JP6572711B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP6572711B2
JP6572711B2 JP2015192809A JP2015192809A JP6572711B2 JP 6572711 B2 JP6572711 B2 JP 6572711B2 JP 2015192809 A JP2015192809 A JP 2015192809A JP 2015192809 A JP2015192809 A JP 2015192809A JP 6572711 B2 JP6572711 B2 JP 6572711B2
Authority
JP
Japan
Prior art keywords
electrode plate
rib
width direction
battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015192809A
Other languages
Japanese (ja)
Other versions
JP2017069023A (en
Inventor
真観 京
真観 京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2015192809A priority Critical patent/JP6572711B2/en
Publication of JP2017069023A publication Critical patent/JP2017069023A/en
Application granted granted Critical
Publication of JP6572711B2 publication Critical patent/JP6572711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

この発明は鉛蓄電池に関する。   The present invention relates to a lead storage battery.

鉛蓄電池を、不完全な充電状態(PSOC(Partial state of charge))で使用する用途が多くなっている。
例えば、アイドリングストップ車(IS)では、停車の都度エンジンを停止させることにより燃料消費量を少なくし、発進時に鉛蓄電池からの電力でエンジンを起動している。このため鉛蓄電池は、充電不足の状態で使用される。IS用途に限らず、エネルギー効率を向上させるために、鉛蓄電池への充電を避け、しかも鉛蓄電池から取り出す電力が増加しているので、鉛蓄電池は充電不足な状態に置かれることが多い。
Applications for using lead-acid batteries in an incompletely charged state (PSOC (Partial state of charge)) are increasing.
For example, in an idling stop vehicle (IS), the fuel consumption is reduced by stopping the engine each time the vehicle is stopped, and the engine is started up with the electric power from the lead storage battery when starting. For this reason, lead acid batteries are used in a state of insufficient charging. In order to improve energy efficiency, not only for IS applications, charging to lead-acid batteries is avoided, and moreover, the electric power taken out from the lead-acid batteries is increasing, so that lead-acid batteries are often placed in an insufficiently charged state.

鉛蓄電池では、放電時に両極板で硫酸が消費され、正極では水が生成し、充電時に両極板から硫酸が放出され、下部に高比重の硫酸が蓄積しやすい。この結果、電解液の硫酸濃度に上下差が生じる成層化が起こるが、充電量が充分(過充電)な場合、充電末期に極板から発生するガスにより電解液が撹拌され、成層化は解消する。
しかし、PSOCで使用される鉛蓄電池では過充電量が少ないため、電解液の成層化が解消し難い。硫酸比重が高くなった下部では、充電受入性が低くなり、負極板下部においてサルフェーション(硫酸鉛の蓄積)が進行する。また、充放電反応が極板上部に集中するから、正極板上部の活物質の劣化が促進され、寿命性能が低下する。
In a lead-acid battery, sulfuric acid is consumed at the bipolar plate during discharge, water is generated at the positive electrode, sulfuric acid is released from the bipolar plate during charging, and high specific gravity sulfuric acid tends to accumulate in the lower part. As a result, stratification occurs in which the sulfuric acid concentration of the electrolyte solution varies up and down, but when the charge amount is sufficient (overcharge), the electrolyte solution is stirred by the gas generated from the electrode plate at the end of charging, and stratification is eliminated To do.
However, since the lead storage battery used in PSOC has a small amount of overcharge, it is difficult to eliminate the stratification of the electrolyte. In the lower part where the specific gravity of sulfuric acid is increased, the charge acceptability is lowered, and sulfation (accumulation of lead sulfate) proceeds in the lower part of the negative electrode plate. Further, since the charge / discharge reaction concentrates on the upper part of the electrode plate, the deterioration of the active material on the upper part of the positive electrode plate is promoted, and the life performance is lowered.

PSOCで使用される電池の成層化抑制を図る手段として、硫酸イオンの沈降速度や水の上昇速度を遅らせるために硫酸イオンや水の移動時の抵抗を大きくする方法が知られている。
特許文献1には、「ペースト式の正極板と負極板との間に、上下方向に延伸した複数の縦リブがベースとなる薄膜に形成されたセパレータが介在している液式鉛蓄電池であって、前記セパレータのベース厚さT1(mm)と、前記セパレータを介して対向する正極板と負極板との極板間の距離T2(mm)と、前記縦リブ形成箇所における前記セパレータの総厚さT3(mm)と、前記縦リブの間隔W(mm)とが、下記式(1)及び式(2)で表される関係を満たすことを特徴とする液式鉛蓄電池。
1.5≦(T2−T1)×W≦3.5・・・式(1)
0.8≦T3/T2≦1.1・・・式(2)」(請求項1)の発明が記載されている。
As a means for suppressing the stratification of the battery used in PSOC, there is known a method of increasing the resistance during movement of sulfate ions or water in order to delay the sedimentation rate of sulfate ions or the rising rate of water.
Patent Document 1 discloses a liquid lead-acid battery in which a separator formed in a thin film based on a plurality of vertical ribs extending vertically is interposed between a paste-type positive electrode plate and a negative electrode plate. Then, the base thickness T1 (mm) of the separator, the distance T2 (mm) between the electrode plates of the positive electrode plate and the negative electrode plate opposed via the separator, and the total thickness of the separator at the location where the vertical rib is formed A liquid lead-acid battery in which the length T3 (mm) and the interval W (mm) between the vertical ribs satisfy the relationship represented by the following formulas (1) and (2).
1.5 ≦ (T2−T1) × W ≦ 3.5 Formula (1)
0.8 ≦ T3 / T2 ≦ 1.1 Expression (2) ”(Claim 1) is described.

また、セパレータに高さの異なる縦リブを形成することも知られている。
特許文献2には、「袋状セパレータの外表面には、前記両側縁間を幅方向としたときに、前記幅方向の中央部の大部分に、前記幅方向に概略直交する第1の縦リブの複数を相互に平行に配置し、前記袋状セパレータの外表面の両側部であって、かつ前記正極板の端部に対向する部分及びその近傍に、前記第1の縦リブに平行な第2の縦リブの複数を相互に平行に配置し、隣接しあう2本の前記第2の縦リブの間隔は、隣接しあう2本の前記第1の縦リブの間隔よりも短く、前記第2の縦リブの前記袋状セパレータの表面からの突出高さをT2、前記第1の縦リブの前記袋状セパレータの表面からの突出高さをT1としたときに、T2<T1、かつT2≧0.2mm以上であり、前記正極板は、縦枠骨を有しないエキスパンド格子を備え、前記縦枠骨を有さない正極板の端部が、前記第2の縦リブに対向する鉛蓄電池。」(請求項1)の発明が記載されている。
そして、具体的な比較例の電池A1、B1として、T2/T1比が1.11のものが表1に記載されている。
It is also known to form vertical ribs having different heights on the separator.
Patent Document 2 states that “on the outer surface of the bag-like separator, a first longitudinal direction that is substantially orthogonal to the width direction is formed in a large part of the central portion in the width direction when the width between the both side edges is defined as the width direction. A plurality of ribs are arranged in parallel to each other, on both sides of the outer surface of the bag-like separator and in the vicinity of the portion facing the end of the positive electrode plate and in the vicinity thereof, parallel to the first vertical ribs A plurality of second vertical ribs are arranged in parallel to each other, and an interval between the two adjacent second vertical ribs is shorter than an interval between the two adjacent first vertical ribs, When the protruding height of the second vertical rib from the surface of the bag-shaped separator is T2, and the protruding height of the first vertical rib from the surface of the bag-shaped separator is T1, T2 <T1, and T2 ≧ 0.2 mm or more, and the positive electrode plate includes an expanded lattice having no vertical frame bone, End of the positive electrode plate with no frame bone, the lead-acid battery facing the second longitudinal rib. "Discloses the invention of (claim 1).
And, as batteries A1 and B1 of specific comparative examples, those having a T2 / T1 ratio of 1.11 are listed in Table 1.

特許文献3には、「表面に多数のリブを突設した袋状セパレータの中に負極板が収容され、前記袋状セパレータの前記リブに接触させて正極板が重ねられて極板群が形成されて電槽に収容されている鉛蓄電池において、前記袋状セパレータの前記負極板の幅寸法より外側に位置する部分に設けた前記リブの高さが、前記負極板の幅寸法の内側に位置する前記各リブの高さより高い鉛蓄電池。」(請求項1)の発明が記載されている。   Patent Document 3 states that “a negative electrode plate is housed in a bag-shaped separator having a large number of ribs projecting on the surface, and a positive electrode plate is stacked in contact with the rib of the bag-shaped separator to form an electrode plate group. In the lead storage battery accommodated in the battery case, the height of the rib provided in the portion located outside the width dimension of the negative electrode plate of the bag-shaped separator is located inside the width dimension of the negative electrode plate. The lead storage battery is higher than the height of each rib. "(Claim 1) is described.

特開2015−22921号公報Japanese Patent Laid-Open No. 2015-22921 特開2010−140772号公報JP 2010-140772 A 特開2003−92098号公報JP 2003-92098 A

PSOCで使用される鉛蓄電池においては、過放電状態になりやすく、極板の表面付近では放電反応により硫酸が消費され、電解液の比重が低くなっている。低比重の電解液中では鉛イオンの量が増え、この鉛イオンが充電時に負極で還元・析出してデンドライトが成長し、セパレータ内に鉛が浸透する浸透短絡が加速する。しかし、浸透短絡が極板の全体で均一に発生するのか、あるいは特定領域で発生しやすいのかはこれまで完全には明らかになっていなかった。   The lead storage battery used in PSOC is likely to be in an overdischarged state, and sulfuric acid is consumed by the discharge reaction near the surface of the electrode plate, and the specific gravity of the electrolyte is low. In the low specific gravity electrolyte, the amount of lead ions increases, and the lead ions are reduced and deposited at the negative electrode during charging to grow dendrites, and the permeation short circuit where lead penetrates into the separator is accelerated. However, it has not been completely clarified whether the permeation short circuit occurs uniformly in the entire electrode plate or easily occurs in a specific region.

一方、鉛蓄電池の製法手段として、COS方式によるストラップ形成を行う場合がある。COS方式は、ストラップと同形状の凹部を彫り込んだ鋳型の該凹部に鉛又は鉛合金を溶融させた溶鉛を流し込み、該溶鉛中に同極性の極板の耳の先端を該溶鉛へ浸漬して該溶鉛の熱で前記耳を溶かした後、冷却凝固させて前記耳と一体化したストラップを形成するものである。   On the other hand, strap formation by a COS method may be performed as a manufacturing method of a lead storage battery. In the COS method, molten lead in which lead or a lead alloy is melted is poured into the concave portion of the mold in which a concave portion having the same shape as the strap is engraved, and the tip of the ear of the electrode plate of the same polarity is poured into the molten lead in the molten lead After dipping and melting the ear with the heat of the molten lead, it is cooled and solidified to form a strap integrated with the ear.

耳とストラップの溶着を確実にするためには、同極性の両端の極板の耳の外側に溶鉛が流れ込む隙間が必要である。したがって、例えば図1に示す負極ストラップについてみると、ストラップの下面に接する両端の耳の外端間の長さA(以下、「ストラップ直下の耳群長A」又は「耳群長A」といい、単に「長さA」又は「A」ともいう。)は、前記鋳型の凹部の長さ、すなわちストラップの長さより短い。
また、COS方式においては、鋳型の形状を変更しない場合、極板枚数を多くするなどして積層方向における極板群の厚さ寸法が相当に長くなったとき、負極ストラップに接続された負極板のうち両端に位置する負極板の集電体における上部枠骨部の積層方向外端間の長さB(以下、「上部極板群長B」といい、単に「長さB」又は「B」ともいう。)が、ストラップ直下の耳群長Aと比べて長くなる。なお、上部極板群長Bは極板の幅方向中央における値とする。正極ストラップの下面に接する両端の耳の外端間の長さと正極ストラップに接続された正極板のうち両端に位置する正極板の集電体における上部枠骨部の積層方向外端間の長さについても同様の関係となる。
In order to ensure the welding of the ear and the strap, a gap through which the molten lead flows outside the ear of the electrode plate at both ends of the same polarity is necessary. Accordingly, for example, in the case of the negative strap shown in FIG. 1, the length A between the outer ends of the ears at both ends in contact with the lower surface of the strap (hereinafter referred to as “ear group length A immediately below the strap” or “ear group length A”). Simply referred to as “length A” or “A”) is shorter than the length of the concave portion of the mold, that is, the length of the strap.
In the COS method, when the shape of the mold is not changed, the negative electrode plate connected to the negative electrode strap is increased when the thickness dimension of the electrode plate group in the stacking direction is considerably increased by increasing the number of electrode plates. Length B between the outer ends in the stacking direction of the upper frame in the current collector of the negative electrode plate located at both ends (hereinafter referred to as “upper electrode plate group length B”, simply “length B” or “B Is also longer than the ear group length A immediately below the strap. The upper electrode plate group length B is a value at the center in the width direction of the electrode plate. The length between the outer ends of the ears at both ends in contact with the lower surface of the positive strap and the length between the outer ends in the stacking direction of the upper frame of the current collector of the positive plate located at both ends of the positive plates connected to the positive strap The same relationship applies to.

本発明者は、上述した浸透短絡は、極板群の上部、中でもとくに極板の幅方向中央部で発生頻度が高いということを発見した。さらに、耳群長Aと上部極板群長Bの大小関係について検討した結果、A<Bであると、浸透短絡の発生が顕著となることを見出した。また、そのようなことに加えて、本発明者は、A<Bであると、耐浸透短絡性能は低下するが、低温高率放電特性が向上することも見出した。A≧Bであると、A<Bの場合と比べて浸透短絡は抑制される。しかし、A≧Bとするためには、A<Bとする場合と比べてストラップを大形化する必要が有り、その結果、たとえば、材料コストが高くなる、鋳型を更新する必要がある、あるいはJISD5301に規定されているような所定寸法の電槽内に収納することが困難になる、といったことが起こり得る。   The present inventor has found that the above-described penetration short circuit occurs frequently at the upper part of the electrode plate group, particularly at the center in the width direction of the electrode plate. Furthermore, as a result of examining the magnitude relationship between the ear group length A and the upper electrode plate group length B, it was found that the occurrence of an osmotic short circuit becomes significant when A <B. In addition to the above, the present inventor has also found that when A <B, the permeation-resistant short-circuit performance is lowered, but the low-temperature high-rate discharge characteristics are improved. When A ≧ B, the osmotic short circuit is suppressed as compared to the case of A <B. However, in order to satisfy A ≧ B, it is necessary to increase the size of the strap as compared with the case where A <B. As a result, for example, the material cost increases, the mold needs to be updated, or It may be difficult to store in a battery case having a predetermined size as defined in JIS D5301.

特許文献1に記載された発明は、セパレータのベース厚さ、総厚さ、リブ間隔及び極板距離の関係を特定することにより、正極板とセパレータとの間の空間を細かく分割し、イオンの沈降や水の上昇に適度な抵抗を与えることにより、PSOCで使用される電池の成層化抑制を図るものである(段落[0002]〜[0007])。しかし、耐浸透短絡性能について考慮したものではない。   The invention described in Patent Document 1 specifies the relationship between the base thickness of the separator, the total thickness, the rib interval, and the electrode plate distance, thereby finely dividing the space between the positive electrode plate and the separator, By providing an appropriate resistance to sedimentation and water rise, the stratification of batteries used in PSOC is suppressed (paragraphs [0002] to [0007]). However, it does not consider permeation resistance short circuit performance.

特許文献2,3に記載された発明は、正極板とセパレータの間隔を、セパレータの幅方向のリブ高さを端部と中央部とで異なるように調整することにより、正極板の腐食伸びによる活物質の脱落や、セパレータの破損による短絡を防止することを目的とするものであり、耐浸透短絡性能の向上を意図したものでない。なお、セパレータの破損による短絡と浸透短絡は全く異なる現象である。
特許文献3において、セパレータの幅方向端部の突出高さが高いリブは、正極板が幅方向に伸びたときに初めて正極板の端部を支えるものである。つまり、当該リブは正極板が幅方向に伸びていない状態では正極板の端部に対向しない。また、特許文献3に記載の発明は耐浸透短絡性能の向上を課題とするものでない。
In the inventions described in Patent Documents 2 and 3, by adjusting the interval between the positive electrode plate and the separator so that the rib height in the width direction of the separator differs between the end portion and the central portion, The purpose is to prevent the active material from dropping or the short circuit due to the breakage of the separator, and is not intended to improve the permeation resistance short circuit performance. Note that a short circuit due to breakage of the separator and an infiltration short circuit are completely different phenomena.
In Patent Document 3, a rib having a high protruding height at the end in the width direction of the separator supports the end of the positive electrode plate only when the positive electrode plate extends in the width direction. That is, the rib does not face the end of the positive electrode plate when the positive electrode plate does not extend in the width direction. In addition, the invention described in Patent Document 3 is not intended to improve permeation resistance short circuit performance.

本発明は、ストラップ下面の耳群長Aが上部極板群長Bより小さく、耐浸透短絡性能が向上した鉛蓄電池を提供することを目的とする。   An object of the present invention is to provide a lead-acid battery in which the ear group length A on the lower surface of the strap is smaller than the upper electrode plate group length B and the permeation-resistant short-circuit performance is improved.

本発明は、前記の課題を解決するために、以下の手段を有する。
本第一発明は、正極板と負極板とをセパレータを介して積層した極板群と、電解液と、前記極板群を収納した電槽を備えた鉛蓄電池であって、
正極ストラップ又は負極ストラップのうち少なくとも一方のストラップの直下における両端の耳の外端間の長さAが、前記少なくとも一方のストラップに接続された極板のうち両端に位置する極板における上部枠骨部の積層方向外端間の長さBより小さく、
前記セパレータは、正極板と向かい合う面及び負極板と向かい合う面のうち、少なくとも一方の面に複数のリブを有し、
前記リブは、前記セパレータの少なくとも一方の面において、前記正極板の幅方向の中央部又は前記負極板の幅方向の中央部に対向する第一リブの突出方向への高さ(T)が、前記正極板の幅方向の端部又は前記負極板の幅方向の端部に対向する第二リブの突出方向への高さ(T)より低いことを特徴とする。
In order to solve the above-mentioned problems, the present invention has the following means.
This first invention is a lead storage battery comprising an electrode plate group in which a positive electrode plate and a negative electrode plate are laminated via a separator, an electrolyte, and a battery case containing the electrode plate group,
The upper frame bone in the pole plate located at both ends of the pole plates connected to the at least one strap, in which the length A between the outer ends of the ears at both ends immediately below at least one of the positive strap and the negative strap is Smaller than the length B between the outer ends in the stacking direction of the parts,
The separator has a plurality of ribs on at least one of a surface facing the positive electrode plate and a surface facing the negative electrode plate,
The rib has, in at least one surface of the separator, a height (T 1 ) in the protruding direction of the first rib that faces the central portion in the width direction of the positive electrode plate or the central portion in the width direction of the negative electrode plate. The height (T 2 ) in the protruding direction of the second rib that faces the end in the width direction of the positive electrode plate or the end in the width direction of the negative electrode plate is lower.

本第二発明は、前記第一発明において、前記第一リブの突出方向への高さ(T)と第二リブの突出方向への高さ(T)との比T/Tが、T/T≧1.2の関係式を満たすことを特徴とする。 According to the second invention, in the first invention, a ratio T 2 / T 1 between a height (T 1 ) of the first rib in the protruding direction and a height (T 2 ) of the second rib in the protruding direction. Satisfies the relational expression of T 2 / T 1 ≧ 1.2.

本第三発明は、前記第一又は第二発明において、前記正極板の幅方向中央部における前記極板群の極板積層方向の厚さが、前記正極板の幅方向端部における前記極板群の極板積層方向の厚さ以上であることを特徴とする。   The third invention is the electrode plate according to the first or second invention, wherein the thickness of the electrode plate group in the width direction center portion of the positive electrode plate is equal to the thickness of the electrode plate in the width direction end portion of the positive electrode plate. It is more than the thickness of a group electrode plate lamination direction.

本第四発明は、前記第一乃至第三発明のいずれかにおいて、前記鉛蓄電池はアイドリングストップ車用の鉛蓄電池であることを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the lead storage battery is a lead storage battery for an idling stop vehicle.

本第一発明によれば耐浸透短絡性能が向上した鉛蓄電池を提供することができる。
本第二発明によれば耐浸透短絡性能が一層向上した鉛蓄電池を提供することができる。
本第三発明によれば耐浸透短絡性能が顕著に向上した鉛蓄電池を提供することができる。
本第四発明によれば、浸透短絡を抑制する効果と、ストラップを小形化できる効果と、アイドリングストップ車用途に適した電極群を制限された電槽内の空間に収納できる設計が可能となる効果とを同時に得ることにより、アイドリングストップ用に特に適した鉛蓄電池を提供することができる。
According to the first invention, it is possible to provide a lead-acid battery having improved permeation short-circuit performance.
According to the second invention, it is possible to provide a lead storage battery having further improved permeation resistance short circuit performance.
According to the third aspect of the present invention, it is possible to provide a lead storage battery in which the permeation resistance short circuit performance is significantly improved.
According to the fourth aspect of the present invention, an effect of suppressing an osmotic short circuit, an effect of miniaturizing a strap, and a design capable of accommodating an electrode group suitable for idling stop vehicle use in a limited space in a battery case are possible. By simultaneously obtaining the effect, it is possible to provide a lead storage battery particularly suitable for idling stop.

ストラップ直下の耳群長Aと上部極板群長Bの説明図Explanatory drawing of ear group length A and upper electrode plate group length B just below the strap 本発明に係るセパレータの上面図Top view of separator according to the present invention PSOC寿命試験のサイクルパターンの説明図Illustration of cycle pattern of PSOC life test /Tと浸透短絡発生率との関係を示すグラフGraph showing relationship between T 2 / T 1 and penetration short-circuit occurrence rate /TとPSOC寿命の関係を示すグラフGraph showing the relationship between T 2 / T 1 and PSOC life

本発明の鉛蓄電池は、ストラップ直下の耳群長Aと上部極板群長BがA<Bであって、セパレータが、正極板と向かい合う面及び負極板と向かい合う面のうち、少なくとも一方の面に複数のリブを有し、前記リブは、前記セパレータの少なくとも一方の面において、前記正極板の幅方向の中央部又は前記負極板の幅方向の中央部に対向する第一リブの突出方向への高さ(T)が、前記正極板の幅方向の端部又は前記負極板の幅方向の端部に対向する第二リブの突出方向への高さ(T)より低いことを特徴とする。少なくとも負極ストラップと負極板、又は正極ストラップと正極板の少なくとも一方についてA<Bであればよいが、負極ストラップと負極板、及び正極ストラップと正極板の両方についてA<Bであるのが好ましい。 In the lead storage battery of the present invention, the ear group length A and the upper electrode plate group length B immediately below the strap are A <B, and the separator is at least one of the surface facing the positive electrode plate and the surface facing the negative electrode plate. A plurality of ribs, and the ribs extend in a protruding direction of the first rib facing the central portion in the width direction of the positive electrode plate or the central portion in the width direction of the negative electrode plate on at least one surface of the separator. The height (T 1 ) of the second rib is lower than the height (T 2 ) in the protruding direction of the second rib facing the end in the width direction of the positive electrode plate or the end in the width direction of the negative electrode plate. And At least one of the negative electrode strap and the negative electrode plate or at least one of the positive electrode strap and the positive electrode plate may satisfy A <B, but it is preferable that A <B holds for both the negative electrode strap and the negative electrode plate and both of the positive electrode strap and the positive electrode plate.

以下に、本発明の実施形態を示す。本発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施形態を適宜に変更できる。なお、以下、負極電極材料を負極活物質と呼び、正極電極材料を正極活物質と呼ぶ。負極板は、負極集電体と負極活物質(負極電極材料)とから成り、正極板は、正極集電体と正極活物質(正極電極材料)とから成り、集電体以外の固形成分は活物質(電極材料)に属するものとする。集電体は、活物質が充填される格子部、格子部の縁に連接された上部枠骨部、下部枠骨部、上部枠骨部から突出する耳を備え、さらに横枠骨部と、下枠骨部から突出する足を備えるものがある。
本発明において、極板群(積層体)の上部とは、集電体において、格子部の高さを基準として、上から50%までを上部、下から50%までを下部という。極板の幅方向端部とは、極板の幅を基準として、極板の幅方向両端からそれぞれ極板幅の20%までの部分をいう。極板の幅方向中央部とは、極板において極板の幅方向端部を除いた部分をいう。なお、極板の幅方向は図2に示すとおりである。
Embodiments of the present invention are shown below. In carrying out the present invention, the embodiments can be changed as appropriate according to common sense of those skilled in the art and disclosure of prior art. Hereinafter, the negative electrode material is referred to as a negative electrode active material, and the positive electrode material is referred to as a positive electrode active material. The negative electrode plate is composed of a negative electrode current collector and a negative electrode active material (negative electrode material), the positive electrode plate is composed of a positive electrode current collector and a positive electrode active material (positive electrode material), and solid components other than the current collector are It belongs to the active material (electrode material). The current collector includes a lattice portion filled with an active material, an upper frame bone portion connected to an edge of the lattice portion, a lower frame bone portion, and ears protruding from the upper frame bone portion, and further, a lateral frame bone portion, Some have feet protruding from the lower frame bone.
In the present invention, the upper part of the electrode plate group (laminated body) refers to the upper part up to 50% from the top and the lower part up to 50% from the bottom, based on the height of the lattice part in the current collector. The end portion in the width direction of the electrode plate refers to a portion from the both ends in the width direction of the electrode plate to 20% of the electrode plate width with reference to the width of the electrode plate. The width direction center part of an electrode plate means the part except the width direction edge part of the electrode plate in the electrode plate. The width direction of the electrode plate is as shown in FIG.

本発明に係る鉛蓄電池は、例えば、鉛を活物質とする負極板と、二酸化鉛を活物質とする正極板と、これら極板の間に介在するセパレータとからなる極板群を備えたものであり、当該極板群が電槽内に収納され、希硫酸を主成分とする流動可能な電解液に浸漬されてなるものである。   The lead storage battery according to the present invention includes, for example, an electrode plate group including a negative electrode plate using lead as an active material, a positive electrode plate using lead dioxide as an active material, and a separator interposed between these electrode plates. The electrode plate group is housed in a battery case and immersed in a flowable electrolytic solution mainly composed of dilute sulfuric acid.

前記負極板及び正極板は、Pb−Sb系合金やPb−Ca系合金、Pb−Ca−Sn系合金等からなる集電体の格子部にペースト状の活物質を充填して形成されたものである。これらの各構成部材は、目的・用途に応じて適宜公知のものから選択して用いることができる。   The negative electrode plate and the positive electrode plate are formed by filling a grid portion of a current collector made of a Pb—Sb alloy, a Pb—Ca alloy, a Pb—Ca—Sn alloy, or the like with a paste-like active material. It is. Each of these constituent members can be appropriately selected from known ones according to the purpose and use.

セパレータは、液式鉛蓄電池のセパレータとして一般的に用いられているものを用いることができる。たとえば、微細孔を有するポリオレフィンを主成分とするシート、樹脂やガラスの繊維を主成分とするマットを用いることができる。とくに、取扱い性やコストの面で、微細孔を有するポリエチレンを主成分とするシートを用いることが好ましい。セパレータは平板状であってもよいが、活物質の脱落を防止するためには、正極板、負極板のいずれかを収納する袋状であることが好ましい。正極板は腐食伸びが大きいから、負極板を収納する袋状であることがより好ましい。   What is generally used as a separator of a liquid lead acid battery can be used for a separator. For example, a sheet mainly composed of polyolefin having fine pores, or a mat mainly composed of resin or glass fibers can be used. In particular, from the viewpoint of handleability and cost, it is preferable to use a sheet mainly composed of polyethylene having fine holes. The separator may have a flat plate shape, but is preferably a bag shape that accommodates either the positive electrode plate or the negative electrode plate in order to prevent the active material from falling off. Since the positive electrode plate has a large corrosion elongation, it is more preferable that the positive electrode plate has a bag shape for housing the negative electrode plate.

袋状セパレータに負極板を収納する場合、このセパレータは、図2にその上面図を示すように、正極板と向かい合う面、負極板と向かい合う面の少なくとも一方の面に平板状の部分(以下、「ベース部」又は「ベース」という。)から突出する複数のリブを有し、前記リブのうち、前記正極板の幅方向の中央部又は前記負極板の幅方向の中央部に対向する第一リブの突出方向への高さ(T)が、前記正極板の幅方向の端部又は前記負極板の幅方向の端部に対向する第二リブの突出方向への高さ(T)より低いものである。なお、第一リブの突出方向への高さ(T)及び第二リブの突出方向への高さ(T)はそれぞれ突出する側のベース部の表面からの高さである。極板の幅方向の中央部に対向する第一リブは、極板の幅方向両端から極板幅の20%以内の部分を除く範囲と対向する領域にあることが好ましい。極板の幅方向の端部に対向する第二リブは、極板の幅方向端部を含み、端部から20%以内の部分と対向する領域にあることが好ましい。なお、セパレータが、前記一方の面とは他方の面にもリブを有することを排除するものではない。
正極板と向かい合う面にリブを有すると、セパレータのベースと正極板が接触することによるセパレータの酸化や損傷を防ぐことができる。したがって、少なくとも正極板と向かい合う面にリブを有するのが好ましい。
正極板と向かい合う面、負極板と向かい合う面の両面に複数のリブを有する場合、一方の面のリブにおいてT<Tであってもよいし、両方の面のリブにおいて、T<Tであってもよい。
ベースとリブの合計厚さをセパレータ総厚という。一方の面にリブを有する場合、セパレータ総厚は、ベース厚さと最も高いリブのリブ高さを合計した値であり、両方の面にリブを有する場合、セパレータ総厚は、ベースの厚さとそれぞれの面の最も高いリブのリブ高さを合計した値である。セパレータ総厚は、0.3〜1.0mm程度が好ましく、Tは、0.1〜0.8mm程度、Tは、0.15〜0.9mm程度でTはTより0.1mm〜0.5mm程度小さいことが好ましい。
なお、第一リブ、第二リブの伸びる方向は上下方向、左右方向、斜め方向等任意である。第一リブ、第二リブの形状は線状の突起、点状の突起が並んだ形状など形状は任意であるが、線状の突起であることが好ましい。また、極板の幅方向端部に対向する部分に第二リブよりも突出方向への高さが低い第三リブを有してもよい。また、第二リブはその全長に渡ってT<Tでなくてもよく、部分的に突出方向への高さが低い部分があってもよい。また、T<TとはT=0かつT>0でもよく、極板幅方向の中央部に対向する部分にリブ(第一リブ)を有さず、極板幅方向の端部に対向する部分のみにリブ(第二リブ)を有する実施形態も本発明の範囲内である。
When the negative electrode plate is stored in the bag-shaped separator, as shown in a top view of FIG. 2, the separator has a flat plate-like portion (hereinafter referred to as the following) on at least one of the surface facing the positive electrode plate and the surface facing the negative electrode plate. A plurality of ribs protruding from a base portion), and of the ribs, a first portion facing a central portion in the width direction of the positive electrode plate or a central portion in the width direction of the negative electrode plate. The height (T 1 ) of the rib in the protruding direction is the height (T 2 ) of the second rib facing the widthwise end of the positive electrode plate or the widthwise end of the negative electrode plate. Is lower. The height (T 1 ) in the protruding direction of the first rib and the height (T 2 ) in the protruding direction of the second rib are the heights from the surface of the protruding base portion. The first rib facing the central portion in the width direction of the electrode plate is preferably in a region facing a range excluding a portion within 20% of the electrode plate width from both ends in the width direction of the electrode plate. The second rib facing the end in the width direction of the electrode plate preferably includes the end in the width direction of the electrode plate and is in a region facing a portion within 20% from the end. In addition, it does not exclude that the separator has ribs on the other side of the one side.
When a rib is provided on the surface facing the positive electrode plate, oxidation and damage of the separator due to contact between the separator base and the positive electrode plate can be prevented. Therefore, it is preferable to have a rib at least on the surface facing the positive electrode plate.
Surface facing the positive electrode plate, the case where a plurality of ribs on both sides of opposed surfaces and a negative electrode plate, may be a T 1 <T 2 in the ribs on one side, in the ribs of both faces, T 1 <T 2 may be sufficient.
The total thickness of the base and ribs is called the total separator thickness. When ribs are provided on one side, the total separator thickness is the sum of the base thickness and the rib height of the highest rib. When ribs are provided on both sides, the total separator thickness is the same as the base thickness. This is the total value of the rib heights of the highest ribs on the surface. The total separator thickness is preferably about 0.3 to 1.0 mm, T 1 is about 0.1 to 0.8 mm, T 2 is about 0.15 to 0.9 mm, and T 1 is less than T 2 by about 0.2 mm. It is preferably about 1 mm to 0.5 mm smaller.
The direction in which the first rib and the second rib extend is arbitrary such as the vertical direction, the horizontal direction, and the diagonal direction. The shape of the first rib and the second rib is arbitrary, such as a linear protrusion, a shape in which point-like protrusions are arranged, and a linear protrusion is preferable. Moreover, you may have the 3rd rib whose height to a protrusion direction is lower than a 2nd rib in the part facing the width direction edge part of an electrode plate. In addition, the second rib may not have T 1 <T 2 over the entire length, and may have a portion that is partially low in the protruding direction. T 1 <T 2 may be T 1 = 0 and T 2 > 0, and does not have a rib (first rib) at a portion facing the central portion in the electrode plate width direction, and ends in the electrode plate width direction. Embodiments having ribs (second ribs) only in the part facing the part are also within the scope of the present invention.

前記の正極板と前記の負極板とは前記のセパレータを介して積層されており、同極性の極板の耳がCOS方式による溶接により接続されて一体となった極板群を構成している。複数の極板の耳を溶接一体化してなる部分がストラップである。本発明の鉛蓄電池は、正極ストラップ又は負極ストラップのうち少なくとも一方のストラップ直下の耳群長Aが、前記少なくとも一方のストラップに接続された極板の上部極板群長Bより小さい。この長さAは、図1に示すように、ストラップの下面に接する両端の耳の外端間の長さである。そして、長さBは、図1に示すように、ストラップに接続された極板のうち両端に位置する極板の集電体の上部枠骨部の積層方向外端間の長さである。なお、長さA及び長さBは、極板群が電槽に収納され、かつ、化成された後であり、かつ、満充電の状態の寸法とする。この寸法の測定は、極板群の積層方向の寸法を電槽収納時の寸法とほぼ同じにしさえすれば、極板群を電槽から出した状態で行うことができる。
本発明においては、A<Bとすることによってストラップを小形化することが可能となる。その結果、たとえば、材料コストを低減し、極板群のサイズが変わっても鋳型を変更することを不要とし、あるいは、より多くの活物質を充填することにより積層方向に長くなった極板群をJISD5301に規定されているような所定寸法の電槽内に収納することが可能になる、といった効果がある。また、本発明においては、長さAと長さBとの差は、1mm以上とすることができ、本発明の効果が顕著であることから3mm以上とすることが好ましい。
The positive electrode plate and the negative electrode plate are laminated via the separator, and the electrode plates having the same polarity are joined together by welding by a COS method to form an integrated electrode plate group. . A portion formed by welding and integrating the ears of a plurality of electrode plates is a strap. In the lead storage battery of the present invention, the ear group length A immediately below at least one of the positive strap and the negative strap is smaller than the upper plate group length B of the electrode plate connected to the at least one strap. This length A is the length between the outer ends of the ears at both ends contacting the lower surface of the strap, as shown in FIG. As shown in FIG. 1, the length B is the length between the outer ends in the stacking direction of the upper frame bones of the current collectors of the electrode plates located at both ends of the electrode plates connected to the strap. The length A and the length B are dimensions after the electrode plate group is accommodated in the battery case and formed, and in a fully charged state. The measurement of this dimension can be performed in a state in which the electrode plate group is taken out of the battery case as long as the dimension of the electrode plate group in the stacking direction is substantially the same as the dimension when the battery case is stored.
In the present invention, the strap can be miniaturized by satisfying A <B. As a result, for example, the material cost is reduced, and it is not necessary to change the mold even if the size of the electrode plate group changes, or the electrode plate group that is longer in the stacking direction by filling more active materials Can be stored in a battery case having a predetermined size as defined in JIS D5301. In the present invention, the difference between the length A and the length B can be 1 mm or more, and is preferably 3 mm or more because the effects of the present invention are remarkable.

ストラップには、電槽内に複数のセル室が存在する場合、隣り合う電池セル間を接続するセル間接続部と、電池の端子と接続される極柱とがそれぞれ連接されている。電槽が単セル構造である場合は、ストラップに極柱が連接されている。ストラップ、セル間接続部、及び極柱は、例えば、Pb−Sn系合金や、Pb−Sb系合金などを用いて形成される。   In the strap, when a plurality of cell chambers exist in the battery case, an inter-cell connecting portion that connects adjacent battery cells and a pole column that is connected to a battery terminal are connected to each other. In the case where the battery case has a single cell structure, a pole column is connected to the strap. The strap, the inter-cell connection portion, and the pole column are formed using, for example, a Pb—Sn alloy or a Pb—Sb alloy.

この極板群をポリプロピレン等の合成樹脂製の電槽に収納し、硫酸を加え、電槽化成を施して液式鉛蓄電池を作製する。   The electrode plate group is housed in a battery case made of a synthetic resin such as polypropylene, and sulfuric acid is added to form a battery case to produce a liquid lead-acid battery.

本発明の鉛蓄電池では耐浸透短絡性能が向上する。この効果は、正極板の幅方向の中央部又は負極板の幅方向の中央部に対向する第一リブの突出方向への高さ(T)が、正極板の幅方向の端部又は負極板の幅方向の端部に対向する第二リブの突出方向への高さ(T)より低いセパレータを用いることにより、極板の幅方向中央部に位置する第一リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触することが防止され、特に浸透短絡の発生頻度が高い極板間の幅方向中央部において、浸透短絡の経路を絶つことができるためと推察される。 In the lead storage battery of the present invention, the permeation-resistant short-circuit performance is improved. The effect is that the height (T 1 ) in the protruding direction of the first rib facing the central portion of the positive electrode plate in the width direction or the negative electrode plate in the width direction is the end portion of the positive electrode plate in the width direction or the negative electrode. By using a separator that is lower than the height (T 2 ) in the protruding direction of the second rib facing the end in the width direction of the plate, the rib tip and rib of the first rib located at the center in the width direction of the electrode plate The separator surface located on the opposite side of the electrode is prevented from contacting the positive and negative electrode plates at the same time, and the path of the permeation short circuit can be cut off particularly in the center in the width direction between the electrode plates where the occurrence frequency of the permeation short circuit is high. Inferred.

また、ポリオレフィン系の合成樹脂等からなるセパレータは、一般にリブの密度がベース部に比べて高く、多孔度が低い。したがって、リブと極板の接触部分では、電解液の拡散が不十分となるため、極板表面のリブ接触部は、充放電反応に寄与しにくくなる。
本発明によれば、極板の幅方向中央部においては、第一リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触し難くし、端部においては第二リブにより極間距離を適度に保つことができるので、電解液の拡散性が向上するため、成層化が抑制され、PSOC寿命性能が向上すると推察される。
Further, a separator made of a polyolefin-based synthetic resin or the like generally has a rib density higher than that of the base portion and a low porosity. Accordingly, since the electrolyte solution is insufficiently diffused at the contact portion between the rib and the electrode plate, the rib contact portion on the electrode plate surface is unlikely to contribute to the charge / discharge reaction.
According to the present invention, at the central portion in the width direction of the electrode plate, the rib tip of the first rib and the separator surface located on the opposite side of the rib are unlikely to contact the positive and negative electrode plates at the same time. Therefore, it is presumed that the diffusibility of the electrolytic solution is improved, so that stratification is suppressed and PSOC life performance is improved.

耐浸透短絡性能が向上する効果は、長さAと長さBとの関係がA<Bとなっている場合に顕著に認められる。なぜなら、この場合においては、A≧Bの場合と比べて、極板の幅方向中央部で浸透短絡が発生する頻度が高いので、本発明を適用することによる浸透短絡抑制効果が明確に認められるからである。A≧Bの場合は、そもそも浸透短絡が発生する頻度が低く、極板群の上部の中でもとくに極板の幅方向中央部で発生頻度が高いということはこれまで知られていないので、そのような認識のない製造者や使用者が、他の箇所での浸透短絡や故障要因と区別できる程度に、当該現象を認知することはないと考えられる。
本発明においては、浸透短絡を抑制するとともに、ストラップを小形化できるという効果を同時に得ることができる。A<Bとすることによって極板群の上部の中でもとくに極板の幅方向中央部で浸透短絡の発生頻度が高くなるという現象は本発明者によって初めて見出された現象である。したがって、A<Bという構成とし、かつ、少なくとも一方の面において、極板の幅方向中央部に位置する第一リブの突出方向への高さが、極板の幅方向端部に位置する第二リブの突出方向への高さより低いセパレータを用いることで浸透短絡の抑制とストラップの小型化とを同時に達成できるという効果は発明者が初めて認識したものといえる。
The effect of improving the permeation-resistant short-circuit performance is noticeable when the relationship between the length A and the length B is A <B. This is because in this case, the penetration short circuit occurs more frequently in the central part in the width direction of the electrode plate than in the case of A ≧ B, so that the penetration short circuit suppression effect by applying the present invention is clearly recognized. Because. In the case of A ≧ B, the frequency of occurrence of permeation short-circuits is low in the first place, and it has not been known so far that the frequency of occurrence is high especially in the central part of the electrode plate in the width direction, so that It is considered that a manufacturer or user who is not aware of this phenomenon will not recognize the phenomenon to such an extent that it can be distinguished from a penetration short circuit and a failure factor in other places.
In the present invention, it is possible to simultaneously obtain the effect of suppressing the penetration short circuit and reducing the size of the strap. The phenomenon that the occurrence frequency of the permeation short-circuit increases at the center of the electrode plate in the width direction among the upper parts of the electrode plate group by setting A <B is a phenomenon first found by the present inventors. Therefore, the height of the first rib located in the central portion in the width direction of the electrode plate in the projecting direction of the first plate is at the end in the width direction of the electrode plate. It can be said that the inventor has recognized for the first time that the use of a separator lower than the height in the projecting direction of the two ribs can simultaneously achieve the suppression of the penetration short circuit and the miniaturization of the strap.

本発明は、また、上記の鉛蓄電池において、極板幅方向の中央部における極板群の極板積層方向の厚さを、前記極板幅方向端部における前記極板群の極板積層方向の厚さ以上とすることが好ましい。
COS方式でストラップを形成する場合、一般に極板群を構成する各極板の耳位置がずれるのを防ぐため、極板群の上部をクランプ等で挟んで固定した状態でストラップを形成する。極板の幅方向中央部のみをクランプ等で挟んで固定すると、極板群は幅方向中央部が特に圧迫される。この場合、T<Tである鉛蓄電池では幅方向中央部における極板群の極板積層方向の厚さが、幅方向端部における前記極板群の極板積層方向の厚さよりも小さくなる。その結果、T<Tである鉛蓄電池であっても、第一リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触しやすくなるため、耐浸透短絡性能は大きくは向上しない。
極板の幅方向全体をクランプ等で挟んで固定すると、極板群は幅方向で均一に圧迫される。また、極板の幅方向端部のみをクランプ等で挟んで固定すると、極板群は幅方向端部が特に圧迫される。これらの場合、T<Tである鉛蓄電池では幅方向中央部における極板群の極板積層方向の厚さが、幅方向端部における極板群の極板積層方向の厚さ以上になる。その結果、第一リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触するのをより確実に防止できるため、耐浸透短絡性能は顕著に向上する。なお、幅方向中央部における極板群の極板積層方向の厚さ及び幅方向端部における極板群の極板積層方向の厚さは極板群の極板積層方向の両端の極板の上部枠骨部における厚さとする。
In the above lead storage battery, the thickness of the electrode plate grouping direction of the electrode plate group at the center part in the electrode plate width direction is set to the electrode plate stacking direction of the electrode plate group at the end of the electrode plate width direction. It is preferable that the thickness be equal to or greater than.
When the strap is formed by the COS method, in general, the strap is formed in a state where the upper portion of the electrode plate group is clamped and fixed in order to prevent the position of the ears of each electrode plate group from shifting. When only the center part in the width direction of the electrode plate is clamped and fixed, the electrode plate group is particularly compressed at the center part in the width direction. In this case, in the lead storage battery in which T 1 <T 2 , the thickness in the electrode plate stacking direction of the electrode plate group in the center portion in the width direction is smaller than the thickness in the electrode plate stacking direction of the electrode plate group in the end portion in the width direction. Become. As a result, even in a lead storage battery with T 1 <T 2 , the separator tip located on the opposite end of the rib and the rib end of the first rib is likely to be in contact with the positive and negative electrode plates at the same time. It does not improve greatly.
When the entire width direction of the electrode plate is clamped and fixed, the electrode plate group is uniformly pressed in the width direction. Further, when only the end portion in the width direction of the electrode plate is clamped and fixed, the end portion in the width direction of the electrode plate group is particularly pressed. In these cases, in the lead storage battery in which T 1 <T 2 , the thickness in the electrode plate stacking direction of the electrode plate group in the center portion in the width direction is greater than or equal to the thickness in the electrode plate stacking direction in the electrode plate group in the width direction end portion Become. As a result, it is possible to more reliably prevent the separator tip located on the opposite side of the rib tip of the first rib from contacting the positive and negative electrode plates at the same time, so that the permeation short circuit performance is significantly improved. In addition, the thickness of the electrode plate grouping direction of the electrode plate group in the central portion in the width direction and the thickness of the electrode plate grouping direction of the electrode plate group in the end portion in the width direction are the values of the electrode plates at both ends of the electrode plate group in the electrode plate lamination direction. It is the thickness at the upper frame bone.

本発明は、アイドリングストップ車用の鉛蓄電池に適用することが好ましい。なぜなら、アイドリングストップ車用の鉛蓄電池は、PSOC条件下で使用されるので他の用途の電池と比べて浸透短絡が生じる確率が高く、その結果として、本発明を適用する意義が大きいからである。
また、本発明をアイドリングストップ車用の鉛蓄電池に適用することで初めて得られる効果もある。アイドリングストップ車用の鉛蓄電池は、非アイドリングストップ車用途のものと比べて、高い充電受入れ性能を達成するため多くの活物質が必要であり、その結果として、極板群の積層方向の寸法(たとえば長さB)は大きくなりがちである。このような極板群を用いた電池を製造する場合、A=BあるいはA>Bとしたときは、ストラップが大形化することとなるので、電槽に収納するのが困難となることがある。とくに、JISD5301に規定されている型式の電池は、電槽サイズに上限が設定されているため、ストラップが長すぎると実質的に電池を製造できなくなることもある。これに対して、A<Bとしたときは、ストラップを大形化する必要がないので、極板群の積層方向の寸法を大きくした場合でも、電槽に収納するのが困難という問題は解決可能となる。したがって、本発明においては、少なくとも一方の面において、極板の幅方向中央部に対向する第一リブの突出方向への高さが、極板の幅方向端部に対向する第二リブの突出方向への高さより低いセパレータを備え、かつ、A<Bとの構成とし、さらにアイドリングストップ車用の鉛蓄電池として用いることによって、浸透短絡を抑制する効果と、ストラップを小形化できる効果と、アイドリングストップ車用途に適した電極群を制限された電槽内の空間に収納できる設計が可能となる効果とを同時に得ることができる。すなわち、本発明を採用して初めて、極板上部における浸透短絡が抑制され、アイドリングストップ車用鉛蓄電池として十分な活物質量を備えた鉛蓄電池が製造可能となるのである。
The present invention is preferably applied to a lead-acid battery for an idling stop vehicle. This is because a lead storage battery for an idling stop vehicle is used under PSOC conditions, and therefore has a higher probability of causing an osmotic short-circuit than batteries for other uses, and as a result, the significance of applying the present invention is great. .
Moreover, there is an effect obtained for the first time by applying the present invention to a lead-acid battery for an idling stop vehicle. Lead-acid batteries for idling stop vehicles require more active materials to achieve higher charge acceptance performance than those for non-idling stop vehicles. As a result, the dimension of the electrode plate group in the stacking direction ( For example, length B) tends to be large. When manufacturing a battery using such an electrode plate group, when A = B or A> B, the strap becomes large, so that it may be difficult to store in the battery case. is there. In particular, the battery of the type specified in JIS D5301 has an upper limit for the battery case size, and if the strap is too long, the battery may not be manufactured substantially. On the other hand, when A <B, since it is not necessary to enlarge the strap, the problem that it is difficult to store in the battery case is solved even when the dimension of the electrode plate group in the stacking direction is increased. It becomes possible. Therefore, in the present invention, on at least one surface, the height in the protruding direction of the first rib that opposes the central portion in the width direction of the electrode plate is the protrusion of the second rib that opposes the end portion in the width direction of the electrode plate. By providing a separator lower than the height in the direction and having a configuration of A <B, and further using it as a lead storage battery for an idling stop vehicle, the effect of suppressing the penetration short circuit, the effect of miniaturizing the strap, and idling The effect that the design which can accommodate the electrode group suitable for a stop car use in the space in the limited battery case is attained simultaneously. That is, only when the present invention is adopted, a penetration short circuit at the upper part of the electrode plate is suppressed, and a lead storage battery having a sufficient amount of active material can be manufactured as a lead storage battery for an idling stop vehicle.

以下、本発明の具体的な実施例、比較例を示す。   Specific examples and comparative examples of the present invention will be described below.

<実施例1:A3電池>
(正極板)
ボールミル法による鉛酸化物、補強材である合成樹脂繊維、水及び硫酸を混合することによって正極ペーストを調製した。このペーストをアンチモンフリーのPb−Ca−Sn系合金から成るエキスパンドタイプの格子状の正極集電体に充填し、熟成、乾燥を施して、幅100mm、高さ110mm、厚さ1.6mmの未化成の正極板を作製した。
<Example 1: A3 battery>
(Positive electrode plate)
A positive electrode paste was prepared by mixing lead oxide by a ball mill method, synthetic resin fiber as a reinforcing material, water and sulfuric acid. This paste is filled in an expand-type grid-shaped positive electrode current collector made of an antimony-free Pb—Ca—Sn alloy, aging and drying are performed, and the paste is 100 mm wide, 110 mm high, and 1.6 mm thick. A chemical positive plate was prepared.

(負極板)
ボールミル法による鉛酸化物、鱗片状グラファイト、硫酸バリウム、リグニン、及び補強材の合成樹脂繊維、水及び硫酸を混合することによって負極ペーストを調製した。このペーストをアンチモンフリーのPb−Ca−Sn系合金から成るエキスパンドタイプの負極格子に充填し、熟成、乾燥を施して、幅100mm、高さ110mm、厚さ1.3mmの未化成の負極板を作製した。
(Negative electrode plate)
A negative electrode paste was prepared by mixing lead oxide, scaly graphite, barium sulfate, lignin, synthetic resin fibers of reinforcing material, water and sulfuric acid by a ball mill method. This paste is filled in an expanded negative electrode lattice made of an antimony-free Pb—Ca—Sn alloy, and aged and dried to form an unformed negative electrode plate having a width of 100 mm, a height of 110 mm, and a thickness of 1.3 mm. Produced.

(セパレータ)
ポリエチレンを基材とする合成樹脂製シートを用い、厚さ0.2mmのベース部から突出する縦リブを外側に有する袋状セパレータを作製した。このリブは、第一リブと第二リブからなる。第一リブは突出方向への高さ(T)が0.5mmで、極板幅方向の両端を含む極板の両端から15%(17mm)の部分を除く極板の幅方向の中央部と対向する位置に8個(リブ間のピッチ10mm)設けられている。第二リブは突出方向への高さ(T)が0.55mmで、極板の幅方向の両端を含む極板の両端から15%(17mm)の部分と対向する位置に4個(リブ間のピッチ3mm)設けられた第二リブからなる。なお、T、Tはリブが突出する側のベース表面からの高さである。
(Separator)
Using a synthetic resin sheet made of polyethylene as a base material, a bag-shaped separator having a longitudinal rib projecting from a base portion having a thickness of 0.2 mm on the outside was produced. This rib consists of a first rib and a second rib. The height of the first rib in the protruding direction (T 1 ) is 0.5 mm, and the center portion in the width direction of the electrode plate excluding 15% (17 mm) from both ends of the electrode plate including both ends in the electrode plate width direction. Are provided at a position opposite to (a pitch between ribs of 10 mm). The second rib has a height (T 2 ) in the protruding direction of 0.55 mm, and four ribs (ribs) at positions facing 15% (17 mm) from both ends of the electrode plate including both ends in the width direction of the electrode plate. The second rib is provided with a pitch of 3 mm between them. T 1 and T 2 are heights from the base surface on the side from which the ribs protrude.

(電池構成)
前記袋状セパレータに前記負極板を収納し、前記負極板7枚と、前記正極板6枚とを、負極板が外側になるように交互に積層した積層体とした。なお、セパレータは正極板と向かい合う面にのみリブを有するものとした。
この積層体の上部において、極板の幅方向中央部をクランプした状態で、前記正極板同士の耳、及び前記負極板同士の耳をそれぞれCOS方式により正極ストラップ、負極ストラップで溶接してA<Bとなるように極板群を作製した。この極板群をポリプロピレン製の電槽に収納し、硫酸を加え、電槽化成を施して、化成後の電解液比重が1.285、5hR容量が30Ahの液式鉛蓄電池である実施例1に係るA3電池を作製した。なお、電槽内では6個の極板群が直列に接続されている。また、寸法を確認するための電池を別途作成し、電槽化成のあと、さらに満充電した後、蓋を取り外して正極側及び負極側の長さA及び長さBをそれぞれ測定した。正極側も負極側もA<Bとなっているものについては以下の表では「A<B」と表記した。正極側も負極側もA=Bになっているものについては以下の表では「A=B」と表記した。正極側も負極側もA>Bとなっているものについては以下の表では「A>B」と表記した。
(Battery configuration)
The negative electrode plate was housed in the bag-like separator, and a laminate was obtained by alternately laminating the seven negative electrode plates and the six positive electrode plates so that the negative electrode plates were on the outside. The separator has ribs only on the surface facing the positive electrode plate.
In the upper part of the laminate, with the center portion in the width direction of the electrode plates clamped, the ears of the positive electrodes and the ears of the negative electrodes are welded by the positive strap and the negative strap, respectively, by the COS method. An electrode plate group was prepared so as to be B. Example 1 which is a liquid lead acid battery in which this electrode plate group is housed in a polypropylene battery case, sulfuric acid is added, battery case formation is performed, and the electrolyte specific gravity after conversion is 1.285, 5 hR capacity is 30 Ah An A3 battery according to was manufactured. In the battery case, six electrode plate groups are connected in series. In addition, a battery for confirming the dimensions was separately prepared, and after the formation of the battery case, the battery was further fully charged, the lid was removed, and the length A and the length B on the positive electrode side and the negative electrode side were measured. Those in which A <B on both the positive electrode side and the negative electrode side are indicated as “A <B” in the following table. In the following table, “A = B” is used for the case where A = B on both the positive electrode side and the negative electrode side. Those in which A> B on both the positive electrode side and the negative electrode side are indicated as “A> B” in the following table.

<比較例3:A1電池、比較例4:A2電池>
第二リブの突出方向への高さ(T)をそれぞれ0.25mm、0.5mmとしたセパレータを用いた以外は実施例1と同様にして比較例3、4に係るA1、A2電池を作製した。
<Comparative Example 3: A1 Battery, Comparative Example 4: A2 Battery>
The A1 and A2 batteries according to Comparative Examples 3 and 4 were manufactured in the same manner as in Example 1 except that separators having heights (T 2 ) in the protruding direction of the second ribs of 0.25 mm and 0.5 mm, respectively, were used. Produced.

<比較例1:X電池、比較例2:Y電池>
ストラップのサイズを大きくし、A>B、又はA=Bとなるように極板群を作製した以外は、比較例3と同様にしてX電池、Y電池を作製した。
<Comparative Example 1: X Battery, Comparative Example 2: Y Battery>
An X battery and a Y battery were produced in the same manner as in Comparative Example 3, except that the strap size was increased and the electrode plate group was produced so that A> B or A = B.

<実施例2:A4電池>
第二リブの突出方向への高さ(T)を0.6mmとしたセパレータを用いた以外は、実施例1と同様にして実施例2に係るA4電池を作製した。
<Example 2: A4 battery>
An A4 battery according to Example 2 was fabricated in the same manner as in Example 1 except that a separator having a height (T 2 ) in the protruding direction of the second rib of 0.6 mm was used.

<実施例3:A7電池、実施例4:A8電池>
前記積層体の上部において、幅方向の両端部をクランプした状態でCOS方式により極板群を作製した以外は、実施例1と同様にして実施例3に係るA7電池を、実施例2と同様にして実施例4に係るA8電池をそれぞれ作製した。
<Example 3: A7 battery, Example 4: A8 battery>
The A7 battery according to Example 3 is the same as Example 2 except that the electrode plate group is produced by the COS method with both ends in the width direction clamped at the upper part of the laminate. Thus, A8 batteries according to Example 4 were produced.

<比較例5:A5電池、比較例6:A6電池>
前記積層体の上部において、幅方向の両端部をクランプした状態でCOS方式により極板群を作製した以外は、それぞれ比較例3、4と同様にして比較例5に係るA5電池、比較例6に係るA6電池を作製した。
<Comparative Example 5: A5 battery, Comparative Example 6: A6 battery>
The A5 battery according to Comparative Example 5 and Comparative Example 6 are the same as Comparative Examples 3 and 4, respectively, except that the electrode plate group is produced by the COS method with both ends in the width direction clamped at the upper part of the laminate. An A6 battery according to was manufactured.

<実施例5:A9電池、実施例6:A10電池>
第一リブの突出方向への高さ(T)を0.25mmとし、第二リブの同高さ(T)を0.5mmとしたセパレータを用いた以外は、それぞれ実施例1及び実施例3と同様にして、実施例5に係るA9電池、及び実施例6に係るA10電池を作製した。
<Example 5: A9 battery, Example 6: A10 battery>
Example 1 and Example 1 were carried out except that a separator having a height (T 1 ) in the protruding direction of the first rib of 0.25 mm and a height of the second rib (T 2 ) of 0.5 mm was used. In the same manner as in Example 3, an A9 battery according to Example 5 and an A10 battery according to Example 6 were produced.

上記のX、Y、A1〜A10電池について、満充電後、以下の性能試験を行った。
(低温高率放電性能試験)
満充電状態の液式鉛蓄電池を16時間以上−15℃±1℃の冷却室に置いた後、150Aの放電電流で端子電圧が6Vに低下するまで放電し、放電持続時間を記録した(JIS D5301(2006年改正版)の高率放電特性試験に準拠)。
About said X, Y, A1-A10 battery, the following performance test was done after full charge.
(Low temperature high rate discharge performance test)
A fully charged liquid lead-acid battery was placed in a -15 ° C ± 1 ° C cooling chamber for 16 hours or more, then discharged at 150 A discharge current until the terminal voltage dropped to 6 V, and the discharge duration was recorded (JIS). D5301 (2006 revised version) high rate discharge characteristics test).

(PSOC寿命試験)
40℃の恒温漕内で表1、及び図3に示す寿命試験パターンを繰り返し、端子電圧が7.2Vに到達するまでのサイクル数を記録した。なお、工程1から工程5で1サイクルとする。
(PSOC life test)
The life test pattern shown in Table 1 and FIG. 3 was repeated in a constant temperature bath of 40 ° C., and the number of cycles until the terminal voltage reached 7.2 V was recorded. In addition, it is set as 1 cycle from the process 1 to the process 5.

(浸透短絡試験)
満充電した上記の液式鉛蓄電池を、25℃の恒温水槽中で、表2に示す工程1〜5を実行した後に電池を解体して短絡の有無を調べた。各実施例及び比較例について、それぞれ20個の鉛蓄電池を試験し、浸透短絡の発生率を評価した。
(Penetration short circuit test)
The fully charged liquid lead acid battery was subjected to steps 1 to 5 shown in Table 2 in a constant temperature water bath at 25 ° C., and then the battery was disassembled to check for short circuits. About each Example and the comparative example, 20 lead storage batteries were tested, respectively, and the incidence rate of the penetration short circuit was evaluated.

以下の表3、表4に、X、Y、A1〜A10電池の上記の試験結果を示す。
なお、「クランプ位置」は、極板上部の幅方向におけるクランプ位置であり、「低温HR」は、低温高率放電性能試験におけるA1電池の放電時間を100%とした比を示し、「PSOC寿命」は、A1電池のサイクル数を100%とした比を示し、浸透短絡発生率は5%刻みで示す。
Tables 3 and 4 below show the test results of the X, Y, and A1 to A10 batteries.
The “clamp position” is a clamp position in the width direction of the upper part of the electrode plate, and “low temperature HR” indicates a ratio in which the discharge time of the A1 battery in the low temperature high rate discharge performance test is 100%, and “PSOC life” "" Indicates a ratio where the cycle number of the A1 battery is 100%, and the permeation short-circuit occurrence rate is shown in increments of 5%.

表3の結果から、A<BであるA1電池は、A>BであるX電池、A=BであるY電池よりも低温高率放電性能に優れていることがわかる。したがって、低温高率放電性能の観点からは、A<Bであることが重要である。一方で、A<BであるA1の鉛蓄電池は、A>BであるXの鉛蓄電池、A=BであるYの鉛蓄電池よりも耐浸透短絡性能に劣ることがわかる。これらの傾向はT=Tの場合にも同様であった。 From the results of Table 3, it can be seen that the A1 battery in which A <B is superior in the low-temperature high-rate discharge performance than the X battery in which A> B and the Y battery in which A = B. Therefore, it is important that A <B from the viewpoint of low-temperature high-rate discharge performance. On the other hand, it can be seen that the lead storage battery of A1 where A <B is inferior in permeation short-circuit performance than the lead storage battery of X where A> B and the lead storage battery of Y where A = B. These tendencies were the same when T 1 = T 2 .

表4のA1〜A10電池は全てA<Bである。表4の結果から、第一リブの突出方向への高さ(T)が第二リブの突出方向への高さ(T)より低いA3、A4、A7〜A10電池は、TがTより高いA1電池、A5電池、TがTと同じA2電池、A6電池に対して、耐浸透短絡性能が優れていることがわかる。これは、T>Tの電池では、第一リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触することを防止することができるためと推察される。また、T>Tの電池では、T≦Tの電池に対してPSOC寿命性能が優れていることがわかる。これは、T>Tの電池では、第一リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触しにくくなり、電解液の拡散性が向上して電解液の成層化が抑制されるためと推察される。 All of the A1 to A10 batteries in Table 4 satisfy A <B. From the results of Table 4, A3, A4, and A7 to A10 batteries in which the height (T 1 ) in the protruding direction of the first rib is lower than the height (T 2 ) in the protruding direction of the second rib are T 1 higher A1 battery than T 2, A5 cells, the same A2 cell T 1 is the T 2, with respect to A6 battery, it was found that the excellent resistance to penetration short performance. This is presumably because in the battery of T 2 > T 1 , it is possible to prevent the front end of the first rib and the separator surface located on the opposite side of the rib from simultaneously contacting the positive and negative electrode plates. Further, it can be seen that the battery of T 2 > T 1 has better PSOC life performance than the battery of T 2 ≦ T 1 . This is because in the battery of T 2 > T 1 , the tip of the first rib and the separator surface located on the opposite side of the rib are less likely to contact the positive and negative electrode plates at the same time, so that the diffusibility of the electrolyte is improved and the electrolyte This is presumed to be due to the suppression of stratification.

一方、A1電池は極板の幅方向中央部に対向するリブの突出方向への高さが極板の幅方向端部に対向するリブの突出方向への高さよりも高い電池であるが、幅方向中央部に対向するリブの突出方向への高さが幅方向端部に対向するリブの突出方向への高さと等しいA2電池と比較して耐浸透短絡性能の向上はみられない。A1電池では極板の幅方向端部に対向する第二リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触することを防止することができると考えられる。しかし、A1電池では耐浸透短絡性能の向上はみられないことから、耐浸透短絡性能を向上させるためには、極板の幅方向中央部に対向する第一リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触することを防止することが重要であると推察される。極板幅方向の中央部に対向するリブの突出方向への高さが、極板幅方向の端部に対向するリブの突出方向への高さより低い鉛蓄電池で耐浸透短絡性能が向上するというのは予想外の効果である。 On the other hand, the A1 battery is a battery in which the height in the protruding direction of the rib facing the central portion in the width direction of the electrode plate is higher than the height in the protruding direction of the rib facing the end portion in the width direction of the electrode plate. The penetration resistance short circuit performance is not improved as compared with the A2 battery in which the height in the protruding direction of the rib facing the central portion in the direction is equal to the height in the protruding direction of the rib facing the width direction end. In the A1 battery, it is considered that the rib tip of the second rib facing the end in the width direction of the electrode plate and the separator surface located on the opposite side of the rib can be prevented from simultaneously contacting the positive and negative electrode plates. However, since the improvement of the permeation-resistant short-circuit performance is not observed in the A1 battery, in order to improve the permeation-resistant short-circuit performance, the rib tip of the first rib facing the center in the width direction of the electrode plate and the opposite side of the rib It is inferred that it is important to prevent the separator surface located at the same time from contacting the positive and negative electrode plates simultaneously. The lead-acid battery has improved permeation-resistant short-circuit performance when the height in the protruding direction of the rib facing the center in the electrode plate width direction is lower than the height in the protruding direction of the rib facing the end in the electrode plate width direction. Is an unexpected effect.

また、表4及び図4、図5から、T/T≧1.2の鉛蓄電池において特に耐浸透短絡性能が優れていることがわかる。これは、特にT/T≧1.2の範囲で、第一リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触することをより確実に防止することができるためと推察される。また、T/T≧1.2の鉛蓄電池において特にPSOC寿命性能が優れていることがわかる。これは、特にT/T≧1.2の範囲で、第一リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触しにくくなり、電解液の拡散性が向上して電解液の成層化が一層抑制されるためと推察される Moreover, it can be seen from Table 4 and FIGS. 4 and 5 that the lead-acid storage battery with T 2 / T 1 ≧ 1.2 is particularly excellent in permeation resistance short circuit performance. This can more reliably prevent the rib tip of the first rib and the separator surface located on the opposite side of the rib from simultaneously contacting the positive and negative electrode plates, particularly in the range of T 2 / T 1 ≧ 1.2. It is assumed that it is possible. It is also found to be particularly excellent PSOC life performance in a lead-acid battery of T 2 / T 1 ≧ 1.2. This is particularly in the range of T 2 / T 1 ≧ 1.2, where the rib tip of the first rib and the separator surface located on the opposite side of the rib are less likely to contact the positive and negative electrode plates at the same time, and the diffusibility of the electrolyte is reduced. This is probably because the stratification of the electrolyte is further suppressed.

表4及び図4、図5から、セパレータのリブ構造が同じであるが、クランプ位置が異なるA3電池とA7電池を対比すると、クランプ位置が極板の幅方向端部であるA7電池が、クランプ位置が極板の幅方向中央部であるA3電池よりさらに耐浸透短絡性能が優れていることがわかる。これは、クランプ位置が極板の幅方向端部であるA7電池では極板幅方向の中央部における極板群の極板積層方向の厚さが、極板幅方向端部における極板群の極板積層方向の厚さ以上となり、第一リブのリブ先端とリブの反対側に位置するセパレータ表面が正負極板に同時に接触することをより確実に防止することができるためと推察される。また、PSOC寿命性能においてもA7電池がA3電池よりさらに優れていることがわかる。これは電解液の成層化が一層抑制されるためと考えられる。A4電池とA8電池、A9電池とA10電池の対比においても、同様に、クランプ位置が極板の幅方向端部であるA8電池、A10電池のほうが耐浸透短絡性能及びPSOC寿命性能に優れていた。一方、T≦Tの電池では、クランプ位置が極板の幅方向端部である電池(A5、A6)はクランプ位置が極板の幅方向中央部である電池(A1、A2)と比較して耐浸透短絡性能に違いはみられない。 From Table 4, FIG. 4, and FIG. 5, when the A7 battery and A7 battery with the same rib structure of the separator but different clamp positions are compared, the A7 battery whose clamp position is the end in the width direction of the electrode plate is clamped. It can be seen that the permeation-resistant short-circuit performance is more excellent than the A3 battery whose position is the center in the width direction of the electrode plate. This is because, in the A7 battery in which the clamp position is the widthwise end of the electrode plate, the thickness of the electrode plate stacking direction at the center in the electrode plate width direction is the thickness of the electrode plate group at the electrode width direction end. It is presumed that the thickness in the electrode plate stacking direction is not less than that, and it is possible to more reliably prevent the front end of the first rib and the separator surface located on the opposite side of the rib from simultaneously contacting the positive and negative electrode plates. Also, it can be seen that the A7 battery is further superior to the A3 battery in PSOC life performance. This is probably because the stratification of the electrolyte is further suppressed. Similarly, in the comparison of the A4 battery and the A8 battery, and the A9 battery and the A10 battery, the A8 battery and the A10 battery in which the clamp position is the end portion in the width direction of the electrode plate were superior in the permeation short circuit resistance and the PSOC life performance. . On the other hand, in the battery of T 2 ≦ T 1 , the batteries (A5, A6) in which the clamp position is the width direction end of the electrode plate are compared with the batteries (A1, A2) in which the clamp position is the center part in the width direction of the electrode plate. Thus, there is no difference in permeation resistance short circuit performance.

実施例中、最も上記各性能が優れていたのは、TとTの差が大きく、クランプ位置が端部であるA10電池であった。 In the examples, it was the most each performance better, the difference between T 1 and T 2 is large, the clamp position was A10 cell is an end.

本発明により、ストラップ直下の耳群長Aと上部極板群長Bが、A<Bである電池において、耐浸透短絡性能を向上させることができる。また、PSOC寿命性能も向上させることができるので、PSOCで使用される機会の多いIS用途の鉛蓄電池等への適用が期待される。   According to the present invention, in a battery in which the ear group length A and the upper electrode plate group length B immediately below the strap are A <B, the permeation-resistant short-circuit performance can be improved. Further, since the PSOC life performance can be improved, it is expected to be applied to IS storage lead storage batteries and the like that are frequently used in PSOC.

A ストラップ直下の耳群長
B ストラップに接続された極板のうち両端に位置する極板間の上部枠骨部における距離(上部極板群長)
A Length of ear group just below the strap B Distance between upper plates located on both ends of the pole plates connected to the strap (length of upper plate group)

Claims (4)

正極板と負極板とをセパレータを介して積層した極板群と、電解液と、前記極板群を収納した電槽を備えた鉛蓄電池であって、
正極ストラップ又は負極ストラップのうち少なくとも一方のストラップの直下における両端の耳の外端間の長さAが、前記少なくとも一方のストラップに接続された極板のうち両端に位置する極板における上部枠骨部の積層方向外端間の長さBより小さく、
前記セパレータは、正極板と向かい合う面及び負極板と向かい合う面のうち、少なくとも一方の面に複数のリブを有し、
前記リブは、前記セパレータの少なくとも一方の面において、前記正極板の幅方向の中央部又は前記負極板の幅方向の中央部に対向する第一リブの突出方向への高さ(T)が、前記正極板の幅方向の端部又は前記負極板の幅方向の端部に対向する第二リブの突出方向への高さ(T)より低いことを特徴とする鉛蓄電池。
A lead storage battery comprising an electrode plate group in which a positive electrode plate and a negative electrode plate are laminated via a separator, an electrolyte, and a battery case containing the electrode plate group,
The upper frame bone in the pole plate located at both ends of the pole plates connected to the at least one strap, in which the length A between the outer ends of the ears at both ends immediately below at least one of the positive strap and the negative strap is Smaller than the length B between the outer ends in the stacking direction of the parts,
The separator has a plurality of ribs on at least one of a surface facing the positive electrode plate and a surface facing the negative electrode plate,
The rib has, in at least one surface of the separator, a height (T 1 ) in the protruding direction of the first rib that faces the central portion in the width direction of the positive electrode plate or the central portion in the width direction of the negative electrode plate. the lead-acid battery, characterized in that the lower positive electrode plate edge in the width direction or the height of the the second rib protruding direction of opposite to the end portion in the width direction of the negative electrode plate (T 2).
前記第一リブの突出方向への高さ(T)と第二リブの突出方向への高さ(T)との比T/Tが、T/T≧1.2の関係式を満たすことを特徴とする請求項1の鉛蓄電池。 The ratio T 2 / T 1 between the height of the projecting direction of said first rib (T 1) to the height of the protruding direction of the second rib (T 2) is of T 2 / T 1 ≧ 1.2 The lead acid battery according to claim 1, wherein the relational expression is satisfied. 前記正極板の幅方向中央部における前記極板群の極板積層方向の厚さが、前記正極板の幅方向端部における前記極板群の極板積層方向の厚さ以上であることを特徴とする請求項1又は2の鉛蓄電池。   The thickness in the electrode plate stacking direction of the electrode plate group in the center portion in the width direction of the positive electrode plate is equal to or greater than the thickness in the electrode plate stacking direction of the electrode plate group in the end portion in the width direction of the positive electrode plate. The lead acid battery according to claim 1 or 2. 前記鉛蓄電池はアイドリングストップ車用の鉛蓄電池であることを特徴とする請求項1〜3のいずれかに記載の鉛蓄電池。

The lead acid battery according to any one of claims 1 to 3, wherein the lead acid battery is a lead acid battery for an idling stop vehicle.

JP2015192809A 2015-09-30 2015-09-30 Lead acid battery Active JP6572711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015192809A JP6572711B2 (en) 2015-09-30 2015-09-30 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015192809A JP6572711B2 (en) 2015-09-30 2015-09-30 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2017069023A JP2017069023A (en) 2017-04-06
JP6572711B2 true JP6572711B2 (en) 2019-09-11

Family

ID=58494972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015192809A Active JP6572711B2 (en) 2015-09-30 2015-09-30 Lead acid battery

Country Status (1)

Country Link
JP (1) JP6572711B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023129734A (en) * 2020-07-28 2023-09-15 株式会社レゾナック Battery constituent, storage battery, battery pack and electric vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52161217U (en) * 1976-05-29 1977-12-07
JPS603558U (en) * 1983-06-20 1985-01-11 新神戸電機株式会社 Spacer for storage battery
JPH052369U (en) * 1991-06-26 1993-01-14 日本無機株式会社 Rib Separator for Lead Acid Battery
DE19804423C1 (en) * 1998-02-05 1999-05-27 Vhb Industriebatterien Gmbh Electrical lead-acid battery
JP2003092098A (en) * 2001-09-17 2003-03-28 Shin Kobe Electric Mach Co Ltd Lead storage battery

Also Published As

Publication number Publication date
JP2017069023A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6665465B2 (en) Lead storage battery
KR20130094194A (en) Battery, battery plate assembly, and method of assembly
EP2768046B1 (en) Flooded lead-acid battery with electrodes comprising a pasting substrate
JP6164266B2 (en) Lead acid battery
JP5061451B2 (en) Anode current collector for lead acid battery
WO2006049295A1 (en) Negative electrode current collector for lead storage battery and lead storage battery including the same
JP6525167B2 (en) Lead storage battery
JP2010170939A (en) Lead storage battery
JP6125515B2 (en) A flooded lead acid battery with an electrode having a pasting substrate
JP6572711B2 (en) Lead acid battery
JP2006086039A (en) Lead-acid storage battery
JP6398111B2 (en) Lead acid battery
JP6198046B2 (en) Liquid lead-acid battery
JP5994545B2 (en) Lead acid battery
JPWO2019088040A1 (en) Separator for lead-acid battery and lead-acid battery
JP7128482B2 (en) lead acid battery
JP6651128B2 (en) Lead-acid battery for idling stop vehicle and idling stop vehicle
JP6197426B2 (en) Lead acid battery
JP5673307B2 (en) Nonaqueous electrolyte secondary battery
US20220393181A1 (en) Lead-acid battery having fiber electrode with lead-calcium strap
JP7152831B2 (en) lead acid battery
JP4984786B2 (en) Lead acid battery
JP2023154163A (en) lead acid battery
JP3567969B2 (en) Sealed lead-acid battery
WO2021150851A1 (en) Lead-acid battery having fiber electrode and alloy for use with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R150 Certificate of patent or registration of utility model

Ref document number: 6572711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150