JPH11167910A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH11167910A
JPH11167910A JP9347148A JP34714897A JPH11167910A JP H11167910 A JPH11167910 A JP H11167910A JP 9347148 A JP9347148 A JP 9347148A JP 34714897 A JP34714897 A JP 34714897A JP H11167910 A JPH11167910 A JP H11167910A
Authority
JP
Japan
Prior art keywords
separator
electrode plate
mainly
maximum pore
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9347148A
Other languages
Japanese (ja)
Inventor
Yoshio Nakazawa
中澤  淑夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP9347148A priority Critical patent/JPH11167910A/en
Publication of JPH11167910A publication Critical patent/JPH11167910A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain high output without sacrificing service life performance by allowing a separator having a specific maximum pore diameter combed mainly from acid-proof fiber to abut to a positive electrode plate and a separator having a specific maximum pore diameter mainly combed from silicon dioxide to abut to a negative electrode plate. SOLUTION: In a retainer type sealed lead-acid battery having an interpole dimension less than 1 mm, the battery is constituted by respectively allowing a separator having a maximum pore diameter of 1 to 30 μm mainly combed from acid-proof fiber to abut to a positive electrode plate and a separator having a maximum pore diameter of 0.01 to 1 μm which is combed mainly from silicon dioxide (silica) to abut to a negative electrode plate. A plate group is manufactured by welding lug parts having the same polarity by alternately stacking them by the required number. Therefore, high output of the retainer type sealed lead-acid battery having the same outside diameter size can be attained by a technique of increasing the plate number, even when an interpole dimension is less than 1 mm to avoid or reduce the possibility of a short circuit.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉形鉛蓄電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery.

【0002】[0002]

【従来の技術】従来の一般的なリテーナ式の密閉形鉛蓄
電池は、未化成の正極板と未化成の負極板とを、微細ガ
ラス繊維を主体に抄造した、直径が1〜30μmの最大
細孔径を有するマット状セパレータ(ガラスセパレー
タ)を介して交互に積み重ねたのち、同じ極性の極板の
耳部を溶接で接続して極板群とし、これを電槽に収納し
たのち、注液や排気用の開口部を有するフタを溶着もし
くは接着剤で接着し、この開口部から蓄電池内に希硫酸
を注入後、水冷もしくは空冷して過度に蓄電池の温度が
上昇するのを抑えながら通電を行う方法(いわゆる電槽
化成)によって製造されている。
2. Description of the Related Art A conventional ordinary closed-type lead-acid battery of the retainer type comprises a non-formed positive electrode plate and an un-formed negative electrode plate formed mainly of fine glass fibers and having a maximum thickness of 1 to 30 μm. After alternately stacking via a mat-shaped separator (glass separator) having a hole diameter, the lugs of the electrode plates of the same polarity are connected by welding to form an electrode plate group, which is stored in a battery case, A lid having an exhaust opening is welded or bonded with an adhesive, dilute sulfuric acid is injected into the storage battery from the opening, and then water or air is cooled to supply electricity while suppressing an excessive rise in the temperature of the storage battery. It is manufactured by a method (so-called battery case formation).

【0003】[0003]

【発明が解決しようとする課題】ところが、近年、リテ
ーナ式の密閉形鉛蓄電池が、電気自動車のサイクルユー
ズ用の電源として広く使用されるようになり、ガソリン
自動車に比べて加速性能が劣らないようにするためや電
気自動車自体の軽量化のために、蓄電池の高出力化が要
求されるようになってきた。
However, in recent years, sealed lead-acid batteries of the retainer type have come to be widely used as power supplies for cycle use of electric vehicles, and the accelerating performance is not inferior to that of gasoline vehicles. In order to reduce the weight of the electric vehicle itself and the electric vehicle itself, it has been required to increase the output of the storage battery.

【0004】同一外形サイズの密閉形鉛蓄電池で高出力
化を図るためには、薄型の極板を使用して極板群、すな
わちセル内の極板枚数を増やさねばならないが、そうす
ると多くの場合に極間寸法が1mm未満の値となってし
まう。
In order to increase the output of a sealed lead-acid battery of the same external size, it is necessary to increase the number of electrode plates, that is, the number of electrode plates in a cell, by using thin electrode plates. In addition, the distance between the electrodes is less than 1 mm.

【0005】このため、微細ガラス繊維を主体に抄造し
た、直径が1〜30μmの最大細孔径を有するマット状
セパレータ(ガラスセパレータ)のみで両極板を隔離す
る従来形のリテーナ式の密閉形鉛蓄電池は、たとえば蓄
電池を完全に放電し、電解液比重が低下した状態で放置
されると、負極板の鉛が電解液中に溶出し、隔離板であ
るこのマット状セパレータ(ガラスセパレータ)の細孔
に沈着して、いわゆる浸透短絡を生じ、最終的に貫通短
絡に至る可能性が高くなるために、極間寸法を経験的に
1mm以上とする必要があった。
For this reason, a conventional retainer-type sealed lead-acid battery in which bipolar plates are isolated only by a mat-shaped separator (glass separator) having a maximum pore diameter of 1 to 30 μm and mainly made of fine glass fiber. For example, when the storage battery is completely discharged and left in a state where the specific gravity of the electrolytic solution is lowered, lead of the negative electrode plate is eluted into the electrolytic solution, and the pores of the mat-like separator (glass separator) serving as the separator are removed. To cause a so-called osmotic short circuit, which eventually leads to a possibility of a short circuit.

【0006】[0006]

【課題を解決するための手段】そこで本発明は、耐酸性
を有する繊維を主体に抄造した、最大細孔径が1〜30
μmのセパレータを正極板に、二酸化ケイ素(シリカ)
を主体に抄造した、最大細孔径が0.01〜1μmのセ
パレータを負極板に、それぞれ当接した構成とすること
により、極間寸法が1mm未満のリテーナ式の密閉形鉛
蓄電池における上記課題を解決しようとするものであ
る。
SUMMARY OF THE INVENTION Accordingly, the present invention provides a paper made mainly of acid-resistant fibers having a maximum pore diameter of 1 to 30.
μm separator on the positive electrode plate, silicon dioxide (silica)
The above-mentioned problems in the closed lead-acid battery of the retainer type having a gap between the electrodes of less than 1 mm by forming a separator having a maximum pore diameter of 0.01 to 1 μm, which is mainly made of a material, in contact with the negative electrode plate. That is what we are trying to solve.

【0007】[0007]

【発明の実施の形態】本発明は、極間寸法が1mm未満
のリテーナ式の密閉形鉛蓄電池において、耐酸性を有す
る繊維を主体に抄造した、最大細孔径が1〜30μmの
セパレータを正極板に、二酸化ケイ素(シリカ)を主体
に抄造した、最大細孔径が0.01〜1μmのセパレー
タを負極板に、それぞれ当接した構成とすることによっ
て、短絡の危険性を回避もしくは低減させようとするも
のである。これによって、同一外形サイズのリテーナ式
の密閉形鉛蓄電池の高出力化が、極間寸法が1mm未満
となる場合においても極板枚数を増やす手法で達成する
ことができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a retainer-type sealed lead-acid battery having a gap between electrodes of less than 1 mm, comprising a separator made of mainly acid-resistant fibers and having a maximum pore diameter of 1 to 30 μm. In order to avoid or reduce the danger of short circuit, a separator made mainly of silicon dioxide (silica) and having a maximum pore diameter of 0.01 to 1 μm is in contact with the negative electrode plate. Is what you do. As a result, a high output of the retainer type sealed lead-acid battery of the same external size can be achieved by a method of increasing the number of electrode plates even when the distance between the electrodes is less than 1 mm.

【0008】[0008]

【実施例】以下に本発明を実施例にもとづいて説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0009】カルシウムCa;0.05〜0.12wt
%,スズSn;0.2〜1.0wt%を含むアンチモン
フリーの鉛合金製格子に正極ペーストを充填した正極板
には、耐酸性を有する繊維を主体に抄造した、最大細孔
径が1〜30μmのセパレータを用いて、また、Ca;
0.05〜0.12wt%,Sn;0〜0.7wt%,
アルミニウムAl;0〜0.02wt%を含むアンチモ
ンフリーの鉛合金製格子に負極ペーストを充填した負極
板には、二酸化ケイ素(シリカ)を主体に抄造した、最
大細孔径が0.01〜1μmのセパレータを用いて、そ
れぞれの極板面に当接しながら、交互に必要数積み重ね
て同じ極性の極板の耳部を溶接して極板群を作製し、こ
れを電槽に挿入したあと、フタを電槽に溶着して、2V
で60Ah/3hRのリテーナ式の密閉形鉛蓄電池を組
み立てた。
Calcium Ca: 0.05-0.12wt
%, Tin Sn; a positive electrode paste filled with a positive electrode paste in an antimony-free lead alloy grid containing 0.2 to 1.0% by weight has a maximum pore diameter of 1 to 3 mainly made of acid-resistant fiber. Using a 30 μm separator, Ca;
0.05 to 0.12 wt%, Sn; 0 to 0.7 wt%,
A negative electrode plate in which a negative electrode paste is filled in an antimony-free lead alloy lattice containing aluminum Al; 0 to 0.02 wt% is formed mainly of silicon dioxide (silica) and has a maximum pore diameter of 0.01 to 1 μm. Using the separator, while abutting on each electrode plate surface, alternately stack the required number of pieces and weld the ears of the same polarity electrode plates to produce an electrode group, insert this into the battery case, Is welded to the battery case and 2V
To assemble a 60 Ah / 3 hR closed type lead storage battery of a retainer type.

【0010】このときの正極板および負極板は、極板各
部の厚さバラツキを低減させて、目標とする極間寸法が
確実に得られるように、特別に管理して作製したものを
使用した。
[0010] At this time, the positive electrode plate and the negative electrode plate used were specially prepared and manufactured so as to reduce the thickness variation of each part of the electrode plate and to reliably obtain the target distance between the electrodes. .

【0011】なお、極間寸法は、1.2mmから0.6
mmまで、0.2mm刻みで4種類とし、これらの密閉
形鉛蓄電池を用いて抵抗放置試験を行った。
The distance between the poles is from 1.2 mm to 0.6 mm.
The resistance lead test was performed using these sealed lead-acid batteries in four types of 0.2 mm increments.

【0012】この抵抗放置試験は、セパレータの浸透・
貫通短絡の加速試験であって、3時間率電流で放電した
あとの蓄電池の両極端子を抵抗線で短絡状態として気相
中に3週間放置し、放置後に定電圧で過充電することを
繰り返すもので、そのサイクル中に充放電が不可能とな
った、すなわち寿命に至った蓄電池を解体して浸透や短
絡の状態および程度を確認するというものである。
[0012] This resistance standing test is based on
Acceleration test for short-circuited short-circuit, in which the two terminals of a storage battery are short-circuited with a resistance wire after being discharged at a 3-hour rate current, left in the gas phase for 3 weeks, and then repeatedly charged and overcharged at a constant voltage. Then, during the cycle, charging / discharging becomes impossible, that is, the storage battery which has reached the end of its life is dismantled and the state and degree of permeation or short circuit are confirmed.

【0013】また、比較用として、微細ガラス繊維を主
体に抄造した、最大細孔径が1〜30μmのガラスセパ
レータのみで両極板が隔離された従来形の同型密閉形鉛
蓄電池を組み立て、同一内容での抵抗放置試験を併せて
行った 。
As a comparative example, a conventional sealed lead-acid battery of the same type, made mainly of fine glass fibers and having bipolar plates separated only by a glass separator having a maximum pore diameter of 1 to 30 μm, was assembled with the same contents. A resistance test was also conducted.

【0014】表1に試験結果の一覧を示す。Table 1 shows a list of test results.

【0015】[0015]

【表1】 まず、本発明のリテーナ式の密閉形鉛蓄電池は、すべて
の極間寸法において、4サイクルが経過しても充放電が
不可能となったものは発生しなかった。それに対して、
微細ガラス繊維が主体で、最大細孔径が1〜30μmの
ガラスセパレータのみで両極板が隔離された比較用の蓄
電池は、極間寸法0.6mm品が2サイクルで、極間寸
法0.8mm品が3サイクルで、それぞれ充放電が不可
能となってしまった。これらの蓄電池を解体してみる
と、いずれも浸透が進んで貫通短絡を起こしていた。
[Table 1] First, in the case of the retainer-type sealed lead-acid battery of the present invention, in all the gaps between the poles, there was no case in which charging / discharging became impossible even after the elapse of four cycles. On the other hand,
A comparative storage battery mainly composed of fine glass fibers and having both pole plates isolated only by a glass separator having a maximum pore diameter of 1 to 30 μm is a product having a gap of 0.6 mm in two cycles and a gap of 0.8 mm. However, in three cycles, charging and discharging became impossible. When these storage batteries were disassembled, the penetration progressed and short-circuiting occurred.

【0016】本実施例において、正極板に当接する、最
大細孔径が1〜30μmのセパレータの耐酸性を有する
繊維には、平均繊維径が0.8μmの微細ガラス繊維を
用いた。これは平均繊維径が1μm以上だと、電解液の
保持性能が充分でないことを考慮したためである。ま
た、液保持性が確保できて耐酸性を有するものであれば
合成繊維でも構わない。
In this embodiment, the glass having an average fiber diameter of 0.8 μm was used as the acid-resistant fiber of the separator having a maximum pore diameter of 1 to 30 μm, which is in contact with the positive electrode plate. This is because considering that the average fiber diameter is 1 μm or more, the holding performance of the electrolyte is not sufficient. In addition, synthetic fibers may be used as long as they can secure liquid retention and have acid resistance.

【0017】また、負極板に当接する、最大細孔径が
0.01〜1μmのセパレータは、少量の微細ガラス繊
維と有機繊維を混抄した合成シリカをシート状に抄造し
たものを用いた。
The separator having a maximum pore size of 0.01 to 1 μm, which is in contact with the negative electrode plate, is formed by sheeting synthetic silica obtained by mixing a small amount of fine glass fibers and organic fibers.

【0018】[0018]

【発明の効果】本発明は、耐酸性を有する繊維を主体に
抄造した、最大細孔径が1〜30μmのセパレータを正
極板に、二酸化ケイ素(シリカ)を主体に抄造した、最
大細孔径が0.01〜1μmのセパレータを負極板に、
それぞれ当接した構成で、極間寸法が1mm未満のリテ
ーナ式の密閉鉛蓄電池に組み込むことを特徴とする。
According to the present invention, a separator mainly made of acid-resistant fiber and having a maximum pore diameter of 1 to 30 μm is formed on a positive electrode plate and silicon dioxide (silica) is mainly formed. .1 to 1 μm separator on the negative electrode plate,
It is characterized in that it is incorporated in a closed lead-acid battery of a retainer type having a configuration in which it is in contact with each other and a gap between the electrodes is less than 1 mm.

【0019】これにより、同一外形サイズのリテーナ式
の密閉形鉛蓄電池を高出力化するために、セル内の極板
枚数を増やした場合、その極間寸法が1mm未満の場合
においても、寿命性能を犠牲にすることなく、高出力化
が達成できる。
Accordingly, in order to increase the output of a sealed sealed lead-acid battery of the same external size, when the number of electrode plates in the cell is increased, even when the distance between the electrodes is less than 1 mm, the life performance is improved. Without sacrificing power.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】耐酸性を有する繊維を主体に抄造した、最
大細孔径が1〜30μmのセパレータを正極板に、二酸
化ケイ素(シリカ)を主体に抄造した、最大細孔径が
0.01〜1μmのセパレータを負極板に、それぞれ当
接した、極間寸法が1mm未満であることを特徴とする
密閉形鉛蓄電池。
1. A positive electrode plate made of a separator mainly made of acid-resistant fiber and having a maximum pore size of 1 to 30 μm, and a separator made mainly of silicon dioxide (silica) having a maximum pore size of 0.01 to 1 μm. A sealed lead-acid battery in which the distance between the electrodes is less than 1 mm, wherein the separators abut on the negative electrode plate.
JP9347148A 1997-12-02 1997-12-02 Sealed lead-acid battery Pending JPH11167910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9347148A JPH11167910A (en) 1997-12-02 1997-12-02 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9347148A JPH11167910A (en) 1997-12-02 1997-12-02 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH11167910A true JPH11167910A (en) 1999-06-22

Family

ID=18388248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9347148A Pending JPH11167910A (en) 1997-12-02 1997-12-02 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH11167910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852444B2 (en) * 2001-09-20 2005-02-08 Daramic, Inc. Reinforced multilayer separator for lead-acid batteries
US6869726B2 (en) * 2001-09-20 2005-03-22 Daramic, Inc. Reinforced multilayer separator for lead-acid batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852444B2 (en) * 2001-09-20 2005-02-08 Daramic, Inc. Reinforced multilayer separator for lead-acid batteries
US6869726B2 (en) * 2001-09-20 2005-03-22 Daramic, Inc. Reinforced multilayer separator for lead-acid batteries

Similar Documents

Publication Publication Date Title
WO2018229875A1 (en) Liquid-type lead storage battery
JP6164266B2 (en) Lead acid battery
JP2017188477A (en) Lead storage battery
JP6592215B1 (en) Lead acid battery
JP2006086039A (en) Lead-acid storage battery
JP7128482B2 (en) lead acid battery
JP6572711B2 (en) Lead acid battery
JPH11167910A (en) Sealed lead-acid battery
JP4538864B2 (en) Lead acid battery and manufacturing method thereof
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JP2002289168A (en) Control valve type lead storage battery
JP3572831B2 (en) Battery pack
KR20070080547A (en) Secondary battery
JP2002025602A (en) Lead-acid battery
JP6651128B2 (en) Lead-acid battery for idling stop vehicle and idling stop vehicle
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
JP2015022796A (en) Lead storage battery
JP6734456B1 (en) Lead acid battery
JPH10154504A (en) Battery pack
JP3185300B2 (en) Sealed lead-acid battery
JP2000268798A (en) Sealed lead-acid battery
JP2005190686A (en) Cylindrical closed-type lead acid storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP3648761B2 (en) How to charge sealed lead-acid batteries
JP2021057108A (en) Lead-acid battery