記電槽に電解液を注入して化成を施してなる鉛蓄電池(非特許文献1)などが提案されている。 Therefore, as a method for suppressing the stratification phenomenon and improving the life characteristics of the lead-acid battery, the separator is a sheet bent in a V shape, and the negative electrode plate is accommodated inside the sheet, and the left and right side edges are opened. As a lead storage battery used for a method of covering the left and right side edges of the positive electrode plate and the left and right side edges of the positive electrode plate (Patent Document 1) or a delivery vehicle or the like, Pb-Ca- Using Sn—Ba alloy, positive electrode plates and negative electrode plates housed in a bag-like separator are alternately laminated to form an electrode plate group, and at least one of the end plates of the electrode plate group is used as a negative electrode plate, and the electrode plate group A lead storage battery (Non-Patent Document 1) or the like is proposed in which a battery is stored in a battery case and an electrolytic solution is injected into the battery case to form a chemical.

特開2002−270216号公報JP 2002-270216 A

FBテクニカルニュース NO.63号(2007.11)FB Technical News NO. 63 (2007.11)

特許文献1に記載の方法は、極板を袋状セパレータに収納し、該袋状セパレータには、背中合わせに縦に平行な複数本のリブを設けることで成層化現象を防止し充放電サイクル寿命特性に優れた鉛蓄電池を提供することが可能としている。   In the method described in Patent Document 1, the electrode plate is accommodated in a bag-like separator, and the bag-like separator is provided with a plurality of longitudinally parallel ribs to prevent stratification and charge / discharge cycle life. It is possible to provide a lead storage battery having excellent characteristics.

しかしながら、一般的に、Pb−Ca−Sn系合金基板は、自己放電が少なく電解液の減液が少ない一方、基板は軟化し易く、Pb−Sb系合金基板は、基板は軟化し難い一方、自己放電量が多く電解液の減液が多い。其のため、基板にPb−Ca−Sn系合金基板を用いた特許文献1では、寿命原因が格子腐食によるものでは無く軟化によるものとなっていると考えられ、合金基板自体の寿命向上が望まれる。また、リブの高さ・形状などについての言及は無く、リブの高さによっては成層化現象抑制の効果が殆ど無いことが考えられ、更に、リブの形状(先端が尖っているなど)によってはセパレータを損傷する恐れがある。 However, in general, the Pb—Ca—Sn alloy substrate has less self-discharge and less electrolyte reduction, while the substrate is easily softened, while the Pb—Sb alloy substrate is less likely to be softened. There is a lot of self-discharge, and there is a lot of electrolyte reduction. Therefore, in Patent Document 1 in which a Pb—Ca—Sn alloy substrate is used as a substrate, it is considered that the cause of lifetime is not due to lattice corrosion but due to softening, and it is desirable to improve the lifetime of the alloy substrate itself. It is. In addition, there is no mention of the height and shape of the ribs. Depending on the height of the ribs, it is considered that there is almost no effect of suppressing the stratification phenomenon. Furthermore, depending on the shape of the ribs (the tip is sharp) There is a risk of damaging the separator.

また、非特許文献1に記載の方法は、正極板にPb−Ca−Sn−Ba高耐食性合金を用い、更には袋状セパレータを用いることで長寿命および減液特性に優れているとしているが、酸素ガス吸収反応、成層化現象の抑制については殆ど考慮されておらず、ガスの抜け、成層化現象を考慮すると極板群と電槽の内壁及び仕切壁との間に隙間を設けることが好ましく、従って、現在の市場を満足するような長寿命な鉛蓄電池を提供するに至るものではない。 Moreover, although the method described in Non-Patent Document 1 uses a Pb—Ca—Sn—Ba high corrosion resistance alloy for the positive electrode plate, and further uses a bag-like separator, it is said to have excellent long life and liquid reduction characteristics. However, little consideration has been given to the suppression of the oxygen gas absorption reaction and stratification phenomenon, and considering the outflow of gas and the stratification phenomenon, a gap may be provided between the electrode plate group and the inner wall and partition wall of the battery case. Therefore, it does not lead to a long-life lead-acid battery that satisfies the current market.

なお、極板と電槽との間にリブを設ける方法として、例えば、特開2002−260717号公報があり、これは極板群の両端に位置する極板の少なくとも一方が負極板であって、この負極板と電槽壁との間に空間部を形成したことを特徴とする制御弁式鉛蓄電池(電解液が負極板の下部に浸漬する程度しかない)であり、極板上部でのデンドライトショートを抑制し、酸素吸収能力と急放電特性を改善するものであり、成層化現象を考慮したものではない。即ち、成層化現象は前記するように電解液の上部・下部による濃度差により生じるものであり、電解液の殆ど存在しない制御弁式鉛蓄電池では殆ど問題とならない。 In addition, as a method of providing a rib between the electrode plate and the battery case, for example, there is JP-A-2002-260717, which is that at least one of the electrode plates located at both ends of the electrode plate group is a negative electrode plate. , A control valve type lead-acid battery (only the electrolyte is immersed in the lower part of the negative electrode plate), characterized in that a space is formed between the negative electrode plate and the battery case wall. It suppresses dendrite shorts, improves oxygen absorption capacity and rapid discharge characteristics, and does not consider stratification. That is, the stratification phenomenon is caused by the difference in concentration between the upper and lower portions of the electrolytic solution as described above, and hardly causes a problem in a control valve type lead storage battery in which almost no electrolytic solution exists.

本発明は、上記課題に鑑み成されたものであり、その目的とするところは、成層化現象を抑制し長寿命な鉛蓄電池を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a lead-acid battery that suppresses the stratification phenomenon and has a long life.

本発明は、正極にPb−Ca−Sn−Ba系鉛基合金基板を用い、負極板と袋状セパレータに収納された正極板とを交互に積層して極板群とし、前記極板群の端板の少なくとも一方を負極板とし、該極板群を電槽に収納し、前記電槽に電解液を注入して化成を施してなる鉛蓄電池において、前記電槽を構成する内壁及び仕切壁の内、少なくとも極板群の積層方向に対し水平方向に突出するリブを設け、且つ、前記リブの高さを3.0〜7.0mmとすることを特徴とする液式鉛蓄電池である。   The present invention uses a Pb-Ca-Sn-Ba-based lead-based alloy substrate for the positive electrode, and alternately laminates the negative electrode plate and the positive electrode plate housed in the bag-shaped separator to form an electrode plate group. In a lead storage battery in which at least one of the end plates is a negative electrode plate, the electrode plate group is housed in a battery case, and an electrolytic solution is injected into the battery case to perform conversion, an inner wall and a partition wall constituting the battery case Among them, at least ribs protruding in the horizontal direction with respect to the stacking direction of the electrode plate group are provided, and the height of the ribs is set to 3.0 to 7.0 mm.

本発明の鉛蓄電池は、Pb−Ca−Sn−Ba系鉛基合金基板を用い、正極板を袋状セパレータに収納し、電槽を構成する内壁及び仕切壁の内、少なくとも極板群の積層方向に対し水平方向に3.0〜7.0mmのリブを設けることで、電解液の成層化減少を抑制することが可能であり長寿命の鉛蓄電池を提供することが可能である。
また、正極板を袋状セパレータに収納することにより活物質の脱落防止が可能であるので、極板同士の短絡を防止し得ると共に、正極にPb−Ca−Sn−Ba系鉛基合金基板を用いることで機械的強度を向上させ減液量を低減することが可能である。
The lead-acid battery of the present invention uses a Pb—Ca—Sn—Ba-based lead-based alloy substrate, houses a positive electrode plate in a bag-like separator, and laminates at least an electrode plate group among an inner wall and a partition wall constituting a battery case. By providing a rib of 3.0 to 7.0 mm in the horizontal direction with respect to the direction, it is possible to suppress a decrease in the stratification of the electrolytic solution and to provide a long-life lead-acid battery.
Moreover, since the active material can be prevented from falling off by storing the positive electrode plate in a bag-like separator, a short circuit between the electrode plates can be prevented, and a Pb—Ca—Sn—Ba based lead-based alloy substrate is used for the positive electrode. By using it, it is possible to improve the mechanical strength and reduce the amount of liquid reduction.

本発明の一実施例を示す袋状セパレータに正極板を収納した極板群の斜視図である。It is a perspective view of the electrode group which accommodated the positive electrode plate in the bag-shaped separator which shows one Example of this invention. 本発明の一実施例を示す鉛蓄電池の斜視図である。It is a perspective view of a lead acid battery showing one example of the present invention. 本発明の一実施例を示す図2のA−A´線裁断面図である。FIG. 3 is a sectional view taken along line AA ′ of FIG. 2 showing an embodiment of the present invention. 本発明の他の実施例を示し、図2のA−A´線相当裁断面図である。FIG. 3 is a cross-sectional view corresponding to the line AA ′ of FIG. 2, showing another embodiment of the present invention.

図1は、本発明の一実施例を示す袋状セパレータ4に正極板2を収納した極板群1の斜視図である。2は正極板でポリエチレン等の合成樹脂製の袋状セパレータ4に収納されており、3は負極板である。該袋状セパレータ4は、両端部がヒートシール若しくは接着剤などにより溶着されているか、またはメカニカルシールにより接合されている。正極板2と負極板3は該袋状セパレータ4を介して隔離されて、正極板2と負極板3とが同枚数で所定枚数が交互に積層されて極板群1が構成されている。これら正・負極板2、3の同極性の耳部2´、3´は、それぞれ正極ストラップ5、負極ストラップ6により溶接されている。正極板2と負極板3とを交互に組み合わせて成る極板群1を、6セルのモノブロック式の電槽7に挿入して、図2に示す鉛蓄電池を得た。なお、図2において、9は蓋、10は液口栓、11、12はそれぞれ正極端子、負極端子である。   FIG. 1 is a perspective view of an electrode plate group 1 in which a positive electrode plate 2 is accommodated in a bag-like separator 4 according to an embodiment of the present invention. Reference numeral 2 denotes a positive electrode plate housed in a bag-like separator 4 made of synthetic resin such as polyethylene, and 3 denotes a negative electrode plate. Both end portions of the bag-like separator 4 are welded by a heat seal or an adhesive, or are joined by a mechanical seal. The positive electrode plate 2 and the negative electrode plate 3 are separated by the bag-like separator 4, and a predetermined number of the positive electrode plates 2 and the negative electrode plates 3 are alternately stacked to constitute the electrode plate group 1. The same polarity ears 2 ′ and 3 ′ of the positive and negative electrode plates 2 and 3 are welded by a positive strap 5 and a negative strap 6, respectively. The electrode plate group 1 formed by alternately combining the positive electrode plates 2 and the negative electrode plates 3 was inserted into a 6-cell monoblock battery case 7 to obtain a lead storage battery shown in FIG. In FIG. 2, 9 is a lid, 10 is a liquid spout, and 11 and 12 are a positive terminal and a negative terminal, respectively.

図3は本発明の一実施例を示す図2に示した鉛蓄電池のA−A´線裁断面図である。図3に示すように、電槽7の内壁71及び仕切壁72に各内壁71及び仕切壁72に垂直に所望形状の複数本のリブ8を、電槽成形時に一体形成によって設けている。該リブ8は、方形状であり高さh、幅Wを夫々所望寸法とし、リブ8の間隔は夫々一定で形成されている。なお、前述するように、2は正極板でポリエチレン等の合成樹脂製の袋状セパレータ4に収納されており、3は負極板であり、夫々交互に積層し極板群1を構成している。   FIG. 3 is a cross-sectional view taken along line AA ′ of the lead storage battery shown in FIG. 2 showing an embodiment of the present invention. As shown in FIG. 3, a plurality of ribs 8 having a desired shape are provided on the inner wall 71 and the partition wall 72 of the battery case 7 so as to be perpendicular to the inner wall 71 and the partition wall 72 by integral formation when the battery case is formed. The ribs 8 have a rectangular shape, each having a desired height h and width W, and the ribs 8 are formed at a constant interval. As described above, 2 is a positive electrode plate and is accommodated in a bag-like separator 4 made of a synthetic resin such as polyethylene, and 3 is a negative electrode plate, which are alternately stacked to constitute the electrode plate group 1. .

ここで、本発明では電槽7を構成する内壁71及び仕切壁72の内、少なくとも極板群1の積層方向に対し水平方向に突出するリブ8を設けるものであるが、その理由として、前述するように極板群1の端板と電槽1とが当接することにより、成層化現象の抑制低下を防止するためである。 Here, in the present invention, among the inner wall 71 and the partition wall 72 constituting the battery case 7, at least the rib 8 protruding in the horizontal direction with respect to the stacking direction of the electrode plate group 1 is provided. This is because the end plate of the electrode plate group 1 and the battery case 1 come into contact with each other to prevent the suppression of the stratification phenomenon.

前記リブは、酸素ガス吸収反応、成層化防止を考慮し、例えば、幅W5.0mm程度のリブ8を5.0〜10.0mm程度間隔に複数本設置することが好ましい。リブの幅Wが狭い場合、即ち、リブが細く線状(1.0mm以下)である場合、袋状セパレータを損傷する可能性があり、リブの間隔が広い(20.0mm以上)と極板から発生したガスの抜けが悪くなる恐れがあり、成層化防止の効果が低下する恐れがある。従って、リブの幅Wは5.0〜10.0mmが好ましい。 In consideration of oxygen gas absorption reaction and prevention of stratification, for example, a plurality of ribs 8 having a width of about 5.0 mm are preferably provided at intervals of about 5.0 to 10.0 mm. If the width W of the rib is narrow, that is, if the rib is thin and linear (1.0 mm or less), the bag-shaped separator may be damaged, and if the rib interval is wide (20.0 mm or more), the electrode plate There is a possibility that the escape of gas generated from the gas will worsen, and the effect of preventing stratification may be reduced. Accordingly, the rib width W is preferably 5.0 to 10.0 mm.

また、電槽高さ方向のリブの合計長さは、極板群を構成する正極板または負極板の高さ方向の50%以上100%以下であることが好ましい。リブの合計長さが短い場合、極板群の端板と電槽または/及び仕切壁とが当接する部分が生じる場合があり、成層化防止をし得ない恐れがある。なお、本発明における合計長さとは、一本のリブが連続し突出形成するものでも、不連続で突出形成するもの良く、不連続の場合は夫々のリブの長さの合計を足し合わせたものが、極板群を構成する正極板または負極板の高さ方向の50%以上100%以下であることが好ましい。 Moreover, it is preferable that the total length of the ribs in the battery case height direction is not less than 50% and not more than 100% in the height direction of the positive electrode plate or the negative electrode plate constituting the electrode plate group. When the total length of the ribs is short, there may occur a portion where the end plate of the electrode plate group and the battery case or / and the partition wall come into contact with each other, and there is a possibility that stratification cannot be prevented. The total length in the present invention is good even if one rib is continuously protruding and formed discontinuously. In the case of discontinuity, the total length of each rib is added. However, it is preferably 50% or more and 100% or less in the height direction of the positive electrode plate or the negative electrode plate constituting the electrode plate group.

また、リブの高さhを3.0〜7.0mmとすることが好ましい。リブの高さが3.0mm未満の場合、その効果が殆ど見られず、逆に7.0mm超過の場合、同一容積で同一容量の鉛蓄電池を作製することが困難となる他、脱落した活物質が電解液の対流により極板群上部へ電着し易く、短絡する危険性が生じる。 The rib height h is preferably 3.0 to 7.0 mm. When the height of the rib is less than 3.0 mm, the effect is hardly seen. Conversely, when it exceeds 7.0 mm, it becomes difficult to produce a lead-acid battery having the same volume and capacity, and the dropped active life. The substance is likely to be electrodeposited on the upper part of the electrode plate group due to the convection of the electrolyte, and there is a risk of short circuit.

なお、更に好ましくはリブの高さhを4.0〜6.0mmとすることで電解液の成層化防止、極板群上部での電着による寿命低下を抑制することが可能である。 More preferably, by setting the rib height h to 4.0 to 6.0 mm, it is possible to prevent stratification of the electrolytic solution and to suppress a decrease in life due to electrodeposition on the upper part of the electrode plate group.

また、リブの形状としては特に限定されるものではないが、袋状セパレータ等の損傷等を考慮すると、円弧状や半トラック状、方形状、台形状などリブの先端が尖っていない形状とすることが好ましい。 In addition, the shape of the rib is not particularly limited, but in consideration of damage such as a bag-like separator, the shape of the rib is not sharp, such as an arc shape, a semi-track shape, a square shape, or a trapezoid shape. It is preferable.

また、電槽の内壁または/及び仕切壁に設けるリブは、少なくとも一方を負極板と対向する面、即ち、少なくとも一方を負極端板とすることが好ましい。これは、負極端板の使用期間中での変形を抑制し、負極端板と電槽内壁間にガス拡散のための空間を確保することにより、負極端板もガス吸収反応に関与させ、セル全体として適正な酸素ガス吸収反応が起こるようにするためである。 Moreover, it is preferable that at least one of the ribs provided on the inner wall or / and the partition wall of the battery case is a surface facing the negative electrode plate, that is, at least one is a negative electrode end plate. This suppresses the deformation of the negative electrode end plate during the use period, and by ensuring a space for gas diffusion between the negative electrode end plate and the inner wall of the battery case, the negative electrode end plate is also involved in the gas absorption reaction. This is because an appropriate oxygen gas absorption reaction occurs as a whole.

本発明において、正極板を袋状セパレータに収納するのは、正極板からの活物質の脱落や負極板からのデンドライトの発生による底縁部や側縁部での内部短絡を防止するためである。 In the present invention, the positive electrode plate is accommodated in the bag-shaped separator in order to prevent internal short circuit at the bottom edge and side edge due to the dropping of the active material from the positive electrode plate and the generation of dendrite from the negative electrode plate. .

なお、従来、正極基板の伸びによりセパレータの破損、ひいては内部短絡に至るという問題点があったが、本発明において、Pb−Ca−Sn−Ba系鉛基合金基板を用いることで正極基板の伸びの問題を解消し得るものとなっている。 Conventionally, there has been a problem that the separator is damaged due to the elongation of the positive electrode substrate, and eventually leads to an internal short circuit. The problem can be solved.

本発明におけるPb−Ca−Sn−Ba系鉛基合金基板は、カルシウムが0.02質量%以上で0.05質量%未満、スズが0.4質量%以上で4.0質量%以下、アルミニウムが0.04質量%以下、バリウムが0.002質量%以上で0.014質量%以下、残部が鉛と不可避成分からなる合金基板であることが好ましい。 In the Pb—Ca—Sn—Ba based lead-based alloy substrate in the present invention, calcium is 0.02 mass% or more and less than 0.05 mass%, tin is 0.4 mass% or more and 4.0 mass% or less, aluminum The alloy substrate is preferably 0.04 mass% or less, barium is 0.002 mass% or more and 0.014 mass% or less, and the balance is composed of lead and inevitable components.

ここで、カルシウムを添加するのは機械的強度を向上させるためであり、カルシウムの添加量が0.02質量%未満の場合その効果は少なく、カルシウムの添加量が0.05質量%以上としても低い鋳造温度で良好な鋳造品を得ることが難しく、逆に鋳造温度を高くすると酸化してカルシウムの損失量が多くなる。また、スズを添加するのは合金の湯流れ製や機械的強度を向上させるためであり、スズの添加量が0.4質量%未満の場合その効果は少なく、4.0質量%を超えた場合は結晶粒が粗大化して粒界腐食が進む。また、アルミニウムを添加するのは溶湯の酸化によるカルシウムの損失を防止および機械的強度の向上であり、アルミニウムの添加量が0.04重量%を超えた場合はドロスとして析出し易くなる。また、バリウムを添加するのは機械的強度を向上させるためであり、バリウムの含有量が0.002重量%未満では上記効果が十分でなく、また0.014重量%を超えてもその効果はそれ程でない。 Here, the addition of calcium is to improve the mechanical strength. When the amount of calcium added is less than 0.02% by mass, the effect is small, and the amount of calcium added is 0.05% by mass or more. It is difficult to obtain a good cast product at a low casting temperature, and conversely, when the casting temperature is increased, oxidation occurs and the loss of calcium increases. Also, tin is added to improve the hot water flow and mechanical strength of the alloy. When the amount of tin added is less than 0.4% by mass, the effect is small and exceeds 4.0% by mass. In this case, the crystal grains become coarse and intergranular corrosion proceeds. Aluminum is added to prevent calcium loss due to oxidation of the molten metal and improve mechanical strength. When the amount of aluminum exceeds 0.04% by weight, it tends to precipitate as dross. Further, the addition of barium is to improve the mechanical strength. If the barium content is less than 0.002% by weight, the above effect is not sufficient. Not so much.

更に、前記鉛基合金基板に0.005質量% 以上で0.07質量%以下の銀、0.01質量% 以上で0.01質量%以下のビスマス、0.001質量%以上で0.05質量%以下のタリウムの中から選ばれる少なくとも一種、及び/又は0.01質量%
以上で0.1質量%以下の銅、カリウム、リチウム、マグネシウム、ナトリウム、リン、アンチモン、セレン、テルルの中から選ばれる少なくとも一種を加えることで、更に耐食性を向上させることが可能である。
Furthermore, 0.005% by mass or more and 0.07% by mass or less silver, 0.01% by mass or more and 0.01% by mass or less bismuth, 0.001% by mass or more and 0.05% by mass or more on the lead-based alloy substrate. At least one selected from thallium of mass% or less, and / or 0.01 mass%
The corrosion resistance can be further improved by adding at least one selected from copper, potassium, lithium, magnesium, sodium, phosphorus, antimony, selenium, and tellurium in an amount of 0.1% by mass or less.

以下に、本発明を実施例により具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

Ca0.04質量%、Sn1.0質量%、Al0.015質量%、Ba0.008質量%を含み、残部がPbと不可避不純物からなる耐食性および耐グロス性に優れるPb−Ca系合金を、ブックモールドにより毎分15枚の速度で格子板に鋳造し、次いで前記格子板を120℃で3時間熱処理(時効硬化)して正極基板を作製した。   A Pb-Ca alloy containing 0.04 mass% Ca, 1.0 mass% Sn, 0.015 mass% Al, and 0.008 mass% Ba, with the balance being Pb and inevitable impurities and having excellent corrosion resistance and gloss resistance. Was cast into a grid plate at a rate of 15 sheets per minute, and then the grid plate was heat treated (age hardening) at 120 ° C. for 3 hours to produce a positive electrode substrate.

一方、正極用鉛粉(活物質)に、五酸化アンチモン(Sb2O5)を金属アンチモン換算で350ppm添加して混合し、この混合粉にイオン交換水10重量部を加え、続いて比重1.27の希硫酸10重量部を加えながら混練してカップ密度140g/2in3の正極用ペーストを調製し、この正極用ペーストを前記正極基板に充填し、その後40℃
、湿度95%の雰囲気で24時間熟成し、乾燥して正極未化成板を作製した。
On the other hand, antimony pentoxide (Sb2O5) was added to the lead powder for the positive electrode (active material) at 350 ppm in terms of metal antimony and mixed, and 10 parts by weight of ion-exchanged water was added to the mixed powder, followed by a specific gravity of 1.27. A positive electrode paste having a cup density of 140 g / 2 in 3 is prepared by adding 10 parts by weight of dilute sulfuric acid to prepare a positive electrode paste.
Then, it was aged for 24 hours in an atmosphere with a humidity of 95% and dried to produce a positive electrode unformed sheet.

次に、前記正極未化成板5枚に、公知の方法で作製した負極未化成板5枚(極板枚数構成:同数)を交互に複数枚積層し、この積層体の同極板同士をCOS方式で溶接して極板群とした。なお、前記正極未化成板は厚み0.25mmのポリエチレンからなる合成樹脂シートを主体とした微孔性シートを略V字状に2つ折りにして、その左右の両側縁部を溶着して作製した合成樹脂製袋状セパレータ内に収納した。次いで、前記極板群をポリプロピレン製の電槽(総高225mm、幅170mm、長さ260mm)に挿入し、この電槽にヒートシールにより蓋をし、前記蓋の液口から電解液を注入し、次いで液注入後の電槽を40℃の水槽に入れて理論容量の200%過充電して電槽化成を行い、5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した。 Next, on the five positive electrode unformed plates, a plurality of negative electrode unformed plates (electrode plate number configuration: the same number) produced by a known method are alternately stacked, and the same electrode plates of this laminate are COS. The electrode plate group was welded by the method. The positive electrode non-formed sheet was prepared by folding a microporous sheet mainly composed of a synthetic resin sheet made of polyethylene having a thickness of 0.25 mm into two in a substantially V shape and welding the left and right side edges. It was stored in a synthetic resin bag-like separator. Next, the electrode plate group is inserted into a battery case made of polypropylene (total height: 225 mm, width: 170 mm, length: 260 mm), the battery case is covered with a heat seal, and an electrolyte is injected from the liquid port of the cover. Then, the battery case after the liquid injection was put into a 40 ° C. water tank, overcharged by 200% of the theoretical capacity to form a battery case, and a D23 size 12V liquid lead acid battery having a 5-hour rate capacity of 50 Ah was manufactured.

なお、電槽の内壁及び仕切壁の内、極板群の積層方向に対してのみ(図3参照)複数本のリブを電槽成形時に設け、該リブは幅W5.0mm、高さh3.0mmの方形状であり、リブ間隔5.0mmとした。
また、電槽高さ方向のリブの合計長さは、100mmとした(本発明1)。
Of the inner wall and partition wall of the battery case, a plurality of ribs are provided at the time of battery case forming only in the stacking direction of the electrode plate group (see FIG. 3). The square shape was 0 mm, and the rib interval was 5.0 mm.
The total length of the ribs in the battery case height direction was 100 mm (Invention 1).

リブの高さを4.0mmとした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明2)。   A D23 size 12V liquid lead-acid battery having a 5-hour rate capacity of 50 Ah was manufactured in the same manner as in Example 1 except that the height of the rib was set to 4.0 mm (Invention 2).

リブの高さを5.0mmとした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明3)。 A D23 size 12V liquid lead acid battery having a 5-hour rate capacity of 50 Ah was manufactured in the same manner as in Example 1 except that the rib height was set to 5.0 mm (Invention 3).

リブの高さを6.0mmとした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明4)。 A D23 size 12V liquid lead-acid battery having a 5-hour rate capacity of 50 Ah was manufactured in the same manner as in Example 1 except that the rib height was 6.0 mm (Invention 4).

リブの高さを7.0mmとした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明5)。 A D23 size 12V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured in the same manner as in Example 1 except that the rib height was 7.0 mm (Invention 5).

電槽の内壁及び仕切壁に複数本のリブを電槽成形時に設けた(図4参照)以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明6)。 A D23 size 12V liquid lead acid battery with a 5-hour capacity of 50 Ah is manufactured in the same manner as in Example 1 except that a plurality of ribs are provided on the inner wall and partition wall of the battery case when the battery case is formed (see FIG. 4). (Invention 6).

電槽の内壁及び仕切壁に複数本のリブを電槽成形時に設け(図4参照)、リブの高さを7.0mmとした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明7)。 A plurality of ribs are provided on the inner wall and partition wall of the battery case at the time of forming the battery case (see FIG. 4), and the 5-hour rate capacity is 50 Ah as in Example 1 except that the height of the ribs is 7.0 mm. A D23 size 12V liquid lead acid battery was manufactured (Invention 7).

リブの高さを3.0mmとし、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明8)。 D23 size with a 5-hour rate capacity of 50 Ah as in Example 1 except that the height of the rib is 3.0 mm and the number of plates is 5 positive plates, 6 negative plates and 1 negative plate. Of 12V liquid type lead-acid battery (Invention 8).

リブの高さを5.0mmとし、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明9)。 D23 size with a 5-hour rate capacity of 50 Ah as in Example 1 except that the height of the rib is 5.0 mm and the number of plates is 5 positive plates, 6 negative plates and 1 negative plate. 12V liquid lead acid battery (Invention 9).

リブの高さを7.0mmとし、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明10)。 D23 size with a 5-hour capacity of 50 Ah, as in Example 1, except that the rib height is 7.0 mm and the number of electrode plates is 5 positive plates, 6 negative plates and 1 negative plate. Of 12V liquid type lead acid battery (Invention 10).

電槽の内壁及び仕切壁に複数本のリブを電槽成形時に設け(図4参照)、リブの高さを3.0mmとし、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明11)。 A plurality of ribs are provided on the inner wall and partition wall of the battery case when forming the battery case (see FIG. 4), the height of the ribs is 3.0 mm, the number of electrode plates is 5 positive plates, 6 negative plates and 6 negative electrodes A D23 size 12V liquid lead acid battery having a 5-hour rate capacity of 50 Ah was manufactured in the same manner as in Example 1 except that the number of plates was increased by one (Invention 11).

電槽の内壁及び仕切壁に複数本のリブを電槽成形時に設け(図4参照)、リブの高さを7.0mmとし、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(本発明12)。 A plurality of ribs are provided on the inner wall and partition wall of the battery case when the battery case is formed (see FIG. 4), the height of the ribs is 7.0 mm, the number of electrode plates is 5 positive plates, 6 negative plates and the negative electrode A D23 size 12V liquid lead acid battery having a 5-hour rate capacity of 50 Ah was manufactured in the same manner as in Example 1 except that the number of plates was increased by one (Invention 12).

(比較例1)
リブの高さを1.0mmとした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例1)。
(比較例2)
リブの高さを2.0mmとした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例2)。
(比較例3)
リブの高さを8.0mmとした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例3)。
(比較例4)
リブの高さを9.0mmとした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V鉛蓄電池を製造した(比較例4)。
(比較例5)
リブの高さを2.0mmとし、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例5)。
(比較例6)
リブの高さを8.0mmとし、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例6)。
(比較例7)
リブの高さを3.0mmとし、極板枚数構成を正極板6枚、負極板5枚と正極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例7)。
(比較例8)
リブの高さを5.0mmとし、極板枚数構成を正極板6枚、負極板5枚と正極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例7)。
(比較例9)
リブの高さを7.0mmとし、極板枚数構成を正極板6枚、負極板5枚と正極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例9)。
(比較例10)
リブの高さを2.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納した以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例10)。
(比較例11)
リブの高さを3.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納した以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例11)。
(比較例12)
リブの高さを5.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納した以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例12)。
(比較例13)
リブの高さを7.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納した以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例13)。
(比較例14)
リブの高さを8.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納した以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例14)。
(比較例15)
リブの高さを2.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納し、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例15)。
(比較例16)
リブの高さを3.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納し、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例16)。
(比較例17)
リブの高さを7.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納し、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例17)。
(比較例18)
リブの高さを8.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納し、極板枚数構成を正極板5枚、負極板6枚と負極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例18)。
(比較例19)
リブの高さを2.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納し、極板枚数構成を正極板6枚、負極板5枚と正極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例19)。
(比較例20)
リブの高さを3.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納し、極板枚数構成を正極板6枚、負極板5枚と正極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例20)。
(比較例21)
リブの高さを7.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納し、極板枚数構成を正極板6枚、負極板5枚と正極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例21)。
(比較例22)
リブの高さを8.0mmとし、負極未化成板を合成樹脂製袋状セパレータ内に収納し、極板枚数構成を正極板6枚、負極板5枚と正極板を1枚多くした以外は、実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(比較例22)。
(Comparative Example 1)
A D23 size 12V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured in the same manner as in Example 1 except that the rib height was 1.0 mm (Comparative Example 1).
(Comparative Example 2)
A D23 size 12V liquid lead acid battery having a 5-hour rate capacity of 50 Ah was manufactured in the same manner as in Example 1 except that the rib height was set to 2.0 mm (Comparative Example 2).
(Comparative Example 3)
A D23 size 12V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured in the same manner as in Example 1 except that the rib height was 8.0 mm (Comparative Example 3).
(Comparative Example 4)
A D23 size 12V lead-acid battery with a 5-hour rate capacity of 50 Ah was manufactured in the same manner as in Example 1 except that the rib height was 9.0 mm (Comparative Example 4).
(Comparative Example 5)
D23 size with a 5-hour rate capacity of 50 Ah, as in Example 1, except that the height of the rib is 2.0 mm and the number of plates is 5 positive plates, 6 negative plates and 1 negative plate. 12V liquid lead acid battery was manufactured (Comparative Example 5).
(Comparative Example 6)
D23 size with a 5-hour rate capacity of 50 Ah, as in Example 1, except that the height of the ribs was 8.0 mm and the number of electrode plates was 5 positive plates, 6 negative plates and 1 negative plate. 12V liquid lead acid battery was manufactured (Comparative Example 6).
(Comparative Example 7)
D23 size with a 5-hour rate capacity of 50 Ah as in Example 1 except that the height of the rib was 3.0 mm, the number of plates was 6 positive plates, 5 negative plates and 1 positive plate were added. 12V liquid lead acid battery was manufactured (Comparative Example 7).
(Comparative Example 8)
D23 size with a 5-hour rate capacity of 50 Ah as in Example 1 except that the rib height is 5.0 mm and the number of electrode plates is 6 positive plates, 5 negative plates and 1 positive plate. 12V liquid lead acid battery was manufactured (Comparative Example 7).
(Comparative Example 9)
D23 size with a 5-hour capacity of 50 Ah, as in Example 1, except that the rib height is 7.0 mm, the number of electrode plates is 6 positive plates, 5 negative plates and 1 positive plate. 12V liquid lead acid battery was manufactured (Comparative Example 9).
(Comparative Example 10)
A D23 size 12V liquid lead acid battery with a 5-hour rate capacity of 50 Ah was obtained in the same manner as in Example 1 except that the height of the rib was 2.0 mm and the negative electrode unformed plate was housed in a synthetic resin bag-like separator. Manufactured (Comparative Example 10).
(Comparative Example 11)
A D23 size 12V liquid lead-acid battery with a 5-hour rate capacity of 50 Ah is the same as in Example 1 except that the height of the rib is 3.0 mm and the negative electrode unformed plate is housed in a synthetic resin bag-like separator. Manufactured (Comparative Example 11).
(Comparative Example 12)
A D23 size 12V liquid lead acid battery with a 5-hour rate capacity of 50 Ah was obtained in the same manner as in Example 1 except that the rib height was 5.0 mm and the negative electrode unformed plate was housed in a synthetic resin bag-like separator. Manufactured (Comparative Example 12).
(Comparative Example 13)
A D23 size 12V liquid lead acid battery with a 5-hour rate capacity of 50 Ah was obtained in the same manner as in Example 1 except that the height of the rib was 7.0 mm and the negative electrode unformed plate was housed in a synthetic resin bag-like separator. Manufactured (Comparative Example 13).
(Comparative Example 14)
A D23 size 12V liquid lead acid battery with a 5-hour rate capacity of 50 Ah was obtained in the same manner as in Example 1 except that the height of the rib was 8.0 mm and the negative electrode unformed plate was housed in a synthetic resin bag-like separator. Manufactured (Comparative Example 14).
(Comparative Example 15)
The height of the rib is 2.0 mm, the negative electrode unformed plate is housed in a synthetic resin bag-like separator, and the number of electrode plates is 5 positive plates, 6 negative plates and 1 negative plate. In the same manner as in Example 1, a D23 size 12 V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured (Comparative Example 15).
(Comparative Example 16)
The height of the rib is 3.0 mm, the negative electrode unformed plate is housed in a synthetic resin bag-like separator, and the number of electrode plates is 5 positive plates, 6 negative plates and 1 negative plate. In the same manner as in Example 1, a D23 size 12V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured (Comparative Example 16).
(Comparative Example 17)
The height of the rib is 7.0 mm, the negative electrode unformed plate is housed in a synthetic resin bag-like separator, and the number of electrode plates is 5 positive plates, 6 negative plates and 1 negative plate. In the same manner as in Example 1, a D23 size 12V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured (Comparative Example 17).
(Comparative Example 18)
The height of the rib is 8.0 mm, the negative electrode unformed plate is accommodated in a synthetic resin bag-like separator, and the number of electrode plates is 5 positive plates, 6 negative plates and 1 negative plate. In the same manner as in Example 1, a D23 size 12V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured (Comparative Example 18).
(Comparative Example 19)
The height of the rib is 2.0 mm, the negative electrode non-formed plate is housed in a synthetic resin bag-like separator, and the number of electrode plates is 6 positive plates, 5 negative plates and 1 positive plate. In the same manner as in Example 1, a D23 size 12V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured (Comparative Example 19).
(Comparative Example 20)
The height of the rib is set to 3.0 mm, the negative electrode unformed plate is accommodated in a synthetic resin bag-like separator, and the number of electrode plates is 6 positive plates, 5 negative plates and 1 positive plate. In the same manner as in Example 1, a D23 size 12V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured (Comparative Example 20).
(Comparative Example 21)
The height of the rib is 7.0 mm, the negative electrode non-formed plate is housed in a synthetic resin bag-like separator, and the number of electrode plates is six positive plates, five negative plates and one positive plate. In the same manner as in Example 1, a D23 size 12V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured (Comparative Example 21).
(Comparative Example 22)
The height of the rib is 8.0 mm, the negative electrode unformed plate is accommodated in a synthetic resin bag-like separator, and the number of electrode plates is 6 positive plates, 5 negative plates and 1 positive plate. In the same manner as in Example 1, a D23 size 12V liquid lead acid battery having a 5-hour capacity of 50 Ah was manufactured (Comparative Example 22).

(従来例)
Ca0.06質量%、Sn1.0質量%を含み、残部がPbと不可避不純物からなるPb−Ca系合金基板を用い、リブを設けなかった以外は実施例1と同様に5時間率容量が50AhのD23サイズの12V液式鉛蓄電池を製造した(従来例)。
(Conventional example)
The 5-hour rate capacity is 50 Ah as in Example 1 except that a Pb—Ca-based alloy substrate containing 0.06 mass% Ca and 1.0 mass% Sn, the balance being Pb and inevitable impurities is used, and no rib is provided. The D23 size 12V liquid lead acid battery was manufactured (conventional example).

夫々作製した液式鉛蓄電池(本発明1〜12、比較例1〜22、従来例)についてJIS軽負荷試験を行ってサイクル寿命を調べた。試験条件は、試験温度80℃
、放電25A×4分、充電25A×10分のCC/CV充電(定電流/定電圧充電)とし、一週間毎に356Aで判定放電を行い、30秒目電圧が7.2Vに達した時点を寿命とした。
Each liquid lead acid battery (Invention 1-12, Comparative Examples 1-22, Conventional Example) produced was subjected to a JIS light load test to examine the cycle life. Test condition is test temperature 80 ℃
, Discharge 25A x 4 minutes, charge 25A x 10 minutes CC / CV charge (constant current / constant voltage charge), judgment discharge at 356A every week, when the voltage at 30 seconds reaches 7.2V Was defined as the lifetime.

表1は、夫々作製した液式鉛蓄電池(実施例1〜12、比較例1〜22、従来例)における、電槽のリブ高さ、袋状セパレータに収納する極板(正極板または負極板)、極板構成枚数、寿命性能(サイクル数および比率)、成層化の確認、短絡の有無、減液量、総合評価を示したものである。
ここで、極板構成枚数とは正極板と負極板とを交互に積層して極板群を構成する際に正極板と負極板の枚数が同一のものは「同数」、負極板が1枚多いものは「負極1枚多」、正極板が1枚多いものは「正極1枚多」と記載した。
また、寿命性能における比率は従来例のサイクル寿命数を100%としたときの、夫々の鉛蓄電池のサイクル寿命を比率で表したものである。
また、成層化現象の確認を行った。成層化現象の確認としては、夫々作製した液式鉛蓄電池(本発明1〜8、比較例1〜22、従来例)の50,000サイクル経過後、JIS軽負荷試験を一旦停止し、1時間放置後、上部と下部の電解液比重測定を比重測定器によって行った。評価として、電解液比重差が0.01未満のものは○、電解液比重差が0.01以上0.02未満のものは△、電解液比重差が0.02以上のものは×とした。
また、短絡の有無は浸透短絡試験によって行った。本発明における、浸透短絡試験とは、まず所定量の注液硫酸量の1/2の量を蓄電池内に注入して24時間放置した後、残り1/2の量を再度蓄電池内に注入してから通電、即ち電槽化成を行い、その終了後に蓄電池を解体して鉛浸透や短絡の状態及び程度を調査すると言うものである。評価として、短絡が無いものは無、短絡が確認されたものは有(微小短絡も含む)とした。
また、減液量は夫々作製した鉛蓄電池(本発明1〜12、比較例1〜22、従来例)につて、50,000サイクル経過時において従来例の減液量を100%としたときの夫々の減液量を比率で表したものである。
また、総合評価は、寿命性能については70,000サイクル未満のものを1点、70,000サイクル以上80,000サイクル未満のものを2点、80,000サイクル以上90,000サイクル未満のものを3点、90,000サイクル以上100,000サイクル未満のものを4点、100,000サイクル以上のものを5点とし、成層化確認については、×を1点、△を2点、○を3点とし、短絡の有無については、短絡が無いものは2点、短絡があるものは1点とし、減液量については、80%以上を1点、70以上80%未満を2点、70%未満を3点とし、夫々の値を乗算し、その合計点が10点未満のものは×、10点以上50点未満のものは△、50点以上のものは○とした。
Table 1 shows the rib height of the battery case and the electrode plate (positive electrode plate or negative electrode plate) stored in the bag-shaped separator in each of the liquid lead-acid batteries produced (Examples 1 to 12, Comparative Examples 1 to 22, and conventional example). ), Number of electrode plates, life performance (number of cycles and ratio), confirmation of stratification, presence / absence of short circuit, amount of liquid reduction, and overall evaluation.
Here, the number of electrode plates is “the same number” when the number of the positive and negative electrode plates is the same when the positive electrode plate and the negative electrode plate are alternately laminated to form the electrode plate group, and one negative electrode plate. Many samples were described as “one negative electrode”, and one positive electrode plate was described as “one positive electrode”.
Moreover, the ratio in life performance represents the cycle life of each lead-acid battery as a ratio when the number of cycle lives in the conventional example is 100%.
In addition, the stratification phenomenon was confirmed. To confirm the stratification phenomenon, the JIS light load test was temporarily stopped after 50,000 cycles of each of the liquid lead-acid batteries produced (invention 1 to 8, comparative examples 1 to 22, and conventional example) for 1 hour. After standing, the electrolyte specific gravity measurement of the upper part and the lower part was performed with a specific gravity measuring instrument. As an evaluation, the case where the electrolyte specific gravity difference was less than 0.01 was evaluated as ◯, the case where the electrolytic solution specific gravity difference was 0.01 or more and less than 0.02 was evaluated as △, and the case where the electrolyte specific gravity difference was 0.02 or more was evaluated as ×. .
Moreover, the presence or absence of the short circuit was performed by the permeation short circuit test. In the present invention, the osmotic short-circuit test means that a half of a predetermined amount of injected sulfuric acid is first poured into a storage battery and left for 24 hours, and then the remaining half is poured into the storage battery again. Then, energization, that is, battery case formation is performed, and after completion, the storage battery is disassembled to investigate the state and degree of lead penetration and short circuit. As an evaluation, no short circuit was present, and no short circuit was confirmed (including a short circuit).
Moreover, the amount of liquid reduction is the value when the liquid reduction amount of the conventional example is set to 100% when 50,000 cycles have elapsed for the lead storage batteries (Invention 1 to 12, Comparative Examples 1 to 22, Conventional Example). Each liquid reduction amount is expressed as a ratio.
In addition, the overall evaluation is that the lifetime performance is one point for less than 70,000 cycles, two points for 70,000 cycles or more and less than 80,000 cycles, and 80,000 cycles or more and less than 90,000 cycles. 3 points, 4 points for 90,000 cycles or more and less than 100,000 cycles, 5 points for those with 100,000 cycles or more, and for stratification confirmation, x is 1 point, Δ is 2 points, ○ is 3 As for the presence / absence of a short circuit, there are 2 points when there is no short circuit, 1 point when there is a short circuit, and the liquid reduction amount is 1 point for 80% or more, 2 points for 70% to less than 80%, 70% Less than 3 points were multiplied by each value, the total score was less than 10 points, x was 10 points or more and less than 50 points, and 50 point or more was rated ◯.

表1から明らかなように、電槽リブの高さを3.0〜7.0mmとし、正極板を袋状セパレータに収納し、且つ、正極板と負極板とを交互に積層してなる極板群の少なくとも1方の端板を負極板とした実施例1〜12(本発明例)は、良好なサイクル特性を示した。これは、電槽にリブを設けることにより電槽と極板群との間に空間を設け、極板面から発生したガスの抜けを良好にすると共に、成層化現象を抑制し得たためと考えられる。
更に、Pb−Ca−Sn−Ba系鉛基合金基板を用いることで、機械的強度、耐食性
自己放電が少なく電解液の減液が少なく、軟化を抑制することが可能である。
従って、Pb−Ca−Sn−Ba系鉛基合金基板を用い、電槽リブの高さを3.0〜7.0mmとし、正極板を袋状セパレータに収納し、且つ、正極板と負極板とを交互に積層してなる極板群の少なくとも1方の端板を負極板とすることで、従来、成層化現象により寿命となっていた原因を改善し得ると共に、長寿命の液式鉛蓄電池を提供することが可能である。
As is apparent from Table 1, the height of the battery case rib is 3.0 to 7.0 mm, the positive electrode plate is accommodated in a bag-shaped separator, and the positive electrode plate and the negative electrode plate are alternately stacked. Examples 1 to 12 (examples of the present invention) in which at least one end plate of the plate group was a negative electrode plate showed good cycle characteristics. This is thought to be because by providing ribs in the battery case, a space was provided between the battery case and the electrode plate group to improve the escape of gas generated from the electrode plate surface and to suppress the stratification phenomenon. It is done.
Furthermore, by using a Pb—Ca—Sn—Ba-based lead-based alloy substrate, it is possible to suppress mechanical strength and corrosion resistance, and to reduce softening and to suppress softening.
Therefore, a Pb—Ca—Sn—Ba-based lead-based alloy substrate is used, the height of the battery case rib is set to 3.0 to 7.0 mm, the positive electrode plate is accommodated in the bag-shaped separator, and the positive electrode plate and the negative electrode plate By using at least one end plate of a group of electrode plates alternately laminated as a negative electrode plate, it is possible to improve the cause of the conventional life due to the stratification phenomenon, and long-life liquid lead A storage battery can be provided.

従来例および比較例1、2、5はリブの高さが低いため極板から発生したガスの抜けが悪く、成層化現象を抑制することが困難でありサイクル寿命が低い値を示した。
比較例3、4、6はガスの抜けは良好であるものの、リブの高さが高いために、脱落した活物質が電解液の対流により極板群上部へ電着し易く、其のため微小短絡が生じており、突然寿命となった。
また、比較例7〜9は袋状セパレータに正極板を収納し、極板構成枚数を負極板より1枚多くする、即ち、両端板を袋状セパレータに正極板を収納したものであり、ガス吸収反応が良好に行われなかったため、サイクル特性が低下したものと考えられる。
また、負極板を袋状セパレータに収納した比較例10〜22は、リブの高さや極板構成枚数を種々変化させても、正極板を袋状セパレータに収納した場合に比べ、電解液の減液量が多く、また、活物質の脱落により微小短絡が生じており実施例1〜12比べ劣るものであった。
Conventional examples and comparative examples 1, 2, and 5 showed low values of the cycle life because the height of the ribs was low, and the escape of gas generated from the electrode plate was poor, making it difficult to suppress the stratification phenomenon.
In Comparative Examples 3, 4, and 6, although the escape of gas is good, the height of the ribs is high, so that the dropped active material is easily electrodeposited on the upper part of the electrode plate group by the convection of the electrolytic solution. A short circuit occurred and suddenly reached the end of its life.
In Comparative Examples 7 to 9, the positive electrode plate is stored in the bag-shaped separator, and the number of electrode plates is one more than that of the negative electrode plate. It is considered that the cycle characteristics were deteriorated because the absorption reaction was not performed well.
Further, Comparative Examples 10 to 22 in which the negative electrode plate was accommodated in the bag-like separator reduced the amount of electrolyte compared to the case where the positive electrode plate was accommodated in the bag-like separator even when the height of the ribs and the number of electrode plates were varied. The amount of liquid was large, and a short-circuit occurred due to dropping of the active material, which was inferior to Examples 1-12.

なお、本発明においてPb−Ca−Sn−Ba系鉛基合金基板としてCa0.06質量%、Sn1.0質量%、Al0.015質量%、Ba0.008質量%を含み、残部がPbと不可避不純物からなるPb−Ca−Sn−Ba系鉛基合金基板を用いたが、カルシウムが0.02質量%以上で0.05質量%未満、スズが0.4質量%以上で4.0質量%以下、アルミニウムが0.04質量%以下、バリウムが0.002質量%以上で0.014質量%以下であれば、同様の効果を得ることが可能である。また、前記合金基板に0.005質量%
以上で0.07質量%以下の銀、0.01質量% 以上で0.01質量%以下のビスマス、0.001質量%以上で0.05質量%以下のタリウムの中から選ばれる少なくとも一種、及び/又は0.01質量%
以上で0.1質量%以下の銅、カリウム、リチウム、マグネシウム、ナトリウム、リン、アンチモン、セレン、テルルの中から選ばれる少なくとも一種を加えることで、更に耐食性を向上させることが可能である。
また、本実施例において、リブの形状を方形状としたが、円弧状などリブの先端が尖っていない形状としても同様の効果を得ることが可能である。
In the present invention, the Pb—Ca—Sn—Ba based lead-based alloy substrate contains Ca 0.06 mass%, Sn 1.0 mass%, Al 0.015 mass%, Ba 0.008 mass%, with the balance being Pb and inevitable impurities. A Pb—Ca—Sn—Ba based lead-based alloy substrate made of the following was used, but calcium was 0.02% by mass or more and less than 0.05% by mass, and tin was 0.4% by mass or more and 4.0% by mass or less. If aluminum is 0.04 mass% or less and barium is 0.002 mass% or more and 0.014 mass% or less, the same effect can be obtained. Moreover, 0.005 mass% on the alloy substrate
At least one selected from 0.07% by mass or less of silver, 0.01% by mass to 0.01% by mass of bismuth, 0.001% by mass to 0.05% by mass of thallium, And / or 0.01 mass%
The corrosion resistance can be further improved by adding at least one selected from copper, potassium, lithium, magnesium, sodium, phosphorus, antimony, selenium, and tellurium in an amount of 0.1% by mass or less.
Further, in the present embodiment, the rib has a rectangular shape, but the same effect can be obtained even when the tip of the rib is not sharp, such as an arc shape.

1 極板群
2 正極板
3 負極板
4 袋状セパレータ
5 正極ストラップ
6 負極ストラップ
7 電槽
71 内壁
72 仕切壁
8 リブ
9 蓋
10 液口栓
11 正極端子
12 負極端子
DESCRIPTION OF SYMBOLS 1 Electrode plate group 2 Positive electrode plate 3 Negative electrode plate 4 Bag-shaped separator 5 Positive electrode strap 6 Negative electrode strap 7 Battery case 71 Inner wall 72 Partition wall 8 Rib 9 Lid 10 Liquid stopper 11 Positive electrode terminal 12 Negative electrode terminal

Claims (1)

正極にPb−Ca−Sn−Ba系鉛基合金基板を用い、負極板と袋状セパレータに収納された正極板とを交互に積層して極板群とし、前記極板群の端板の少なくとも一方を負極板とし、該極板群を電槽に収納し、前記電槽に電解液を注入して化成を施してなる鉛蓄電池において、前記電槽を構成する内壁及び仕切壁の内、少なくとも極板群の積層方向に対し水平方向に突出するリブを設け、且つ、前記リブの高さを3.0〜7.0mmとすることを特徴とする液式鉛蓄電池。   A Pb—Ca—Sn—Ba-based lead-based alloy substrate is used for the positive electrode, and the negative electrode plate and the positive electrode plate accommodated in the bag-like separator are alternately laminated to form an electrode plate group, and at least of the end plates of the electrode plate group One of the negative electrode plates, the electrode plate group is housed in a battery case, and in a lead storage battery formed by injecting an electrolyte into the battery case and performing chemical conversion, at least of an inner wall and a partition wall constituting the battery case, A liquid lead-acid battery characterized in that a rib projecting in a horizontal direction with respect to the stacking direction of the electrode plate group is provided, and the height of the rib is 3.0 to 7.0 mm.
JP2009014178A 2009-01-26 2009-01-26 Lead storage battery Pending JP2010170939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014178A JP2010170939A (en) 2009-01-26 2009-01-26 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014178A JP2010170939A (en) 2009-01-26 2009-01-26 Lead storage battery

Publications (1)

Publication Number Publication Date
JP2010170939A true JP2010170939A (en) 2010-08-05

Family

ID=42702861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014178A Pending JP2010170939A (en) 2009-01-26 2009-01-26 Lead storage battery

Country Status (1)

Country Link
JP (1) JP2010170939A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128803A1 (en) 2013-02-22 2014-08-28 株式会社Gsユアサ Flooded lead-acid battery
EP2827411A1 (en) 2013-07-19 2015-01-21 GS Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
JP2016192406A (en) * 2016-05-12 2016-11-10 株式会社Gsユアサ Lead storage battery
WO2019087684A1 (en) * 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery for start-stop system
CN109811186A (en) * 2018-12-21 2019-05-28 超威电源有限公司 A kind of tubular cells positive slab lattice alloy
CN109841764A (en) * 2017-11-27 2019-06-04 广西明福科技有限公司 A kind of anticollision lead storage battery
JPWO2019087683A1 (en) * 2017-10-31 2020-11-12 株式会社Gsユアサ Lead-acid battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111242A (en) * 1997-10-08 1999-04-23 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2003306733A (en) * 2002-04-18 2003-10-31 Furukawa Battery Co Ltd:The Lead based alloy for lead storage battery, and lead storage battery using the same
JP2004253204A (en) * 2003-02-19 2004-09-09 Japan Storage Battery Co Ltd Lead storage battery
JP2005100726A (en) * 2003-09-24 2005-04-14 Shin Kobe Electric Mach Co Ltd Liquid type lead acid battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111242A (en) * 1997-10-08 1999-04-23 Shin Kobe Electric Mach Co Ltd Lead-acid battery
JP2003306733A (en) * 2002-04-18 2003-10-31 Furukawa Battery Co Ltd:The Lead based alloy for lead storage battery, and lead storage battery using the same
JP2004253204A (en) * 2003-02-19 2004-09-09 Japan Storage Battery Co Ltd Lead storage battery
JP2005100726A (en) * 2003-09-24 2005-04-14 Shin Kobe Electric Mach Co Ltd Liquid type lead acid battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014128803A1 (en) 2013-02-22 2014-08-28 株式会社Gsユアサ Flooded lead-acid battery
US9570779B2 (en) 2013-02-22 2017-02-14 Gs Yuasa International Ltd. Flooded lead-acid battery
EP2827411A1 (en) 2013-07-19 2015-01-21 GS Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
US9362596B2 (en) 2013-07-19 2016-06-07 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
US9899666B2 (en) 2013-07-19 2018-02-20 Gs Yuasa International Ltd. Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
JP2016192406A (en) * 2016-05-12 2016-11-10 株式会社Gsユアサ Lead storage battery
WO2019087684A1 (en) * 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery for start-stop system
CN111295792A (en) * 2017-10-31 2020-06-16 株式会社杰士汤浅国际 Lead-acid battery for idling stop
JPWO2019087684A1 (en) * 2017-10-31 2020-11-12 株式会社Gsユアサ Lead-acid battery for idling stop
JPWO2019087683A1 (en) * 2017-10-31 2020-11-12 株式会社Gsユアサ Lead-acid battery
JP7111107B2 (en) 2017-10-31 2022-08-02 株式会社Gsユアサ Lead storage battery for idling stop
JP7259758B2 (en) 2017-10-31 2023-04-18 株式会社Gsユアサ lead acid battery
CN109841764A (en) * 2017-11-27 2019-06-04 广西明福科技有限公司 A kind of anticollision lead storage battery
CN109811186A (en) * 2018-12-21 2019-05-28 超威电源有限公司 A kind of tubular cells positive slab lattice alloy

Similar Documents

Publication Publication Date Title
JP5477288B2 (en) Lead-acid battery and method for manufacturing the same
JP2008243487A (en) Lead acid battery
JP6665465B2 (en) Lead storage battery
JP2010170939A (en) Lead storage battery
WO2014162674A1 (en) Lead acid storage battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
JP5061451B2 (en) Anode current collector for lead acid battery
JP6045329B2 (en) Lead acid battery
JP6164266B2 (en) Lead acid battery
JP2012142185A (en) Lead acid battery and idling stop vehicle
JP2006086039A (en) Lead-acid storage battery
JP2017188477A (en) Lead storage battery
JP5531746B2 (en) Lead acid battery
JP6398111B2 (en) Lead acid battery
JP4647722B1 (en) Lead acid battery
WO2014097516A1 (en) Lead storage battery
JPWO2019088040A1 (en) Separator for lead-acid battery and lead-acid battery
JP5573785B2 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
JP4896392B2 (en) Lead acid battery
JP2012138331A (en) Lead storage battery and idling stop vehicle
JP6572711B2 (en) Lead acid battery
JP4364054B2 (en) Lead acid battery
JP2011159551A (en) Lead-acid storage battery
JP6006429B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217