JP6665465B2 - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
JP6665465B2
JP6665465B2 JP2015188821A JP2015188821A JP6665465B2 JP 6665465 B2 JP6665465 B2 JP 6665465B2 JP 2015188821 A JP2015188821 A JP 2015188821A JP 2015188821 A JP2015188821 A JP 2015188821A JP 6665465 B2 JP6665465 B2 JP 6665465B2
Authority
JP
Japan
Prior art keywords
electrode plate
rib
separator
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015188821A
Other languages
Japanese (ja)
Other versions
JP2017063001A (en
Inventor
克征 佐藤
克征 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2015188821A priority Critical patent/JP6665465B2/en
Publication of JP2017063001A publication Critical patent/JP2017063001A/en
Application granted granted Critical
Publication of JP6665465B2 publication Critical patent/JP6665465B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

この発明は、鉛蓄電池に関し、特に浸透短絡を抑制する鉛蓄電池に関する。   The present invention relates to a lead storage battery, and more particularly to a lead storage battery that suppresses osmotic short circuit.

鉛蓄電池を、不完全な充電状態(PSOC(Partial state of charge)で使用する用途が多くなっている。
例えば、アイドリングストップ車(IS)では、停車の都度エンジンを停止させることにより燃料消費量を小さくし、発進時に蓄電池からの電力でエンジンを起動している。このため蓄電池は、充電不足の状態で使用される。IS用途に限らず、エネルギー効率を向上させるために、蓄電池への充電を避け、しかも蓄電池から取り出す電力が増加しているので、蓄電池は充電不足な状態に置かれることが多い。
The use of lead-acid batteries in an incomplete charge state (PSOC (Partial state of charge)) is increasing.
For example, in an idling stop vehicle (IS), the fuel consumption is reduced by stopping the engine each time the vehicle is stopped, and the engine is started with electric power from the storage battery at the time of starting. Therefore, the storage battery is used in a state of insufficient charge. Not only for IS applications, but also in order to improve energy efficiency, the storage battery is often placed in an undercharged state because charging the storage battery is avoided and the power taken from the storage battery is increasing.

充電量が少なく放電量が多い電池では、硫酸の消費が進み、電解液が低比重化する。比重が低下すると、硫酸鉛の溶解度が高くなり、電解液中の鉛イオン量が増える。この鉛イオンが、充電時に負極で還元・析出し、セパレータ内に鉛が浸透していくことにより、浸透短絡が起こりやすくなる。   In a battery with a small charge amount and a large discharge amount, consumption of sulfuric acid proceeds, and the specific gravity of the electrolytic solution is reduced. When the specific gravity decreases, the solubility of lead sulfate increases, and the amount of lead ions in the electrolyte increases. The lead ions are reduced and precipitated at the negative electrode during charging, and lead penetrates into the separator.

特許文献1には、「極板に対して適度な群圧を維持し、高性能を発揮する鉛蓄電池を提供することを目的とする」(第1頁)ものであって、「正極と負極とを弾力性および可撓性を有するセパレータを介して積層した極板群を備える鉛蓄電池において、前記セパレータの正極対向面および負極対向面にそれぞれ位置をずらして複数の縦方向のリブを設けたことを特徴とする鉛蓄電池。」(実用新案登録請求の範囲)の発明が記載されている。
このリブについて、「極板表面に電解液を確保する空隙ができるばかりでなく、ガス抜けを良くすることができる。」(第4頁)と記載されている。
Patent Literature 1 discloses an "object of providing a lead-acid battery that maintains an appropriate group pressure with respect to an electrode plate and exhibits high performance" (page 1). In a lead-acid battery including an electrode plate group in which a separator having elasticity and flexibility is interposed, a plurality of vertical ribs are provided on the positive electrode facing surface and the negative electrode facing surface of the separator so as to be displaced from each other. The invention of "lead-acid battery characterized by the following claims" is described.
This rib is described as "not only a gap is formed on the surface of the electrode plate for securing the electrolyte, but also gas outflow can be improved" (page 4).

特許文献2には、「極板群内での電解液の拡散力を向上させ、濃厚な硫酸によって負極活物質が充放電に寄与しない結晶性の高い硫酸鉛に変化することを防止して充放電サイクル寿命特性に優れた鉛蓄電池を提供する」(段落[0016])ことを目的とするものであって、「正極板と、アンチモンを含まない鉛合金からなる格子体を用いた負極板と、合成樹脂製の袋状セパレータとからなる極板群を備え、前記袋状セパレータは、その表裏両面に背中合わせに縦に平行な複数本のリブが設けられているとともに、その内部に負極板を位置させていて、負極板に接する裏面のリブの高さは、表面のリブの高さよりも高い鉛蓄電池。」(請求項1)の発明が記載されている。
この発明によると、「極板、とくに負極板と、セパレータとの間の電解液の供給、拡散を良好にし、活物質が濃厚な硫酸によって充放電に寄与しない硫酸鉛に変化することを防止して電池の充放電サイクル寿命を向上させることができる。」(段落[0037])と記載されている。
Patent Literature 2 states that “the diffusion power of the electrolyte solution in the electrode group is improved to prevent the negative active material from being changed to highly crystalline lead sulfate that does not contribute to charge and discharge by the concentrated sulfuric acid. It is an object of the present invention to provide a lead-acid battery having excellent discharge cycle life characteristics (paragraph [0016]), wherein a positive electrode plate and a negative electrode plate using a lattice body made of a lead alloy not containing antimony are used. An electrode plate group comprising a synthetic resin bag-shaped separator, and the bag-shaped separator is provided with a plurality of vertically parallel ribs back to back on both front and back surfaces thereof, and a negative electrode plate therein. The height of the rib on the back surface that is positioned and in contact with the negative electrode plate is higher than the height of the rib on the front surface. "(Claim 1).
According to the present invention, "supply of an electrolytic solution between an electrode plate, especially a negative electrode plate, and a separator, and diffusion are improved, and the active material is prevented from being changed to lead sulfate which does not contribute to charge / discharge by concentrated sulfuric acid. To improve the charge / discharge cycle life of the battery "(paragraph [0037]).

また、特許文献3には、「部分充電状態(PSOC)で使用するための電池に適しており、なかでも、アイドリングストップ車用として好適に用いられる」(段落[0029])液式鉛蓄電池に係る発明が開示され、「セパレータに縦リブを形成して、正極板とセパレータとの間に形成される空間を細かく分割することにより、電解液中に含まれる硫酸イオンや水の移動時の抵抗を効果的に増大させうることを見出し、本発明を完成するに至った。」(段落[0007])と記載され、この本発明によれば、「電解液の成層化を良好に抑制し、寿命性能の向上を図ることができる」(段落[0015])ことが記載されている。
さらに、「一般社団法人電池工業会規格 SBA S 0101:2006に規定されたQ−55形のアイドリングストップ車用鉛蓄電池に、それぞれ異なるセパレータを適用したものを供試電池として用い、SBA S 0101:2006に準拠して、アイドリングストップ寿命試験を行った。」と記載されている。
Patent Literature 3 discloses a liquid lead-acid battery that is “suitable for use in a partially charged state (PSOC), and particularly suitable for use in idling stop vehicles” (paragraph [0029]). Such invention is disclosed, `` By forming vertical ribs on the separator and finely dividing the space formed between the positive electrode plate and the separator, the resistance at the time of movement of sulfate ions and water contained in the electrolyte solution is reduced. It has been found that the present invention can be effectively increased, and the present invention has been completed. "(Paragraph [0007]), and according to the present invention," the stratification of the electrolytic solution is favorably suppressed, Lifetime performance can be improved "(paragraph [0015]).
Furthermore, a battery obtained by applying different separators to a Q-55 type lead-acid storage battery for an idling stop vehicle specified in the Battery Association of Japan standard SBA S 0101: 2006 is used as a test battery, and SBA S 0101: An idling stop life test was performed in accordance with 2006. "

実開昭57−17062号全文明細書Japanese Utility Model Application No. 57-17062 特開平7−105929号公報JP-A-7-105929 特開2015−22921号公報JP-A-2015-22921

鉛蓄電池の製法手段として、COS方式によるストラップ形成を行う場合がある。COS方式は、ストラップと同形状の凹部を彫り込んだ鋳型の該凹部に鉛又は鉛合金を溶融させた溶鉛を流し込み、該溶鉛中に同極性の極板耳先端を該溶鉛へ浸漬して該溶鉛の熱で前記耳を溶かした後、冷却凝固させて前記耳と一体化するものである。   As a method of manufacturing a lead storage battery, there is a case where a strap is formed by a COS method. In the COS method, molten lead or lead alloy is poured into the concave portion of a mold in which a concave portion having the same shape as the strap is engraved, and the tip of the same polarity electrode plate ear is immersed in the molten lead. Then, the ear is melted by the heat of the molten lead, and then cooled and solidified to be integrated with the ear.

COS方式において耳とストラップの溶着を確実にするためには、同極板の両端の耳の外側に溶鉛が流れ込む隙間が必要であるから、図1に示す負極ストラップについてみると、ストラップの下面に接する両端の耳の外端間の長さA(以下、「ストラップ直下の耳群長A」又は「耳群長A」といい、単に「長さA」又は「A」ともいう。)は、前記鋳型の凹部の長さ、すなわちストラップの長さより小さい。
また、COS方式においては、鋳型の形状を変更しない場合、電極板を厚くするなどして積層方向における極板群の厚さ寸法が相当に長くなったときは、図1に示す極板群の上部における積層方向の寸法B、より正確には、ストラップに接続された極板のうち両端に位置する極板の集電体における上部枠骨部の積層方向外端間の長さB(以下、「上部極板群長B」といい、単に「長さB」又は「B」ともいう。)が、ストラップ直下の耳群長Aとくらべて長くなる。正極ストラップ直下の耳群長をA´、正極ストラップに接続された正極板のうち両端に位置する極板における上部枠骨部の積層方向外端間の長さ(上部極板群長B´)とすると、A´とB´も同様の関係となる(A´、B´は図示していない。)。以下、AとB、及びA´とB´の大小関係について、AとBとで代表して述べる。
In order to ensure the welding of the ear and the strap in the COS method, it is necessary to provide a gap through which molten lead flows outside the ears at both ends of the same electrode plate. The length A between the outer ends of the ears at both ends in contact with (hereinafter, referred to as "ear group length A immediately below the strap" or "ear group length A", and also simply as "length A" or "A"). , Less than the length of the recess in the mold, ie the length of the strap.
Further, in the COS method, when the shape of the mold is not changed, and when the thickness of the electrode group in the stacking direction becomes considerably long by increasing the thickness of the electrode plate, the electrode group shown in FIG. The dimension B in the stacking direction at the upper part, more precisely, the length B between the outer ends in the stacking direction of the upper frame bones in the current collectors of the electrode plates located at both ends of the electrode plates connected to the strap (hereinafter, referred to as The “upper plate group length B”, simply referred to as “length B” or “B”) is longer than the ear group length A immediately below the strap. The length of the ear group immediately below the positive electrode strap is A ', and the length between the outer ends in the stacking direction of the upper frame bones of the electrode plates located at both ends of the positive electrodes connected to the positive electrode strap (upper electrode group length B') Then, A 'and B' have the same relationship (A 'and B' are not shown). Hereinafter, the magnitude relation between A and B and between A 'and B' will be described using A and B as representatives.

本発明者は、上述した浸透短絡の発生する場所が、極板群の上部の中でもとくに上部枠骨部に近い上端付近で頻度が高いという現象を見つけ、さらに、耳群長Aと上部極板群長Bの大小関係について検討した結果、A<Bであると、前記現象が顕著となることを見出した。また、そのようなことに加えて、本発明者は、A<Bであると、耐浸透短絡性能は低下するが、低温高率放電特性が向上することも見出した。A≧Bであると、A<Bとする場合と比べて浸透短絡は抑制される。しかし、A≧Bとするためには、A<Bとする場合と比べてストラップを大形化する必要が有り、その結果、たとえば、材料コストが高くなる、鋳型を更新する必要がある、あるいはJISD5301に規定されているような所定寸法の電槽内に収納することが困難になる、と言ったことが起こりうる。   The inventor of the present invention has found that the location where the above-mentioned osmotic short-circuit occurs frequently occurs in the upper part of the electrode group, especially near the upper end near the upper frame bone, and furthermore, the ear group length A and the upper electrode As a result of examining the magnitude relationship of the group length B, it was found that when A <B, the above phenomenon became significant. In addition to the above, the present inventor has also found that when A <B, the short-circuit resistance to permeation is reduced, but the high-temperature high-rate discharge characteristics are improved. When A ≧ B, the penetration short circuit is suppressed as compared with the case where A <B. However, in order to satisfy A ≧ B, it is necessary to increase the size of the strap as compared with the case where A <B. As a result, for example, the material cost increases, the mold needs to be updated, or It may happen that it becomes difficult to store the battery pack in a battery container having a predetermined size as defined in JISD5301.

特許文献1、2に記載された発明は、いずれも、セパレータが正極対向面、及び負極対向面にリブを有する鉛蓄電池に関するものであって、適度な群圧と電解液を確保したり(特許文献1)、電解液の供給、拡散を容易に行ったりする(特許文献2)ことを目的としている。
しかし、COS方式によってストラップを形成することは記載されていないし、ストラップ直下の耳群長Aと、上部極板群長Bの大小関係については、何も示唆するところがない。また、低温高率放電性能やPSOC寿命性能についての知見もない。
特許文献3には、PSOC寿命性能について記載されているが、COS方式によってストラップを形成することは記載されていない。また、セパレータは正極対向面にリブを有することが示されているだけであり、耐浸透短絡性能や低温高率放電性能についての知見はない。
Each of the inventions described in Patent Documents 1 and 2 relates to a lead-acid battery in which a separator has a rib on a positive electrode facing surface and a rib on a negative electrode facing surface, and secures an appropriate group pressure and an electrolytic solution. It is intended to facilitate supply and diffusion of an electrolyte solution (Patent Document 2).
However, there is no description that the strap is formed by the COS method, and there is no suggestion as to the magnitude relationship between the ear group length A immediately below the strap and the upper electrode plate group length B. Further, there is no knowledge about low-temperature high-rate discharge performance or PSOC life performance.
Patent Literature 3 describes PSOC life performance, but does not describe forming a strap by the COS method. Further, it is only shown that the separator has a rib on the surface facing the positive electrode, and there is no knowledge about the short-circuit resistance and the low-temperature high-rate discharge performance.

本発明は、A<Bである鉛蓄電池において、耐浸透短絡性能を向上することを解決すべき課題とする。   An object of the present invention is to improve the short circuit resistance to penetration short circuit in a lead-acid battery in which A <B.

本発明は、前記の課題を解決するために、以下の手段を有する。
本第一発明は、正極板と負極板とをセパレータを介して積層した極板群と、電解液と、前記極板群を収納した電槽を備えた鉛蓄電池であって、
前記負極板の耳を接続する負極ストラップ直下における両端の耳の外端間の長さA、及び前記正極板の耳を接続する正極ストラップ直下における両端の耳の外端間の長さA´が、それぞれ、前記各ストラップに接続された極板のうち両端に位置する極板における上部枠骨部の外端面間の長さB、B´より小さく、
前記セパレータは、前記正極板の上部50%以下の領域と向かい合う領域を含む前記正極板と向かい合う領域及び前記負極板の上部50%以下の領域と向かい合う領域を含む前記負極板と向かい合う領域にリブを有することを特徴とするアイドリングストップ車用の鉛蓄電池である
なお、正極板の上部及び負極板の上部とは、正極板及び負極板の集電体の上部枠骨部から下部枠骨部へ向かう方向を下部方向としたときに、正極板の上部の一端及び負極板の上部の一端から下部方向に所定距離までの領域を意味する。正極板の上部の一端及び負極板の上部の一端は、それぞれの上部枠骨部の上端であり、所定距離は上部枠骨部の上端から下部枠骨部の下端までの最短距離である。
The present invention has the following means in order to solve the above problems.
The first invention is a lead storage battery including an electrode group in which a positive electrode plate and a negative electrode plate are stacked with a separator interposed therebetween, an electrolytic solution, and a battery case containing the electrode group,
The length A between the outer ends of the ears at both ends immediately below the negative electrode strap connecting the ears of the negative electrode plate, and the length A 'between the outer ends of the ears at both ends immediately below the positive electrode strap connecting the ears of the positive electrode plate are: The length B, B ′ between the outer end surfaces of the upper frame bones of the pole plates located at both ends of the pole plates connected to the straps,
The separator ribs in a region facing said negative electrode plate including a region facing the upper 50% or less of the area of the region and the negative electrode plate facing the positive electrode plate including an upper 50% or less of the area and facing region of the positive electrode plate A lead storage battery for an idling stop vehicle, comprising:
The upper part of the positive electrode plate and the upper part of the negative electrode plate are one end of the upper part of the positive electrode plate when the direction from the upper frame bone to the lower frame bone of the current collector of the positive electrode plate and the negative electrode plate is defined as the lower direction. And a region extending from one end of the upper part of the negative electrode plate to a predetermined distance in the lower direction. One end of the upper part of the positive electrode plate and one end of the upper part of the negative electrode plate are the upper ends of the upper frame members, and the predetermined distance is the shortest distance from the upper end of the upper frame members to the lower end of the lower frame members.

本第二発明は、前記第一発明において、前記セパレータは、一方の面において、前記正極板全面と向かい合う領域又は前記負極板全面と向かい合う領域にリブを有し、他方の面において、前記正極板の上部50%以下の領域と向かい合う領域のみ、又は前記負極板の上部50%以下の領域と向かい合う領域のみにリブを有することを特徴とする。 In the second aspect of the present invention, in the first aspect, the separator has a rib on one surface in a region facing the entire surface of the positive electrode plate or a region facing the entire negative electrode plate, and on the other surface, the positive electrode plate The ribs are provided only in the region facing the region of 50% or less of the upper portion of the negative electrode plate, or only in the region facing the region of 50% or less of the upper portion of the negative electrode plate.

本第三発明は、前記第一発明又は第二発明において、前記リブの形状は、ドット状であることを特徴とする。 The third invention is characterized in that, in the first invention or the second invention, the shape of the rib is a dot shape .

本第四発明は、前記第一乃至発明のいずれかにおいて、前記長さAと前記長さBとの差及び前記長さA´と前記長さB´との差は、1mm以上である。 In the fourth invention, in any one of the first to third inventions , a difference between the length A and the length B and a difference between the length A ′ and the length B ′ are 1 mm or more. is there.

本第五発明は、前記第一乃至第四発明において、前記セパレータは、ポリエチレンを主成分とすることを特徴とする。   The fifth invention is characterized in that in the first to fourth inventions, the separator is mainly composed of polyethylene.

本第六発明は、前記第一乃至第五発明において、前記セパレータは、一方の極板と向かい合う面において、当該極板の下部の一部又は全部と向かい合う領域において前記リブが切り欠かれた構造となっていることを特徴とする。   In the sixth invention, in the first to fifth inventions, the separator has a structure in which the rib is cut out in a region facing a part or all of a lower part of the electrode plate on a surface facing one of the electrode plates. It is characterized by being.

本第一乃至第六発明によれば、浸透短絡が抑制され、かつ、十分なPSOC寿命性能を備えたアイドリングストップ車用鉛蓄電池を提供することができる。 According to the first to sixth invention, penetration short-circuiting is suppressed, and it is possible to provide a lead storage battery for an idling stop vehicle provided with a sufficient PSOC life performance.

ストラップ直下の耳群長Aと上部極板群長Bの説明図Explanatory drawing of ear group length A and upper electrode plate group length B just below the strap セパレータのベースとリブとの位置関係を説明するための横断面図Cross-sectional view for explaining the positional relationship between the base and the rib of the separator エキスパンドタイプの集電体の説明図Explanatory drawing of expandable current collector 鋳造タイプの集電体の説明図Illustration of casting type current collector 本発明で使用できるリブ形状を示す模式図Schematic diagram showing rib shapes that can be used in the present invention PSOC寿命試験のサイクルパターンの説明図Explanatory drawing of the cycle pattern of the PSOC life test リブ面積とPSOC寿命との関係を示すグラフGraph showing the relationship between rib area and PSOC life

本発明の鉛蓄電池は、セパレータが正極板の上部と向かい合う領域及び負極板と向かい合う領域にリブを有し、前記負極板の耳を接続する負極ストラップの下面における耳群長A、及び前記正極板の耳を接続する正極ストラップの下面における耳群長A´が、それぞれ、前記各ストラップに接続された極板のうち両端に位置する極板間の、上部枠骨部における距離B、B´より小さいことを特徴とする。   The lead storage battery of the present invention has a rib group in a region where the separator faces the upper portion of the positive electrode plate and a region facing the negative electrode plate, and a lug length A on the lower surface of the negative electrode strap connecting the lugs of the negative electrode plate, and the positive electrode plate. The ear group length A 'on the lower surface of the positive electrode strap connecting the ears is determined by the distances B and B' between the electrode plates located at both ends of the electrode plates connected to the respective straps in the upper frame bone. It is characterized by being small.

以下に、本発明の実施形態を示す。本発明の実施に際しては、当業者の常識及び先行技術の開示に従い、実施形態を適宜に変更できる。なお、以下、負極電極材料を負極活物質と呼び、正極電極材料を正極活物質と呼ぶ。また負極板は、負極集電体と負極活物質(負極電極材料)とから成り、正極板は、正極集電体と正極活物質(正極電極材料)とから成り、集電体以外の固形成分は活物質(電極材料)に属するものとする。   Hereinafter, embodiments of the present invention will be described. In practicing the present invention, the embodiments can be appropriately modified in accordance with the common knowledge of those skilled in the art and the disclosure of the prior art. Hereinafter, the negative electrode material is referred to as a negative electrode active material, and the positive electrode material is referred to as a positive electrode active material. The negative electrode plate includes a negative electrode current collector and a negative electrode active material (negative electrode material). The positive electrode plate includes a positive electrode current collector and a positive electrode active material (positive electrode material), and solid components other than the current collector. Shall belong to the active material (electrode material).

本発明に係る鉛蓄電池は、例えば、鉛を活物質とする負極板と、二酸化鉛を活物質とする正極板と、これら極板の間に介在する多孔性のセパレータとからなる極板群を備えたものであり、当該極板群が電槽内に収納され、希硫酸を主成分とする流動可能な電解液に浸漬されてなるものである。   The lead storage battery according to the present invention includes, for example, an electrode plate group including a negative electrode plate using lead as an active material, a positive electrode plate using lead dioxide as an active material, and a porous separator interposed between these electrode plates. The electrode group is housed in a battery case, and is immersed in a flowable electrolytic solution containing dilute sulfuric acid as a main component.

前記負極板及び正極板は、Pb−Sb系合金やPb−Ca系合金、Pb−Ca−Sn系合金等からなる集電体の格子部にペースト状の活物質を充填して形成されたものである。これらの各構成部材は、目的・用途に応じて適宜公知のものから選択して用いることができる。   The negative electrode plate and the positive electrode plate are formed by filling a paste-like active material into a grid portion of a current collector made of a Pb-Sb-based alloy, a Pb-Ca-based alloy, a Pb-Ca-Sn-based alloy, or the like. It is. These constituent members can be appropriately selected from known ones according to the purpose and application.

前記集電体は、図3に示すエキスパンドタイプの場合、活物質が充填される格子部、格子部の縁に連設された上部枠骨部、下部枠骨部、及び上部枠骨部から突出する耳を備える。図4に示す鋳造タイプである場合、さらに横枠骨部と下部枠骨部から突出する足を備える。   In the case of the expandable type shown in FIG. 3, the current collector protrudes from a grid portion filled with the active material, an upper frame bone portion, a lower frame bone portion connected to an edge of the grid portion, and an upper frame bone portion. With ears In the case of the casting type shown in FIG. 4, a foot protruding from the horizontal frame bone and the lower frame bone is further provided.

本発明で用いるセパレータは、ポリオレフィンを主成分とし、微孔を有し、平板状のシートが主体のものであって、そのシートの一方の面の上部に正極板と当接する突起部を有し、他方の面に負極板の上部と当接する突起部を有するものである。これらの突起部が本発明におけるリブである。従来の一般的なセパレータのリブは、正極板から発生する酸素によるセパレータの酸化損耗を防ぐために、正極板と向かい合う面の上下方向に沿って一様に設けられるライン状の突起部であり(例えば、特許文献3参照)、そして、本発明のリブは、前記正極板の上部と向かい合う領域又は前記負極板の上部と向かい合う領域に形成される突起部である。
本明細書において、正極板と向かい合う領域に形成されるリブを「正極リブ」という。負極板と向かい合う領域に形成されるリブを「負極リブ」という。
セパレータの平板状の部分(以下、「ベース」又は「ベース部」という。)の厚さを「ベース厚」という。セパレータの正極リブ形成箇所における「ベース厚」を含めたリブの高さを「正極リブ高さ」又は「リブ高さ」という。セパレータの負極リブ形成箇所における「ベース厚」を含めたリブの高さを「負極リブ高さ」という。
正極リブ形成箇所、又は正極リブ及び負極リブ形成箇所におけるセパレータの厚さを「セパレータ総厚」又は「総厚」という。
ライン状のリブ(以下、「ラインリブ」ということもある。)であって、セパレータの一端から他端まで連続したリブ、又は、ドット状のリブ(以下、「ドットリブ」ということもある。)であって、セパレータの一端から他端まで一様に分布したリブを「全リブ」という。
ライン状のリブであって、セパレータの上部の一端から下部方向に所定距離のみ連続したリブ、若しくはセパレータの上部の一端から下部方向の他端まで断続的なリブ、又は、ドット状のリブであって、セパレータの上部のみを含んで分布したリブを「部分リブ」という。
なお、本発明においては、セパレータの総厚を上記のように定義したから、セパレータの横断面(セパレータの上下方向に対して直角方向にカットした断面)で見た場合、図2に示すように、正極リブ形成箇所及び負極リブ形成箇所には重複する箇所が存在する。
上記のポリオレフィンとしては、たとえばポリエチレンを用いることができる。本発明のセパレータは袋状であってもよいし、平板状であってもよい。袋状の場合、この袋内に正極板、負極板のいずれを収納してもよい。
The separator used in the present invention contains polyolefin as a main component, has fine pores, and is mainly composed of a flat sheet, and has a projection in contact with the positive electrode plate at an upper portion of one surface of the sheet. , On the other surface, a projection that contacts the upper part of the negative electrode plate. These projections are the ribs in the present invention. The rib of the conventional general separator is a line-shaped projection provided uniformly along the vertical direction of a surface facing the positive electrode plate in order to prevent the oxidation loss of the separator due to oxygen generated from the positive electrode plate (for example, The rib of the present invention is a protrusion formed in a region facing the upper part of the positive electrode plate or a region facing the upper part of the negative electrode plate.
In this specification, a rib formed in a region facing a positive electrode plate is referred to as a “positive electrode rib”. The rib formed in the region facing the negative electrode plate is called “negative electrode rib”.
The thickness of the flat portion of the separator (hereinafter referred to as “base” or “base portion”) is referred to as “base thickness”. The height of the rib including the “base thickness” at the position where the positive electrode rib is formed on the separator is referred to as “positive electrode rib height” or “rib height”. The height of the rib including the “base thickness” at the portion where the negative electrode rib is formed on the separator is referred to as “negative electrode rib height”.
The thickness of the separator at the location where the positive rib is formed or the location where the positive and negative ribs are formed is referred to as “total thickness of the separator” or “total thickness”.
A line-shaped rib (hereinafter, also referred to as a “line rib”), which is a continuous rib from one end to the other end of the separator, or a dot-shaped rib (hereinafter, also referred to as a “dot rib”). The ribs uniformly distributed from one end to the other end of the separator are called "all ribs".
It is a line-shaped rib that is continuous from the upper end of the separator for a predetermined distance in the lower direction, a rib that is intermittent from the upper end of the separator to the other end in the lower direction, or a dot-shaped rib. The ribs distributed including only the upper part of the separator are referred to as “partial ribs”.
In the present invention, since the total thickness of the separator is defined as described above, when viewed in a cross section of the separator (a cross section cut in a direction perpendicular to the vertical direction of the separator), as shown in FIG. In addition, there are overlapping portions in the positive electrode rib forming portion and the negative electrode rib forming portion.
As the polyolefin, for example, polyethylene can be used. The separator of the present invention may have a bag shape or a flat shape. In the case of a bag, any of the positive electrode plate and the negative electrode plate may be stored in the bag.

本発明においてセパレータに設けられるリブは、ベースが、極板の表面及びその近傍の領域に接触することを防止する機能を有する。なお、当該近傍の目安は、極板の表面から概ね0.1mmの距離にある領域である。ベース厚は0.15〜0.3mmが好ましく、0.25mm程度がより好ましい。
本発明で用いるセパレータは、ベースとリブの合計厚さ(セパレータ総厚)は、0.5mm以上1.0mm以下が好ましく、後述する実施例によると、0.5mm以上0.9mm以下がより好ましい。正極側のリブ高さ及び幅は、上記の機能が発揮できる寸法を用いることができる。
本発明で用いるセパレータの厚さに関する定義を図2を用いて説明する。セパレータのベース部の厚さ(ベース厚)はTで示した寸法とする。セパレータ総厚は、両面にリブがある場合はTで示した寸法とし、片面にのみリブがある場合はTで示した寸法とする。リブの高さはベース部の厚さを含むこととし、例えば正極側に突出するリブの高さ(正極リブ高さ)は、Hで示した寸法とする。
In the present invention, the rib provided on the separator has a function of preventing the base from contacting the surface of the electrode plate and a region in the vicinity thereof. In addition, the standard of the said vicinity is an area | region which is about 0.1 mm away from the surface of an electrode plate. The base thickness is preferably from 0.15 to 0.3 mm, more preferably about 0.25 mm.
In the separator used in the present invention, the total thickness of the base and the rib (separator total thickness) is preferably 0.5 mm or more and 1.0 mm or less, and according to Examples described later, more preferably 0.5 mm or more and 0.9 mm or less. . For the height and width of the rib on the positive electrode side, dimensions that can exert the above functions can be used.
The definition regarding the thickness of the separator used in the present invention will be described with reference to FIG. The thickness (base thickness) of the base portion of the separator is a dimension indicated by T. The total thickness of the separator, the dimensions shown in T B if there are ribs on both sides, if there is a rib on only one side and dimensions shown in T A. The height of the ribs is set to include the thickness of the base portion, for example, rib height protruding on the positive electrode side (cathode rib height), and dimensions shown in H P.

本発明で用いるリブの形状は、図5の左図に示すように、ライン状でもよいし、図5右図に示すドット状でもよい。ライン状のリブは、図5左図のようにライン幅Wを有し、セパレータの一端から他端まで連続した全リブであってよく、図示していないが、上部一端から下部方向に所定距離のみ連続した部分リブであってよく、上部の一端から下部方向の他端まで断続的な部分リブであってもよい。ライン状のリブの断面は、図2のように長方形又は正方形、あるいは台形などを用いることができる。他方、ドット状のリブも、セパレータの一端から他端まで一様に分布した全リブであってよく、上部のみを含んで分布した部分リブであってよい。ドット状のリブは、たとえば、図5の右図に示すように、所定の直径Rを有する円形の領域が突出した構造のものをいう。突出した部分の形状は、円柱状に突出した構造でもよいし、半球状に突出したものでもよい。   The shape of the rib used in the present invention may be a linear shape as shown in the left diagram of FIG. 5, or a dot shape as shown in the right diagram of FIG. The line-shaped rib may have a line width W as shown in the left diagram of FIG. 5 and may be a continuous rib extending from one end to the other end of the separator. It may be a continuous partial rib, or may be a continuous partial rib from one end of the upper part to the other end in the lower direction. The cross section of the linear rib can be rectangular or square or trapezoidal as shown in FIG. On the other hand, the dot-shaped ribs may be all ribs uniformly distributed from one end to the other end of the separator, or may be partial ribs including only the upper part. The dot-shaped rib has a structure in which a circular region having a predetermined diameter R protrudes as shown in the right diagram of FIG. 5, for example. The shape of the protruding portion may be a structure protruding in a columnar shape or a shape protruding in a hemispherical shape.

本発明において、正極板と負極板とはセパレータを介して積層されており、同極板の耳が接続されて一体となっている。複数の極板の耳を接続してなる部分がストラップであり、ストラップには、電槽内に複数のセル室が存在する場合、隣り合う電池セル間を接続するセル間接続部と、電池の端子と接続される極柱とがそれぞれ連設されている。電槽が単セル構造である場合は、ストラップに極柱が連接されている。   In the present invention, the positive electrode plate and the negative electrode plate are stacked with a separator interposed therebetween, and the ears of the same electrode plate are connected and integrated. The portion formed by connecting the ears of the plurality of electrode plates is a strap, and in the case where a plurality of cell chambers are present in the battery case, the strap has an inter-cell connection portion connecting adjacent battery cells, and a strap of the battery. The poles to be connected to the terminals are provided in series. When the battery case has a single-cell structure, the pole is connected to the strap.

ストラップ、セル間接続部、及び極柱は、例えば、Pb−Sn系合金や、Pb−Sb系合金などを用いて形成される。   The strap, the inter-cell connection portion, and the pole are formed using, for example, a Pb-Sn-based alloy, a Pb-Sb-based alloy, or the like.

本発明の鉛蓄電池は、負極ストラップ及び正極ストラップのそれぞれの直下における両端の耳の外端間の長さA及びA´が、同極のストラップに接続された極板のうち両端に位置する極板における上部枠骨部の積層方向外端間の長さB及びB´よりそれぞれ小さい。以下、AとBとの定義及びA´とB´との定義について、AとBとで代表して述べると、長さAは、図1に示すように、両端の耳の外端間の長さであって、ストラップの下面に接する部分における長さであり、長さBは、図1に示すように、ストラップに接続された極板のうち両端に位置する極板の集電体の上部枠骨部の積層方向の外端間の長さである。なお、長さA及び長さBは、極板群が電槽に収納され、かつ、化成された後であり、かつ、満充電の状態の寸法とする。この寸法の測定は、極板群の積層方向の寸法を電槽収納時の寸法とほぼ同じにしさえすれば、極板群を電槽から出した状態で行うことができる。   In the lead storage battery of the present invention, the lengths A and A ′ between the outer ends of the ears at both ends immediately below the negative electrode strap and the positive electrode strap are located at both ends of the electrode plates connected to the same-polarity strap. The length between the outer ends in the stacking direction of the upper frame bones of the plate is smaller than the lengths B and B ′, respectively. Hereinafter, the definitions of A and B and the definitions of A 'and B' will be described by using A and B as representatives. As shown in FIG. The length B is a length at a portion in contact with the lower surface of the strap, and the length B is, as shown in FIG. 1, a current collector of the electrode plate located at both ends of the electrode plate connected to the strap. This is the length between the outer ends of the upper frame bone in the stacking direction. The length A and the length B are dimensions after the electrode group is housed in the battery case and formed, and in a fully charged state. The measurement of this dimension can be performed in a state where the electrode group is taken out of the battery case, as long as the dimension of the electrode group in the stacking direction is substantially the same as the dimension when the battery case is stored.

本発明においては、A<B及びA´<B´とすることによってストラップを小形化することが可能となる。その結果、たとえば、材料コストを低減し、極板群のサイズが変わっても鋳型を変更することを不要とし、あるいは、より多くの活物質を充填することにより積層方向に長くなった極板群をJISD5301に規定されているような所定寸法の電槽内に収納することが可能になる、といった効果がある。また、本発明においては、長さAと長さBとの差及び長さA´と長さB´との差は、1mm以上とすることができ、本発明の効果が顕著であることから3mm以上とすることが好ましい。   In the present invention, the size of the strap can be reduced by setting A <B and A ′ <B ′. As a result, for example, the material cost is reduced, and it is not necessary to change the mold even if the size of the electrode group changes, or the electrode group becomes longer in the stacking direction by filling more active material. Can be accommodated in a battery case having a predetermined size as defined in JIS D5301. Further, in the present invention, the difference between the length A and the length B and the difference between the length A ′ and the length B ′ can be 1 mm or more, since the effect of the present invention is remarkable. It is preferable to set it to 3 mm or more.

この極板群を例えばポリプロピレン等の合成樹脂製の電槽に収納し、硫酸を加え、電槽化成を施して液式鉛蓄電池を作製する。   The electrode group is housed in a battery case made of, for example, a synthetic resin such as polypropylene, and sulfuric acid is added to form a battery case to produce a liquid lead storage battery.

本発明が耐浸透短絡性能を向上させる作用・機序は、以下のように推察される。
PSOCで使用される鉛蓄電池においては、過放電状態になりやすく、極板の表面付近で放電反応により硫酸が消費され、電解液の低比重領域となっている。COS方式を採用した鉛蓄電池のストラップ直下の耳群長Aと上部極板群長BがA<Bであると、極板上部において極間が狭くなりがちであるから、セパレータを極板の表面あるいは表面近傍に形成されると推定される低比重領域から離すことができない。低比重の電解液中では鉛イオンの濃度が高いので、この鉛イオンが充電時に負極で還元・析出してデンドライトが成長し、セパレータのベース部に鉛が浸透する浸透短絡が加速すると考えられる(後述の比較例:A1電池)。
The action and mechanism by which the present invention improves the resistance to penetration short circuit is presumed as follows.
In the lead storage battery used in the PSOC, an overdischarged state is apt to occur, and sulfuric acid is consumed by a discharge reaction near the surface of the electrode plate, which is a low specific gravity area of the electrolyte. If the ear group length A and the upper electrode group length B directly below the strap of the lead-acid battery adopting the COS method are A <B, the gap between the electrodes tends to be narrow at the upper part of the electrode plate. Alternatively, it cannot be separated from the low specific gravity region estimated to be formed near the surface. It is considered that since the concentration of lead ions is high in a low-density electrolyte, the lead ions are reduced and precipitated at the negative electrode during charging, dendrite grows, and penetration short circuit, in which lead penetrates into the base portion of the separator, is accelerated ( Comparative example described below: A1 battery).

本発明は、A<B及びA´<B´の電池であって、セパレータが、負極板及び正極板のそれぞれの上部に向かい合う領域にリブを有する。 The present invention relates to a battery of A <B and A'<B', separator, that have a rib in a region facing the upper portion of each of the negative electrode plate and a positive plate.

本発明では、セパレータが負極板及び正極板のそれぞれの上部に向かい合う領域にリブを有することにより、浸透短絡の発生を抑制する効果が得られる。この効果は、上部におけるセパレータと両極板との間に距離を設け、セパレータを極板表面付近に存在すると推定される低比重領域から離すことができたため、セパレータ表面及び内部の鉛イオン濃度が上がりにくく、浸透短絡の発生を抑制することができたことに起因すると推察される。また、リブが両面に設けられていることによって、片面に設けられている場合と比べて、浸透短絡が大幅に抑制されることとなる。なぜなら、リブ突出方向と反対側のベース面が負極板に接触する場合、浸透短絡の起点となりやすい性状があるからである。すなわち、図2の左側のように正極側だけにリブが配置されている場合、正極板の表面が正極側のリブを圧迫することによって、そのリブの反対側のベース部が負極に押し付けられることとなる。このような状況となった場合、理由は明らかでないが、浸透短絡が顕著に発生することとなる。したがって、リブをセパレータの両面に配置することによって、そのような状況を避けることができ、その結果として、浸透短絡が大幅に抑制されることとなる。
さらに、リブ高さを極間距離を下部にかけて小さくなる設計とすることにより、低温高率放電性能とともにPSOC寿命性能を向上する効果が得られる。この効果は、下部での反応を起こりやすくしてサルフェーションを抑制するとともに、上部での反応を緩和して正極板上部の活物質の劣化を抑制すること起因するものと推察される。
In the present invention, the effect of suppressing the occurrence of permeation short-circuit can be obtained by providing the separator with a rib in a region facing the upper part of each of the negative electrode plate and the positive electrode plate. This effect was achieved by providing a distance between the upper separator and the bipolar plate, and separating the separator from the low specific gravity region, which is presumed to be near the surface of the polar plate. This is presumed to be caused by the fact that the occurrence of penetration short circuit could be suppressed. Further, since the ribs are provided on both surfaces, the penetration short circuit is significantly suppressed as compared with the case where the ribs are provided on one surface. This is because when the base surface on the opposite side to the rib protruding direction comes into contact with the negative electrode plate, there is a property that the base surface is likely to be a starting point of a penetration short circuit. That is, when the ribs are arranged only on the positive electrode side as shown on the left side of FIG. 2, the surface of the positive electrode plate presses the ribs on the positive electrode side, so that the base portion on the opposite side of the ribs is pressed against the negative electrode. Becomes In such a situation, although the reason is not clear, a permeation short circuit occurs remarkably. Therefore, by arranging the ribs on both surfaces of the separator, such a situation can be avoided, and as a result, the penetration short circuit is largely suppressed.
Furthermore, by designing the rib height to decrease as the distance between the poles decreases, the effect of improving the low-temperature high-rate discharge performance and the PSOC life performance can be obtained. This effect is presumed to be caused by the fact that the reaction in the lower part is likely to occur and the sulfation is suppressed, and the reaction in the upper part is relaxed to suppress the deterioration of the active material in the upper part of the positive electrode plate.

さらに、本発明では、A<B及びA´<B´という構成によって、きわめて特異的に浸透短絡を抑制する効果が得られる。具体的には、電極板の上部付近、とくに上部枠骨部に近い領域で生じる浸透短絡が抑制され、他の領域での浸透短絡も含めた浸透短絡が顕著に抑制されるという効果が得られる。この効果は、A<B及びA´<B´という構成になっているときに初めて認識されるものである。なぜなら、A≧B及びA´≧B´という構成の場合は、極板の上部において選択的に浸透短絡が生じるという現象が実際に起こっていないか、あるいは、明確に認識できる程度に起こっていないからである。そして、A<B及びA´<B´の場合に、そのような特異的な領域での浸透短絡が、他の領域で生じるものと比べて明確に区別できる程度の頻繁で発生することとなるので、その領域にリブを設けることの意義は、A=B及びA´=B´やA>B及びA´>B´の場合と比べて大きいこととなる。   Further, in the present invention, the configuration of A <B and A ′ <B ′ provides an effect of suppressing the osmotic short circuit very specifically. Specifically, the effect is obtained that the osmotic short-circuit occurring near the upper portion of the electrode plate, particularly in the region near the upper frame bone is suppressed, and the osmotic short-circuit including the osmotic short-circuit in other regions is significantly suppressed. . This effect is recognized only when A <B and A ′ <B ′. Because, in the case of the configuration of A ≧ B and A ′ ≧ B ′, the phenomenon that the osmotic short circuit occurs selectively at the upper part of the electrode plate does not actually occur or does not occur to the extent that it can be clearly recognized. Because. In the case of A <B and A ′ <B ′, the osmotic short circuit in such a specific region occurs more frequently than the one occurring in other regions so as to be clearly distinguishable. Therefore, the significance of providing a rib in that region is greater than in the case where A = B and A ′ = B ′, or when A> B and A ′> B ′.

また、A<B及びA´<B´という構成にすることよって、浸透短絡抑制効果に加えて、上述のとおり、ストラップを小形化することができるという効果を得ることができる。さらに、後述するように、A<B及びA´<B´の場合、A=B及びA´=B´やA>B及びA´>B´の場合と比べて、低温高率放電性能が優れるという効果も得られる。   Further, by adopting the configuration of A <B and A ′ <B ′, it is possible to obtain the effect that the strap can be miniaturized as described above, in addition to the effect of suppressing the penetration short circuit. Further, as will be described later, when A <B and A ′ <B ′, the low-temperature high-rate discharge performance is lower than when A = B and A ′ = B ′ or A> B and A ′> B ′. The effect of being excellent is also obtained.

本発明は、一方の極板と向かい合う面において、上部のみにリブ(部分リブ)を有している実施態様を含む(実施例:A2〜A7電池参照)。この発明では、両方の極板と向かい合う面全体にリブを有する電池(実施例:A8電池参照)より、PSOC寿命が優れている。これは、リブが、極板に当接する部分のイオン移動を妨げる作用を有するため、一方の面の上部のみにリブを有し、下部にリブを有しないことで、下部の反応抵抗を小さくし、反応の均一化をより向上し、サルフェーションを抑制し、上部における正極活物質の劣化、脱落を防止するためと考えられる。   The present invention includes an embodiment in which a rib (partial rib) is provided only on an upper portion on a surface facing one electrode plate (see Examples: A2 to A7 batteries). According to the present invention, the PSOC life is superior to a battery having ribs on the entire surface facing both electrode plates (see Example: A8 battery). This is because the rib has a function of preventing ion movement in a portion abutting on the electrode plate, so that the rib has only one upper portion of one surface and has no rib at the lower portion, thereby reducing the reaction resistance of the lower portion. This is considered to further improve the uniformity of the reaction, suppress sulfation, and prevent deterioration and dropout of the positive electrode active material in the upper portion.

また、本発明は、部分リブが存在する割合を電極群の上部50%以下とする実施態様を含む(実施例A2〜A6電池参照)。上記と同様の理由により、反応抵抗が大きくなるリブ領域を小さくすることで、PSOC寿命性能をより向上することができると推察される。
前記極板の上部30%以下の領域と向かい合う領域のみにリブを有することが好ましい。
Further, the present invention includes an embodiment in which the ratio of the presence of the partial rib is set to 50% or less of the upper part of the electrode group (see Examples A2 to A6 batteries). For the same reason as described above, it is presumed that the PSOC life performance can be further improved by reducing the rib region where the reaction resistance increases.
It is preferable that a rib is provided only in a region facing the region of 30% or less of the upper part of the electrode plate.

本発明は、リブがドット形状である実施態様を含む(後述の実施例:B1〜B3電池)。ドットリブは、ラインリブより少ない総面積の設置で極板との距離を保つことができるから、反応抵抗の増加をより抑制することができるとともに、半球状のリブ側面を液やガスの通路とすることにより、液やガスの拡散性が向上し、成層化をより抑制することができるから、PSOC寿命性能や低温高率放電性能を向上することができると推察される。   The present invention includes embodiments in which the ribs are dot-shaped (Examples described below: B1 to B3 batteries). Dot ribs can maintain the distance from the electrode plate with a smaller total area than line ribs, so it is possible to further suppress the increase in reaction resistance, and to use the hemispherical rib side surfaces as liquid or gas passages. Thus, the diffusibility of the liquid or gas is improved, and the stratification can be further suppressed, so that it is presumed that the PSOC life performance and the low-temperature high-rate discharge performance can be improved.

また、本発明は、一方の極板と向かい合う面において、当該極板の下部の一部又は全部と向かい合う領域においてリブが切り欠かれた構造とする実施態様を含む。たとえば、リブがライン状のリブである場合、少なくとも一条のリブのうち電極板の下部の一部又は全部に向かい合う領域において、当該リブが切り欠かれた構造とすることが好ましい。切り欠かれた構造とは、ベース部からの突出部が無い状態か、あるいは、上部にあるリブ高さよりも低いリブとされていることを意味する。以上のような構成とすることによって、切欠きを設けない構造と比べて、PSOC寿命が向上する。これは、リブが、極板に当接する部分のイオン移動を妨げる作用を有するため、一方の面の上部のみにリブを有し、下部にリブを有しないことで、下部の反応抵抗を小さくし、反応の均一化をより向上し、サルフェーションを抑制し、上部における正極活物質の劣化、脱落を防止するためと考えられる。なお、ここでの「下部」は電極板の下端から所定高さまでの領域を意味し、この所定高さは、極板の高さの50%以上とすることができ、さらに高い効果が得られることから、極板の高さの70%以上とすることが好ましい。なお、電極板の下端は下部枠骨部の下端であり、電極板の高さは、下部枠骨部の下端から上部枠骨部の上端までの最短距離である。   Further, the present invention includes an embodiment in which a rib is cut out in a region facing a part or all of a lower part of the electrode plate on a surface facing one of the electrode plates. For example, when the rib is a linear rib, it is preferable that at least one of the ribs has a structure in which the rib is cut out in a region facing part or all of the lower part of the electrode plate. The notched structure means that there is no protruding portion from the base portion or that the rib is lower than the height of the upper rib. With the above-described configuration, the PSOC life is improved as compared with the structure in which the notch is not provided. This is because the rib has a function of preventing ion movement in a portion abutting on the electrode plate, so that the rib has only one upper portion of one surface and has no rib at the lower portion, thereby reducing the reaction resistance of the lower portion. This is considered to further improve the uniformity of the reaction, suppress sulfation, and prevent deterioration and dropout of the positive electrode active material in the upper portion. Here, the “lower portion” means a region from the lower end of the electrode plate to a predetermined height, and this predetermined height can be 50% or more of the height of the electrode plate, and a higher effect can be obtained. For this reason, the height is preferably set to 70% or more of the height of the electrode plate. The lower end of the electrode plate is the lower end of the lower frame bone, and the height of the electrode plate is the shortest distance from the lower end of the lower frame bone to the upper end of the upper frame bone.

本発明は、アイドリングストップ車用の鉛蓄電池に適用することが好ましい。
なぜなら、アイドリングストップ車用の鉛蓄電池は、PSOC条件下で使用されるので他の用途の電池と比べて浸透短絡が生じる確率が高く、その結果として、本発明を適用する意義が大きいからである。
また、本発明をアイドリングストップ車用の鉛蓄電池に適用することで初めて得られる効果もある。アイドリングストップ車用の鉛蓄電池は、非アイドリングストップ車用途のものと比べて、高い充電受入れ性能を達成するため多くの活物質が必要であり、その結果として、極板群の積層方向の寸法(たとえば長さB)は大きくなりがちである。このような極板群を用いた電池を製造する場合、A=B及びA´=B´あるいはA>B及びA´>B´としたときは、ストラップが大形化することとなるので、電槽に収納するのが困難となることがある。とくに、JISD5301に規定されている型式の電池は、電槽サイズに上限が設定されているため、ストラップが長すぎると実質的に電池を製造できなくなることもある。これに対して、A<B及びA´<B´としたときは、ストラップを大形化する必要がないので、極板群の積層方向の寸法を大きくした場合でも、電槽に収納するのが困難という問題は解決可能となる。したがって、本発明においては、セパレータの両面にリブを設け、そのリブを電極板の上部に向かい合う領域に配置することとし、A<B及びA´<B´という構成とし、さらにアイドリングストップ車用の鉛蓄電池として用いることによって、極板上部における浸透短絡を抑制する効果と、ストラップを小形化できる効果と、アイドリングストップ車用途に適した電極群を、規格により上限が定められた電槽内の空間に収納できる設計が可能となる効果とを同時に得ることができる。すなわち、本発明を採用して初めて、極板上部における浸透短絡が抑制され、かつ、十分なPSOC条件下での寿命性能を備えたアイドリングストップ車用鉛蓄電池が製造可能となるのである。
The present invention is preferably applied to a lead storage battery for an idling stop vehicle.
This is because a lead storage battery for an idling stop vehicle is used under PSOC conditions, and therefore has a higher probability of occurrence of a penetration short circuit as compared with batteries for other uses, and as a result, the application of the present invention is significant. .
Further, there is an effect obtained only by applying the present invention to a lead storage battery for an idling stop vehicle. Lead-acid batteries for idling stop vehicles require more active materials to achieve higher charge acceptance performance than those for non-idling stop vehicles, and as a result, the dimensions of the electrode group in the stacking direction ( For example, length B) tends to be large. When manufacturing a battery using such an electrode group, when A = B and A ′ = B ′ or when A> B and A ′> B ′, the strap becomes large. It may be difficult to store in a battery case. In particular, for batteries of the type specified in JIS D 5301, the upper limit is set for the battery case size, so that if the strap is too long, it may be impossible to substantially manufacture the battery. On the other hand, when A <B and A ′ <B ′, it is not necessary to increase the size of the strap. Can be solved. Therefore, in the present invention, ribs are provided on both surfaces of the separator, and the ribs are arranged in a region facing the upper part of the electrode plate. By using as a lead storage battery, the effect of suppressing penetration short circuit at the upper part of the electrode plate, the effect of reducing the size of the strap, and the electrode group suitable for idling stop car use, the space inside the battery case with the upper limit specified by the standard And the effect of enabling a design that can be accommodated in a vehicle. That is, only by adopting the present invention, it is possible to manufacture a lead storage battery for an idling stop vehicle, which suppresses the osmotic short circuit in the upper part of the electrode plate and has the life performance under sufficient PSOC conditions.

以下、本発明の具体的な実施例、比較例、及び従来例について示す。
(正極活物質)
ボールミル法による鉛酸化物、補強材である合成樹脂繊維、水及び硫酸を混合することによって正極ペーストを調製した。このペーストをアンチモンフリーのPb−Ca−Sn系合金から成るエキスパンドタイプの格子状の正極集電体に充填し、熟成、乾燥を施して、幅100mm、高さ110mm、厚さ1.6mmの未化成の正極板を作製した。
Hereinafter, specific examples, comparative examples, and conventional examples of the present invention will be described.
(Positive electrode active material)
A positive electrode paste was prepared by mixing lead oxide by a ball mill method, a synthetic resin fiber as a reinforcing material, water and sulfuric acid. This paste is filled into an expanded-type grid-like positive electrode current collector made of an antimony-free Pb-Ca-Sn-based alloy, aged and dried to obtain a 100 mm-wide, 110 mm-high, 1.6 mm-thick uncollected paste. A chemical positive electrode plate was produced.

(負極活物質)
ボールミル法による鉛酸化物、鱗片状グラファイト、硫酸バリウム、リグニン、及び補強材の合成樹脂繊維、水及び硫酸を混合することによって負極ペーストを調製した。このペーストをアンチモンフリーのPb−Ca−Sn系合金から成るエキスパンドタイプの負極格子に充填し、熟成、乾燥を施して、幅100mm、高さ110mm、厚さ1.3mの未化成の負極板を作製した。鱗片状グラファイト、硫酸バリウム、リグニン及び合成樹脂繊維の混合量は、化成後でかつ満充電の状態で測定した時に、それぞれ、2mass%、0.6mass%、0.2mass%及び0.1mass%になるように調節した。
(Negative electrode active material)
A negative electrode paste was prepared by mixing lead oxide, flaky graphite, barium sulfate, lignin, synthetic resin fibers of a reinforcing material, water and sulfuric acid by a ball mill method. This paste is filled into an expandable negative grid made of an antimony-free Pb-Ca-Sn-based alloy, aged and dried to form an unformed negative plate having a width of 100 mm, a height of 110 mm and a thickness of 1.3 m. Produced. The amount of the mixture of flaky graphite, barium sulfate, lignin and synthetic resin fiber was 2 mass%, 0.6 mass%, 0.2 mass% and 0.1 mass%, respectively, when measured after formation and in a fully charged state. Adjusted to be.

(セパレータ)
ポリエチレンを基材とする合成樹脂製であって、後述するリブをそれぞれ有する袋状セパレータとした。セパレータ総厚は、以下の電池すべて0.70mmで一定である。
(Separator)
A bag-shaped separator made of a synthetic resin based on polyethylene and having ribs described later was used. The total thickness of the separator is constant at 0.70 mm for all of the following batteries.

(電池構成)
前記袋状セパレータに前記負極板を収納し、前記負極板7枚と、前記正極板6枚とを、負極板が外側になるように交互に積層した。
前記正極板同士の耳、及び前記負極板同士の耳をそれぞれCOS方式により正極ストラップ、負極ストラップで溶接して極板群を作製し、この極板群をポリプロピレン製の電槽に収納し、硫酸を加え、電槽化成を施して、化成後の電解液比重が1.285、5hR容量が30Ahの液式鉛蓄電池を作製した。なお、電槽内では6個の極板群が直列に接続されている。また、寸法を確認するための電池を別途作成し、電槽化成のあと、さらに満充電したあと、蓋を取り外して正極側及び負極側のストラップ群長A、A´、上部極板群長B及びB´をそれぞれ測定した。A<B及びA´<B´となっているものについては以下の表では「A<B」と表記した。A=B及びA´=B´になっているものについては以下の表では「A=B」と表記した。A>B及びA´>B´となっているものについては以下の表では「A>B」と表記した。
(Battery configuration)
The negative electrode plate was housed in the bag-shaped separator, and the seven negative electrode plates and the six positive electrode plates were alternately laminated such that the negative electrode plate was on the outside.
The ears of the positive electrode plates and the ears of the negative electrode plates are welded with a positive electrode strap and a negative electrode strap by a COS method, respectively, to produce an electrode group. The electrode group is housed in a polypropylene battery case, Was added, and a battery case formation was performed to produce a liquid lead storage battery having a specific gravity of 1.285 for the electrolytic solution after the formation and a capacity of 30 Ah for 5 hR. In the battery case, six electrode plates are connected in series. In addition, a battery for checking the dimensions is separately prepared, and after the battery case formation, the battery is further fully charged, the lids are removed, and the strap group lengths A and A 'on the positive electrode side and the negative electrode side, and the upper electrode plate group length B And B ′ were measured. Those in which A <B and A ′ <B ′ are indicated as “A <B” in the following table. Those in which A = B and A ′ = B ′ are described as “A = B” in the following table. Those in which A> B and A ′> B ′ are described as “A> B” in the following table.

<比較例:A1電池>
図2の従来例に示すセパレータであって、負極リブを有さず、正極板全面と向かい合う領域に正極リブを有し、ベース厚Tが0.25mm、リブ高さ(正極リブ高さ)Hが総厚Tと等しい0.70mmのセパレータを用い、ストラップ直下の耳群長A、A´がそれぞれ上部極板群長B、B´より小さい比較例1に係るA1電池を作製した。
なお、A1〜A9電池におけるリブは、全て図5の左図に示すようなラインリブである。ライン幅Wは1mmとした。また、ラインリブとラインリブの間隔は、9mmとした。また、AとB、及びA´とB´との大小関係は同じにしているので、以下、AとBとの関係を代表して述べる。
<Comparative example: A1 battery>
The separator shown in the conventional example of FIG. 2 does not have a negative electrode rib, has a positive electrode rib in a region facing the entire positive electrode plate, has a base thickness T of 0.25 mm, and has a rib height (positive electrode rib height) H. There using the separator of 0.70mm equal to the total thickness T a, was prepared ears group length immediately below the strap a, A'upper electrode plate group length each B, and A1 cell according to B'smaller Comparative example 1.
The ribs in the A1 to A9 batteries are all line ribs as shown in the left diagram of FIG. The line width W was 1 mm. The distance between the line ribs was 9 mm. Since the magnitude relation between A and B and between A 'and B' is the same, the relation between A and B will be described below as a representative.

<従来例1:X電池>
比較例1と同じセパレータを用い、ストラップ直下の耳群長Aがそれぞれ上部極板群長Bより大きい従来例1に係るX電池を作製した。
<Conventional example 1: X battery>
Using the same separator as in Comparative Example 1, an X battery according to Conventional Example 1 was manufactured in which the ear group length A immediately below the strap was larger than the upper electrode group length B.

<従来例2:Y電池>
比較例1と同じセパレータを用い、ストラップ直下の耳群長Aがそれぞれ上部極板群長Bと同じである従来例2に係るY電池を作製した。
<Conventional example 2: Y battery>
Using the same separator as in Comparative Example 1, a Y battery according to Conventional Example 2 was manufactured in which the ear group length A immediately below the strap was the same as the upper electrode group length B, respectively.

(低温高率放電性能試験)
満充電が完了した上記のA1、X、Y電池を16時間以上−15℃±1℃の冷却室に置いた後、150Aの放電電流で端子電圧が6Vに低下するまでの放電時間を記録した(JIS D5301の高率放電特性試験に準拠)。
(Low temperature high rate discharge performance test)
After the fully charged A1, X, and Y batteries were placed in a cooling room at -15 ° C. ± 1 ° C. for 16 hours or more, the discharge time until the terminal voltage dropped to 6V at a discharge current of 150 A was recorded. (Based on JIS D5301 high rate discharge characteristics test).

(浸透短絡試験)
低温高率放電性能試験を行ったものとは別に新たに液式鉛蓄電池を、25℃の恒温水槽中で、表1に示す工程1〜5を実行した後に電池を解体して短絡の有無を調べた。各実施例及び比較例について、それぞれ20個の鉛蓄電池を試験し、浸透短絡の発生率を評価した。
(Permeation short circuit test)
In addition to the low-temperature high-rate discharge performance test, a new liquid-type lead-acid battery was placed in a constant temperature water bath at 25 ° C., and after performing steps 1 to 5 shown in Table 1, the battery was disassembled to determine whether there was a short circuit. Examined. For each of the examples and comparative examples, 20 lead storage batteries were tested, and the occurrence rate of penetration short circuit was evaluated.

以下の表2に、A1、X、Y電池の結果を示す。   Table 2 below shows the results for the A1, X, and Y batteries.

上記の結果をみると、A>B及びA=Bである従来例のX、Y電池での浸透短絡は、A<Bの場合と比べて発生率が相当小さい。このことは、A<Bとした場合にのみ、浸透短絡が発生するという問題が顕著に認められることを意味している。なお、観察の結果、A<Bの場合の浸透短絡は、電極板の上部付近、とくに上部枠骨に近い付近で発生しているケースが大半であったが、A=Bの場合は、上部枠骨に近い付近で発生しているケースがとくに多いということは明確には認められなかった。
また、A<BであるA1電池は、X,Y電池と同等以上の低温高率放電性能を有することも分かった。
According to the above results, the occurrence rate of the penetration short circuit in the conventional X and Y batteries in which A> B and A = B is considerably smaller than in the case where A <B. This means that only when A <B, the problem of occurrence of a penetration short circuit is remarkably recognized. In addition, as a result of the observation, in most cases, the osmotic short circuit in the case of A <B occurred near the upper part of the electrode plate, particularly near the upper frame bone. It was not clearly observed that there were many cases occurring near the frame bone.
It was also found that the A1 battery in which A <B had low-temperature and high-rate discharge performance equal to or higher than that of the X and Y batteries.

<実施例:A2電池>
A1電池のセパレータに代えて、図2に示す、ベース厚Tが0.25mm、正極リブ高さHが0.50mm、負極リブ高さHが0.45mmのリブを有し、総厚Tが0.70mmであって、負極リブを負極板の格子部の上部20%の領域と向かい合う領域のみに有し、正極リブを正極板全面と向かい合う領域に有するセパレータを用いた以外は、比較例1と同様にして実施例に係るA2電池を作製した。
<Example: A2 battery>
Instead of the A1 cell separator shown in FIG. 2, base thickness T is 0.25 mm, the positive electrode rib height H P is 0.50 mm, the anode rib height H L has a rib 0.45 mm, the total thickness T B is a 0.70 mm, has only the region facing the upper 20% of the area of the grating portion of the negative electrode plate and the negative electrode ribs, except for using the separator having a region facing the cathode ribs positive electrode plate entire surface, An A2 battery according to the example was manufactured in the same manner as in the comparative example 1.

<実施例:A3〜A8電池>
負極板の上部30%、50%、70%の領域と向かい合う領域のみ、又は負極板全面に向かい合う領域に負極リブを有し、正極板全面と向かい合う領域に正極リブを有するセパレータを用いた以外は、A2電池と同様にして実施例に係るA3、A5、A7、及びA8電池を作製した。
また、正極板の上部30%、50%の領域と向かい合う領域のみに正極リブを有し、負極板全面に向かい合う領域に負極リブを有するセパレータを用いた以外は、実施例A2と同様にして実施例に係るA4、A6電池を作製した。
<Example: A3-A8 batteries>
Except for using a separator having a negative electrode rib only in a region facing the upper 30%, 50%, and 70% regions of the negative electrode plate or a region facing the entire negative electrode plate and a positive electrode rib in a region facing the entire positive electrode plate. A3, A5, A7, and A8 batteries according to the examples were manufactured in the same manner as the A2 battery.
The same procedure as in Example A2 was carried out, except that a separator having a positive electrode rib only in a region facing the upper 30% and 50% regions of the positive electrode plate and a negative electrode rib in a region facing the entire negative electrode plate was used. A4 and A6 batteries according to the examples were produced.

<比較例2:A9電池>
負極板の下部50%の領域と向かい合う領域のみに負極リブを有し、正極板全面に向かい合う領域に正極リブを有するセパレータを用いた以外は、A2電池と同様にして比較例に係るA9電池を作製した。
<Comparative Example 2: A9 battery>
An A9 battery according to a comparative example was manufactured in the same manner as the A2 battery except that a separator having a negative electrode rib only in a region facing the lower 50% region of the negative electrode plate and a positive electrode rib in a region facing the entire positive electrode plate was used. Produced.

<実施例:B1〜B3電池>
A2、A3、及びA5電池で用いたセパレータの負極リブを、図5の右図に示すような半球状のドットリブ(円の直径Rは1mm)に変更した以外はA2電池と同様にして、実施例に係るB1〜B3電池を作製した。
<Example: B1 to B3 batteries>
A2, A3, and A5 batteries were operated in the same manner as the A2 battery except that the negative electrode rib of the separator used in the batteries was changed to a hemispherical dot rib (circle diameter R was 1 mm) as shown in the right diagram of FIG. B1 to B3 batteries according to the examples were produced.

上記のA1〜A9、B1〜B3電池について、上記の低温高率放電性能試験、浸透短絡試験を行い、さらに、以下のPSOC寿命試験を行った。
(PSOC寿命試験)
40℃の恒温漕内で、表3、及び図6に示す寿命試験パターンを繰り返し、端子電圧が7.2Vに到達するまでのサイクル数を記録した。サイクル数は、工程1から5までを1回行ったことを1サイクルとして数えることとした。
The above-mentioned A1 to A9 and B1 to B3 batteries were subjected to the above-described low-temperature high-rate discharge performance test and the penetration short-circuit test, and further to the following PSOC life test.
(PSOC life test)
The life test pattern shown in Table 3 and FIG. 6 was repeated in a constant temperature bath at 40 ° C., and the number of cycles until the terminal voltage reached 7.2 V was recorded. The number of cycles is defined as one cycle of performing steps 1 to 5 once.

以下の表4に、鉛蓄電池A1〜A9、B1〜B3の上記の試験結果を示し、図7に、上部のリブ面積(極板面積比)とPSOC寿命との関係を示す。
なお、「極板面積比」は、極板の格子部の面積100%に対してリブが向かい合う領域の面積比を示し、「PSOC寿命」は、A1電池のサイクル数を100%とした比を示し、「低温HR性能」は、A1電池の放電時間を100%とした比を示し、浸透短絡発生率は5%刻みで示す。
Table 4 below shows the test results of the lead storage batteries A1 to A9 and B1 to B3, and FIG. 7 shows the relationship between the upper rib area (electrode plate area ratio) and the PSOC life.
The “electrode plate area ratio” indicates the area ratio of the region where the ribs face to 100% of the area of the grid portion of the electrode plate, and the “PSOC life” indicates the ratio when the number of cycles of the A1 battery is 100%. The "low-temperature HR performance" indicates a ratio when the discharge time of the A1 battery is set to 100%, and the penetration short-circuit occurrence rate is indicated in increments of 5%.

表4に示す結果から、正極板の上部と向かい合う領域及び前記負極板の上部と向かい合う領域にラインリブを有するセパレータを用いるA2〜A8電池は、極板上部と向かい合う領域の一方にリブを有さないセパレータを用いる比較例のA1電池に対して、PSOC寿命、低温高率放電性能、耐浸透短絡性能のいずれにおいても、優れていることがわかった。極板上部と向かい合う領域にリブを有さず、極板下部と向かい合う領域にラインリブを有するセパレータを用いる比較例2のA9電池は、比較例1のA1電池より、PSOC寿命、及び耐浸透短絡性能が低下していた。これは、下部が広がったことにより、反応の不均一化が助長され、成層化とデンドライト成長が加速されたことによると推測される。   From the results shown in Table 4, the A2 to A8 batteries using the separator having the line rib in the region facing the upper portion of the positive electrode plate and the region facing the upper portion of the negative electrode plate do not have the rib in one of the regions facing the upper portion of the electrode plate. It was found that all of the PSOC life, the low-temperature high-rate discharge performance, and the permeation short-circuit resistance were superior to the A1 battery of the comparative example using the separator. The A9 battery of Comparative Example 2 using a separator having no ribs in the region facing the upper part of the electrode plate and having the line ribs in the region facing the lower part of the electrode plate has a longer PSOC life and shorter permeation resistance than the A1 battery of Comparative Example 1. Had declined. This is presumed to be due to the fact that the spreading of the lower portion promoted the non-uniformity of the reaction and accelerated stratification and dendrite growth.

リブがドット状であるセパレータを用いたB1〜B3電池は、リブがライン状である以外はそれぞれ同条件であるA2、A3、A5電池を上回るPSOC寿命、低温高率放電性能、及び同等以上の耐浸透短絡性能を示した。これは、内部抵抗の増加が抑制され、液やガスの拡散性が向上したことによると推測される。   B1 to B3 batteries using a separator having a dot-shaped rib have a PSOC life, a low-temperature and high-rate discharge performance higher than those of the A2, A3, and A5 batteries under the same conditions except that the rib has a line shape, and have the same or better performance. The anti-osmosis short circuit performance was shown. This is presumably because the increase in internal resistance was suppressed and the diffusivity of liquid and gas was improved.

また、上記の結果から、本発明の電池をアイドリングストップ車用の始動用鉛蓄電池として用いたときの効果に関して次のようなことがいえる。表3の充放電試験はアイドリングストップ車に搭載したときの代表的な充放電パターンであり、この試験を行うことによって、アイドリングストップ車用の鉛蓄電池としての寿命性能(いわゆるPSOC条件下での寿命性能)を評価することができる。上記試験の結果、実施例の電池のサイクル数は、ライン状のリブの場合、比較例のそれと比べて約3%〜10%程度多い値であった。この結果から、正極板の上部と向かい合う領域及び前記負極板の上部と向かい合う領域にリブを備えたセパレータを用い、かつ、A<Bとの構成とした鉛蓄電池をアイドリングストップ車用の鉛蓄電池として用いた場合、極板上部における浸透短絡を抑制する効果と、ストラップを小形化できる効果と、アイドリングストップ車用に求められる水準のPSOC寿命性能を達成できる効果とを同時に得ることができるといえる。
なお、ストラップを小形化することなしに、所定水準のPSOC寿命性能を達成する極板群をJIS等により上限寸法が設定された電槽に収納する場合、セパレータのリブの配置個所を片面のみにして層厚さを薄くし、その分の活物質量を増量させる方法や、活物質の増量以外にPSOC寿命性能を向上させる方法を採用することも可能であるが、前者の方法では極板上部の浸透短絡を抑制する効果は得られず、後者の方法では、今のところ活物質の増量と同程度の効果のある技術はないため十分な性能向上がはかれない可能性が高い。
さらになお、A=BやA>Bの場合、ストラップの小形化が図れないので、規定の大きさの電槽に収納するためには極板群の寸法を制限せざるを得ない。そのため、PSOC条件下での寿命性能に影響が大きい活物質の使用量を十分に多くできないこととなり、その結果として、アイドリングストップ車用に求められる水準のPSOC寿命性能を達成できないこととなる可能性が高い。
From the above results, the following can be said with respect to the effect when the battery of the present invention is used as a lead storage battery for starting for an idling stop vehicle. The charge / discharge test shown in Table 3 is a typical charge / discharge pattern when mounted on an idling stop vehicle. By performing this test, the life performance as a lead storage battery for an idling stop vehicle (life under a so-called PSOC condition) Performance) can be evaluated. As a result of the above test, the number of cycles of the battery of the example was about 3% to 10% larger in the case of the linear rib than in the comparative example. From this result, using a separator provided with ribs in the region facing the upper part of the positive electrode plate and the region facing the upper part of the negative electrode plate, and as a lead storage battery for an idling stop vehicle, a lead storage battery having a configuration of A <B is used. When used, it can be said that the effect of suppressing the seepage short circuit in the upper part of the electrode plate, the effect of reducing the size of the strap, and the effect of achieving the PSOC life performance required for an idling stop vehicle can be simultaneously obtained.
In addition, when storing the electrode group that achieves the predetermined level of PSOC life performance in a battery case with the upper limit set by JIS etc. without reducing the size of the strap, the location of the separator rib is limited to one side only. It is also possible to adopt a method of reducing the layer thickness by increasing the amount of active material by that amount, or a method of improving the PSOC life performance other than increasing the amount of active material. However, there is no technology that is as effective as an increase in the amount of active material in the latter method, and there is a high possibility that sufficient performance cannot be achieved.
Further, in the case of A = B or A> B, the size of the strap cannot be reduced, so that the size of the electrode plate group must be limited in order to store it in the battery case of a specified size. Therefore, the amount of active material that greatly affects the life performance under PSOC conditions cannot be sufficiently increased, and as a result, the level of PSOC life performance required for an idling stop vehicle may not be achieved. Is high.

本発明により、ストラップ直下の耳群長A、A´が上部極板群長B、B´より小さい鉛蓄電池において、浸透短絡を抑制することができるから、PSOCで使用される機会の多いIS用途の鉛蓄電池等への適用が期待される。   According to the present invention, in a lead storage battery in which the ear group lengths A and A ′ directly below the strap are smaller than the upper electrode plate group lengths B and B ′, the penetration short circuit can be suppressed. Is expected to be applied to lead storage batteries and the like.

A ストラップ直下の耳群長
B 極同極の極板の両端に位置する極板間の上部枠骨部における距離(上部極板群長)

A Ear group length just below the strap B B Distance between the pole plates located at both ends of the pole of the same polarity in the upper frame bone (upper plate group length)

Claims (6)

正極板と負極板とをセパレータを介して積層した極板群と、電解液と、前記極板群を収納した電槽を備えた鉛蓄電池であって、
前記負極板の耳を接続する負極ストラップ直下の両端の耳の外端間の長さA、及び前記正極板の耳を接続する正極ストラップ直下の両端の耳の外端間の長さA´が、それぞれ、前記各ストラップに接続された極板のうち両端に位置する極板における上部枠骨部の積層方向外端間の長さB、B´より小さく、
前記セパレータは、前記正極板の上部50%以下の領域と向かい合う領域を含む前記正極板と向かい合う領域及び前記負極板の上部50%以下の領域と向かい合う領域を含む前記負極板と向かい合う領域にリブを有することを特徴とするアイドリングストップ車用の鉛蓄電池。
An electrode group in which a positive electrode plate and a negative electrode plate are stacked with a separator interposed therebetween, an electrolytic solution, and a lead storage battery including a battery case containing the electrode plate group,
The length A between the outer ends of the ears directly below the negative electrode strap connecting the ears of the negative electrode plate and the length A 'between the outer ends of the ears immediately below the positive electrode strap connecting the ears of the positive electrode plate are A'. The length B, B ′ between the outer ends in the stacking direction of the upper frame bones of the pole plates located at both ends of the pole plates connected to the respective straps,
The separator ribs in a region facing said negative electrode plate including a region facing the upper 50% or less of the area of the region and the negative electrode plate facing the positive electrode plate including an upper 50% or less of the area and facing region of the positive electrode plate A lead storage battery for an idling stop vehicle, comprising:
前記セパレータは、一方の面において、前記正極板全面と向かい合う領域又は前記負極板全面と向かい合う領域にリブを有し、他方の面において、前記正極板の上部50%以下の領域と向かい合う領域のみ、又は前記負極板の上部50%以下の領域と向かい合う領域のみにリブを有することを特徴とする請求項1に記載の鉛蓄電池。 The separator, in one aspect, the positive electrode plate has an entire surface with opposing regions or ribs on the negative electrode plate entirely with opposite area, the other surface, the region facing the upper 50% or less of the area of the positive electrode plate only, 2. The lead-acid battery according to claim 1, wherein a rib is provided only in an area facing an area of 50% or less of an upper part of the negative electrode plate. 3. 前記リブの形状は、ドット状であることを特徴とする請求項1又は請求項2に記載の鉛蓄電池。 The shape of the rib, a lead acid battery according to claim 1 or claim 2 characterized in that it is a dot shape. 前記長さAと前記長さBとの差及び前記長さA´と前記長さB´との差は、1mm以上である、請求項1〜3のいずれか一項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 3, wherein a difference between the length A and the length B and a difference between the length A 'and the length B' are 1 mm or more . 前記セパレータは、ポリエチレンを主成分とすることを特徴とする請求項1〜4のいずれか一に記載の鉛蓄電池。 The separator, a lead acid battery according to claim 1 Neu deviation or claim, characterized in that a main component of polyethylene. 前記セパレータは、一方の極板と向かい合う面において、当該極板の下部の一部又は全部と向かい合う領域において前記リブが切り欠かれた構造となっていることを特徴とする請求項1〜5のいずれか一に記載の鉛蓄電池。 The separator according to claim 1, wherein the surface facing one of the electrode plates has a structure in which the rib is cut out in a region facing a part or all of a lower portion of the electrode plate . lead-acid battery according to one term or shift have.
JP2015188821A 2015-09-25 2015-09-25 Lead storage battery Active JP6665465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015188821A JP6665465B2 (en) 2015-09-25 2015-09-25 Lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015188821A JP6665465B2 (en) 2015-09-25 2015-09-25 Lead storage battery

Publications (2)

Publication Number Publication Date
JP2017063001A JP2017063001A (en) 2017-03-30
JP6665465B2 true JP6665465B2 (en) 2020-03-13

Family

ID=58429006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015188821A Active JP6665465B2 (en) 2015-09-25 2015-09-25 Lead storage battery

Country Status (1)

Country Link
JP (1) JP6665465B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683887A4 (en) * 2017-10-31 2021-06-30 GS Yuasa International Ltd. Lead storage battery
CN111316496A (en) * 2017-10-31 2020-06-19 株式会社杰士汤浅国际 Lead-acid battery
WO2019088040A1 (en) * 2017-10-31 2019-05-09 日本板硝子株式会社 Lead storage battery separator and lead storage battery
WO2019087680A1 (en) * 2017-10-31 2019-05-09 株式会社Gsユアサ Lead storage battery
WO2019152583A1 (en) * 2018-01-31 2019-08-08 Daramic, Llc Improved lead acid battery separators, resilient separators, batteries, systems, and related methods
WO2019234860A1 (en) * 2018-06-06 2019-12-12 日立化成株式会社 Lead storage battery
EP3836251A4 (en) 2018-09-26 2022-04-27 GS Yuasa International Ltd. Lead acid battery
JP7424037B2 (en) 2019-12-20 2024-01-30 株式会社Gsユアサ lead acid battery
WO2022107276A1 (en) * 2020-11-19 2022-05-27 昭和電工マテリアルズ株式会社 Electrode group, storage battery, battery pack, and electric-powered vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916266A (en) * 1982-07-19 1984-01-27 Sanyo Electric Co Ltd Manufacture of plate group for storage battery
JPS62180954A (en) * 1986-02-03 1987-08-08 Yuasa Battery Co Ltd Separator for lead storage battery
JP3239556B2 (en) * 1993-09-30 2001-12-17 松下電器産業株式会社 Lead storage battery
JP3498428B2 (en) * 1995-06-27 2004-02-16 松下電器産業株式会社 Manufacturing method of lead storage battery
US7094498B2 (en) * 2002-05-31 2006-08-22 Daramic, Inc. Battery separator with battlemented rib
JP3118439U (en) * 2005-11-09 2006-01-26 古河電池株式会社 Comb-shaped jig for welding the ear row of the electrode plate group of a storage battery

Also Published As

Publication number Publication date
JP2017063001A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6665465B2 (en) Lead storage battery
JP6045329B2 (en) Lead acid battery
EP3352285B1 (en) Lead storage battery
JP2006156371A (en) Negative electrode collector for lead-acid battery
JP6525167B2 (en) Lead storage battery
JP2010170939A (en) Lead storage battery
JP6198046B2 (en) Liquid lead-acid battery
JPWO2019088040A1 (en) Separator for lead-acid battery and lead-acid battery
US20160049651A1 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6572711B2 (en) Lead acid battery
JP7128482B2 (en) lead acid battery
JP6651128B2 (en) Lead-acid battery for idling stop vehicle and idling stop vehicle
JP5673307B2 (en) Nonaqueous electrolyte secondary battery
JP6398111B2 (en) Lead acid battery
JP6197426B2 (en) Lead acid battery
US20220393181A1 (en) Lead-acid battery having fiber electrode with lead-calcium strap
JP4984786B2 (en) Lead acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2005149916A (en) Control valve type lead storage battery
JP4802903B2 (en) Lead acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP2023020656A (en) Liquid type lead storage battery and manufacturing method of them
JP2001332268A (en) Lead battery having control valve
JP5754607B2 (en) Lead acid battery
JPH11167910A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150