JP4538864B2 - Lead acid battery and manufacturing method thereof - Google Patents

Lead acid battery and manufacturing method thereof Download PDF

Info

Publication number
JP4538864B2
JP4538864B2 JP15082999A JP15082999A JP4538864B2 JP 4538864 B2 JP4538864 B2 JP 4538864B2 JP 15082999 A JP15082999 A JP 15082999A JP 15082999 A JP15082999 A JP 15082999A JP 4538864 B2 JP4538864 B2 JP 4538864B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lead
battery
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15082999A
Other languages
Japanese (ja)
Other versions
JP2000340252A (en
Inventor
謙一 前田
今吉 平沢
裕治 石井
哲郎 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP15082999A priority Critical patent/JP4538864B2/en
Publication of JP2000340252A publication Critical patent/JP2000340252A/en
Application granted granted Critical
Publication of JP4538864B2 publication Critical patent/JP4538864B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池及び該鉛蓄電池の製造方法に係り、特に鉛を主成分とする正極格子体に二酸化鉛を主成分とする正極活物質が充填された正極板を備えた鉛蓄電池及び該鉛蓄電池の製造方法に関する。
【0002】
【従来の技術】
鉛蓄電池では、鉛の一部が酸化された鉛粉と水と希硫酸とを主成分とし、これらに必要に応じて添加物を添加して、練合によって得られたペーストを鉛(Pb)を主成分とする鋳造格子や連続多孔体に塗着(充填)し、乾燥させたペースト式極板が広く用いられている。ペースト式極板に更にセパレータ(隔離板)を組み合わせて極板群を構成し、極板群を電槽に組み込んだ後、希硫酸を加えて化成充電するか、化成充電後、電槽内に組み込むことによって、鉛蓄電池は電池本来の機能が付与される。このとき、正極活物質の主成分は、二酸化鉛(PbO)になっている。
【0003】
このようなペースト式極板を用いた鉛蓄電池には、正極添加剤として硫酸ナトリウム(NaSO)が添加されている。NaSOは練合時に正極ペーストに添加するもので、過放電時のイオン伝導度保持、活物質の利用率向上を主たる目的としている。
【0004】
【発明が解決しようとする課題】
しかしながら、NaSOがペースト式極板の正極格子体近傍に存在していると、酸化生成物である硫酸イオンSO 2−が鉛を主成分とする正極格子体を腐食させるので、鉛蓄電池の寿命性能が低下する、という問題がある。
【0005】
本発明は上記問題を解決するためになされたものであり、NaSOによる過放電時のイオン伝導度保持、活物質の利用率向上を図りつつ、正極格子体の腐食を抑制し長寿命化を実現することができる鉛蓄電池及び該鉛蓄電池の製造方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明の第1の態様は、鉛(Pb)を主成分とする正極格子体に二酸化鉛(PbO)を主成分とする正極活物質が充填された正極板を備えた鉛蓄電池において、前記正極板は、前記正極格子体近傍に配置され硫酸ナトリウム(Na SO )が無添加の第1の活物質層と、前記正極板の表面に配置され正極既化活物質の0.5重量%〜10重量%の硫酸ナトリウムが添加された第2の活物質層とを有することを特徴とする。本発明では、正極格子体近傍硫酸ナトリウムが無添加の第1の活物質層が配置されているので、硫酸イオンによる正極格子体の腐食が抑制され、鉛蓄電池の長寿命化を図ることができると共に、正極板面に正極既化活物質の0.5重量%〜10重量%の硫酸ナトリウムが添加された第2の活物質層配置されているので、過放電時の伝導度を保持し正極活物質の利用率を向上させたまま、鉛蓄電池の長寿命化を図ることができる
【0007】
また、本発明の第2の態様は、鉛を主成分とする正極格子体に二酸化鉛を主成分とする正極活物質が充填された正極板を備えた鉛蓄電池の製造方法であって、硫酸ナトリウムが無添加の正極活物質ペーストを前記正極格子体近傍に配置して第1の活物質層を形成し、正極既化活物質の0.5重量%〜10重量%の硫酸ナトリウムが添加された正極活物質ペーストを前記正極板の表面に配置して第2の活物質層を形成するステップを含む。本発明では、硫酸ナトリウムが無添加の正極活物質ペーストを正極格子体近傍に配置して第1の活物質層を形成し、正極既化活物質の0.5重量%〜10重量%の硫酸ナトリウムが添加された正極活物質ペーストを正極板の表面に配置して第2の活物質層を形成するので、過放電時の伝導度を保持し活物質の利用率向上を図ることができると共に、硫酸ナトリウムが無添加の正極活物質ペーストを正極格子体に配置するので、正極格子体は硫酸イオンによる腐食が抑制され、鉛蓄電池の長寿命化を図ることができる
【0008】
【発明の実施の形態】
以下、図面を参照して本発明を自動車等の車両に搭載される車載用鉛蓄電池に適用した実施の形態について説明する。
【0009】
図1に示すように、本実施形態の鉛蓄電池10は鉛蓄電池10の容器となる角形の電槽1を備えている。電槽1は成形性、電気的絶縁性、耐腐食性及び耐久性等の点で優れる、例えば、アクリルブタジェンスチレン(ABS)、ポリプロピレン(PP)、ポリエチレン(PE)等の高分子樹脂が材質とされている。
【0010】
図2に示すように、電槽1は一体成形により形成されており、外周壁(図2の符号1の箇所)の内部を仕切る隔壁6によって合計18個のセル室が1列に画定された、いわゆる18セルモノブロック電槽である。電槽1の上部は、ABS、PP、PE等の高分子樹脂を材質とした蓋2と溶着又は接着され封口されている。
【0011】
蓋2には、鉛蓄電池10の外部から電解液を各セル室に注入可能とするためにセル室相当個数(18個)の注液口が形成されており、これらの注液口は液口栓5により封口されている。また、両端セル室の上部に対応する蓋2の液口栓5より長側面寄りの隅部には、ロッド状の正極外部出力端子3及び負極外部出力端子4を蓋2から突出させるために2個の外部端子穴が長側面と平行に形成されている。正極外部出力端子3及び負極外部出力端子4は、電槽1の内部側から立設され、蓋2を貫通して突出すると共に蓋2に固定されている。
【0012】
電槽1内に画定された18個の各セル室には、図示しない極板群がそれぞれ1組ずつ収納されており、電槽1には合計18組の極板群が収納されている。各極板群は、未化成負極板6枚及び未化成正極板5枚がガラス繊維からなるセパレータを介して積層されており、化成(初充電)後の各極板群の群電圧は2Vとされる。
【0013】
未化成負極板は、鉛粉と、鉛粉に対して13重量%の希硫酸(比重1.26:20°C)と、鉛粉に対して12重量%の水と、を混練して負極活物質ペーストを作り、ペースト40.0gを格子体からなる集電体に充填してから、温度50°C、湿度95%の雰囲気中に18時間放置して熟成させた後に、温度25°C、湿度40%の雰囲気中に2時間放置し、乾燥させて作製される。
【0014】
一方、未化成正極板の活物質ペーストは、鉛粉に対して0.01重量%のカットファイバーを添加し、鉛粉に対して13重量%の希硫酸(比重:1.26:20°C)と、鉛粉に対して12重量%の水と、を混練して作製される。この混練中、冷却可能な混練釜により温度は一定に保たれる。正極活物質ペースト40.0gを格子体からなる集電体に充填してから、温度50°C、湿度95%の雰囲気中に18時間放置して熟成させた後に、温度25°C、湿度40%の雰囲気中に2時間放置し、乾燥させて未化成正極板が作製される。
【0015】
各極板群の未化成正極板5枚及び未化成負極板6枚は、それぞれ同一極性の極板同士を接続する正極ストラップ及び負極ストラップに各セル室内で固定されている。図2紙面左端に収容される極板群の正極ストラップ及び図2紙面右端に収容される極板群の負極ストラップを除く各ストラップは、導電性を有しセル室間のストラップを接続するセル間接続体により、隣接する極性の異なるストラップに、電槽1内の隔壁6と交差して(隔壁6を貫通して)それぞれ接続されており、18組の極板群は直列に接続されている。図2紙面左端に収容される極板群の正極ストラップ及び図2紙面右端に収容される極板群の負極ストラップは、上述した正極外部出力端子3及び負極外部出力端子4にそれぞれ接続されている。
【0016】
本実施形態の鉛蓄電池10を作製するには、極板群18組を電槽1内の各セル室に収容し、セル間接続体により直列に接続した後、電槽1上部に蓋2を溶着又は接着して取り付ける。続いて、電槽1に化成液としての電解液を各注液口から注液し、未化成電池を作製する。この未化成電池を5.0Aで23時間化成した後、各注液口を液口栓5で封口することにより、鉛蓄電池10を得ることができる。
【0017】
参考例>
次に、表1を参照して、本実施形態に従って作製した鉛蓄電池10の参考例の詳細について説明する
【0018】
【表1】

Figure 0004538864
【0019】
参考例1の電池では、比重1.225(20°C)の希硫酸に正極既化活物質量の3.0重量%のNaSOを添加して電解液(化成液)とした。参考例2の電池では、比重1.225(20°C)の希硫酸に正極既化活物質量の0.5重量%のNaSOを添加して電解液とした。参考例3の電池では、比重1.225(20°C)の希硫酸に正極既化活物質量の10.0重量%のNaSOを添加して電解液とした。
【0020】
参考例4の電池では、上述した未化成正極板の活物質ペースト混練時に、正極既化活物質量の3.0重量%のNaSOを添加し、比重1.225(20°C)の希硫酸を電解液とした。すなわち、参考例4では、上述した各実施例及び後述する比較例と異なり、電解液にNaSOは添加されていない。参考例5の電池では、比重1.225(20°C)の希硫酸に正極既化活物質量の0.2重量%のNaSOを添加して電解液とした。参考例6の電池では、比重1.225(20°C)の希硫酸に正極既化活物質量の15.0重量%のNaSOを添加して電解液とした。
【0021】
<試験・評価>
[試験] 次に、このようにして作成した参考例1〜6の各電池について、40°Cと75°Cでの軽負荷寿命試験及び過放電放置特性試験を行った。なお、過放電放置特性試験では、過放電状態の各電池を30日間放置した後、1.5Aで20h充電し、JISに基づく低温ハイレート試験を行い、6Vまでの放電時間が放置前に対し何%であったかを算出した。
【0022】
[試験結果] 軽負荷寿命試験の試験結果を表2に、過放電放置特性試験の試験結果を表3に示す。
【0023】
【表2】
Figure 0004538864
【0024】
【表3】
Figure 0004538864
【0025】
[評価] 表2に示したように、40°C軽負荷寿命試験の結果、参考例1〜3の電池はいずれも約6000回程度の寿命を有するのに対し、参考例4及び参考例6の電池では3000回乃至4000回程度と、寿命性能が劣っている。また、75°C軽負荷寿命試験の結果でも、参考例1〜3の電池は、2800回以上の寿命を有するのに対し、参考例4及び参考例6の電池では2100回程度と、寿命性能が劣っている。一方、表3に示したように、過放電放置特性試験の結果、各電池は6Vまでの放電時間が放置前に対し70%以上の性能を示したのに対し、参考例5の電池は50%未満で過放電放置特性に劣っている。従って、参考例1〜参考例3の電池は、高い過放電放置特性を維持したまま、寿命特性が向上していることが分かる。
【0026】
本実施形態による参考例1〜3の各電池は、正極格子体の腐蝕が抑制されるので、振動や急加減速等の応力が正極格子体に直接加わる車載用鉛蓄電池に適合するばかりか、作製時においてもNaSO無添加の正極活物質を正極格子体に充填し、電解液中にNaSOを添加すればよいので、従来技術の正極既化活物質に対して微量のNaSOが均一均等に混練されるまでの混練時間が短縮され、生産性の向上を図ることができる。
【0027】
上記参考例1〜3では、一形態として電解液中に正極既化活物質の0.5〜10重量%のNaSOを添加した例について説明したが、次に示す方法によっても参考例1〜3の鉛蓄電池と同様の効果を得ることができる。
(1)正極活物質中に正極既化活物質の0.1〜0.5重量%、化成液中に正極既化活物質の0.5〜10重量%のNaSOを添加する。
(2)正極活物質層が少なくとも2層の活物質層からなり、正極格子体近傍ではNaSO無添加の活物質層、正極板表面では正極既化活物質の0.5〜10重量%のNaSOを添加した活物質層とする。
(3)正極活物質層が少なくても2層の活物質層からなり、正極格子体近傍ではNaSOが無添加の活物質層、正極板表面では正極既化活物質の0.1〜3重量%のNaSOを添加した活物質層とし、化成液中に正極既化活物質の0.5〜10重量%のNaSOを添加する。
【0028】
また、本実施形態では18セルを1列とした18セルモノブロック電槽1について例示したが、本発明は、例えば、6セルのモノブロック電槽や仕切り板等により電槽内のセル室を画定する他の構造の鉛蓄電池にも適用することができ、更に、本実施形態では開放型の車載用鉛蓄電池10について例示したが、密閉型の鉛蓄電池や据置用鉛蓄電池にも適用することができることはいうまでもない。
【0029】
【発明の効果】
以上説明したように、本発明の第1の態様によれば、正極格子体近傍硫酸ナトリウムが無添加の第1の活物質層が配置されているので、硫酸イオンによる正極格子体の腐食が抑制され、鉛蓄電池の長寿命化を図ることができると共に、正極板の表面に正極既化活物質の0.5重量%〜10重量%の硫酸ナトリウムが添加された第2の活物質層が配置されているので、過放電時の伝導度を保持し正極活物質の利用率を向上させたまま、鉛蓄電池の長寿命化を図ることができる、という効果を得ることができる。また、本発明の第2の態様によれば、硫酸ナトリウムが無添加の正極活物質ペーストを正極格子体近傍に配置して第1の活物質層を形成し、正極既化活物質の0.5重量%〜10重量%の硫酸ナトリウムが添加された正極活物質ペーストを正極板の表面に配置して第2の活物質層を形成するので、過放電時の伝導度を保持し活物質の利用率向上を図ることができると共に、硫酸ナトリウムが無添加の正極活物質ペーストを正極格子体に配置するので、正極格子体は硫酸イオンによる腐食が抑制され、鉛蓄電池の長寿命化を図ることができる、という効果を得ることができる。
【図面の簡単な説明】
【図1】本発明が適用される実施形態の鉛蓄電池の外観斜視図である。
【図2】実施形態の鉛蓄電池の電槽の平面図である。
【符号の説明】
1 電槽
2 蓋
3 正極外部出力端子
4 負極外部出力端子
5 液口栓
6 隔壁
10 鉛蓄電池[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lead-acid battery and a method for producing the lead-acid battery, and in particular, a lead-acid battery comprising a positive electrode plate in which a positive electrode grid mainly composed of lead is filled with a positive electrode active material mainly composed of lead dioxide, and the lead. The present invention relates to a method for manufacturing a storage battery.
[0002]
[Prior art]
In a lead acid battery, lead powder obtained by oxidizing a part of lead, water, and dilute sulfuric acid are added as main components, and additives are added to these as necessary, and the paste obtained by kneading is lead (Pb) Paste electrode plates that are coated (filled) on a cast lattice or a continuous porous body mainly composed of and dried are widely used. Combine the paste plate with separators (separation plates) to form a plate group, and incorporate the plate group into the battery case, then add dilute sulfuric acid for chemical charging, or after chemical charging, By incorporating the lead-acid battery, the original function of the battery is given. At this time, the main component of the positive electrode active material is lead dioxide (PbO 2 ).
[0003]
Sodium sulfate (Na 2 SO 4 ) is added as a positive electrode additive to a lead storage battery using such a paste-type electrode plate. Na 2 SO 4 is added to the positive electrode paste at the time of kneading, and its main purpose is to maintain ionic conductivity during overdischarge and to improve the utilization rate of the active material.
[0004]
[Problems to be solved by the invention]
However, when the Na 2 SO 4 is present in the positive electrode grid near the paste type electrode plate, since the sulfate ions SO 4 the oxidation product 2 corrodes the positive grid body mainly composed of lead, lead There exists a problem that the lifetime performance of a storage battery falls.
[0005]
The present invention has been made in order to solve the above-mentioned problems, and maintains the ionic conductivity at the time of overdischarge with Na 2 SO 4 and improves the utilization rate of the active material, and suppresses corrosion of the positive electrode grid body to achieve a long life. It is an object of the present invention to provide a lead storage battery that can be realized and a method for manufacturing the lead storage battery.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a first aspect of the present invention is a positive electrode plate in which a positive electrode lattice body containing lead (Pb) as a main component is filled with a positive electrode active material containing lead dioxide (PbO 2 ) as a main component. In the lead-acid battery provided, the positive electrode plate is disposed in the vicinity of the positive electrode lattice body , the first active material layer to which no sodium sulfate (Na 2 SO 4 ) is added, and the positive electrode plate is disposed on the surface of the positive electrode plate. And a second active material layer to which sodium sulfate of 0.5 wt% to 10 wt% of the active material is added . In the present invention, since the sodium sulfate in the vicinity positive grid body is first active material layer of additive-free is arranged, is suppressed corrosion of the positive grid body with sulfuric acid ions, it is possible to extend the life of the lead-acid battery is possible, since the second active material layer of sodium sulfate 0.5 wt% to 10 wt% of Seikyokusunde Kakatsu material on the front surface of the positive electrode plate is added is arranged, the conductivity of the overdischarge Thus, the life of the lead-acid battery can be extended while maintaining the utilization ratio of the positive electrode active material .
[0007]
A second aspect of the present invention is a method for producing a lead-acid battery comprising a positive electrode plate in which a positive electrode grid mainly composed of lead is filled with a positive electrode active material mainly composed of lead dioxide, the sulfuric acid A positive electrode active material paste without addition of sodium is disposed in the vicinity of the positive electrode grid to form a first active material layer, and 0.5 wt% to 10 wt% of sodium sulfate is added to the positive electrode active material. Disposing the positive electrode active material paste on the surface of the positive electrode plate to form a second active material layer. In the present invention, a positive electrode active material paste to which no sodium sulfate is added is arranged in the vicinity of the positive electrode lattice to form a first active material layer, and 0.5 wt% to 10 wt% sulfuric acid of the positive electrode active material is formed. Since the positive electrode active material paste to which sodium is added is disposed on the surface of the positive electrode plate to form the second active material layer, the conductivity during overdischarge can be maintained and the active material utilization rate can be improved. Since the positive electrode active material paste to which sodium sulfate is not added is disposed on the positive electrode grid, the positive electrode grid is prevented from being corroded by sulfate ions, and the life of the lead storage battery can be extended .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment in which the present invention is applied to a vehicle-mounted lead-acid battery mounted on a vehicle such as an automobile will be described with reference to the drawings.
[0009]
As shown in FIG. 1, the lead storage battery 10 of the present embodiment includes a rectangular battery case 1 serving as a container for the lead storage battery 10. The battery case 1 is excellent in terms of moldability, electrical insulation, corrosion resistance, durability, and the like. For example, a polymer resin such as acrylic butadiene styrene (ABS), polypropylene (PP), or polyethylene (PE) is used as the material. It is said that.
[0010]
As shown in FIG. 2, the battery case 1 is formed by integral molding, and a total of 18 cell chambers are defined in one row by the partition walls 6 that partition the inside of the outer peripheral wall (location 1 in FIG. 2). This is a so-called 18-cell monoblock battery case. The upper part of the battery case 1 is welded or bonded to a lid 2 made of a polymer resin such as ABS, PP, PE or the like and sealed.
[0011]
The lid 2 is formed with a number (18) of liquid inlets corresponding to the cell chambers so that an electrolyte can be injected into each cell chamber from the outside of the lead storage battery 10. Sealed by a stopper 5. Further, in order to project the rod-like positive external output terminal 3 and negative external output terminal 4 from the lid 2 at the corners of the lid 2 corresponding to the upper part of the cell chambers at both ends of the lid 2 closer to the longer side than the liquid stopper 5. The external terminal holes are formed in parallel with the long side surface. The positive external output terminal 3 and the negative external output terminal 4 are erected from the inside of the battery case 1, protrude through the lid 2, and are fixed to the lid 2.
[0012]
Each of the 18 cell chambers defined in the battery case 1 stores a set of electrode plates (not shown), and the battery case 1 stores a total of 18 electrode plate groups. In each electrode plate group, six unformed negative electrode plates and five unformed positive electrode plates are laminated via a separator made of glass fiber, and the group voltage of each electrode plate group after formation (initial charge) is 2V. Is done.
[0013]
The unformed negative electrode plate is a negative electrode obtained by kneading lead powder, 13% by weight diluted sulfuric acid (specific gravity 1.26: 20 ° C.) with respect to the lead powder, and 12% by weight water with respect to the lead powder. An active material paste was prepared, and 40.0 g of paste was filled in a current collector made of a grid, and then left to stand for 18 hours in an atmosphere having a temperature of 50 ° C. and a humidity of 95%, and then a temperature of 25 ° C. It is prepared by leaving it in an atmosphere of 40% humidity for 2 hours and drying it.
[0014]
On the other hand, the active material paste of the unformed positive electrode plate is obtained by adding 0.01% by weight of cut fiber to the lead powder and 13% by weight of diluted sulfuric acid (specific gravity: 1.26: 20 ° C.) with respect to the lead powder. ) And 12% by weight of water with respect to the lead powder. During this kneading, the temperature is kept constant by a coolable kneading pot. After 40.0 g of the positive electrode active material paste was filled in a current collector made of a lattice, the plate was left to age for 18 hours in an atmosphere having a temperature of 50 ° C. and a humidity of 95%, and then a temperature of 25 ° C. and a humidity of 40 % In an atmosphere of 2% and dried to produce an unformed positive electrode plate.
[0015]
The five unformed positive electrode plates and the six unformed negative electrode plates of each electrode plate group are fixed in each cell chamber to a positive electrode strap and a negative electrode strap that connect electrode plates of the same polarity. Each of the straps except for the positive electrode strap of the electrode plate group accommodated at the left end of FIG. 2 and the negative electrode strap of the electrode plate group accommodated at the right end of FIG. The connecting members are connected to adjacent straps of different polarities so as to cross the partition wall 6 in the battery case 1 (through the partition wall 6), and 18 sets of electrode plates are connected in series. . The positive electrode strap of the electrode group accommodated at the left end of FIG. 2 and the negative strap of the electrode group accommodated at the right end of FIG. 2 are respectively connected to the positive external output terminal 3 and the negative external output terminal 4 described above. .
[0016]
In order to produce the lead storage battery 10 of this embodiment, 18 sets of electrode plates are accommodated in each cell chamber in the battery case 1 and connected in series by inter-cell connectors, and then the lid 2 is placed on the upper part of the battery case 1. Install by welding or gluing. Subsequently, an electrolytic solution as a chemical conversion solution is injected into the battery case 1 from each injection port to produce an unchemical conversion battery. After this unformed battery is formed at 5.0 A for 23 hours, each liquid inlet is sealed with a liquid stopper 5, whereby the lead storage battery 10 can be obtained.
[0017]
< Reference example>
Next, with reference to Table 1 will be described in detail reference example of lead-acid battery 10 made in accordance with the present embodiment.
[0018]
[Table 1]
Figure 0004538864
[0019]
In the battery of Reference Example 1, 3.0 wt% Na 2 SO 4 of the positive electrode active material amount was added to dilute sulfuric acid having a specific gravity of 1.225 (20 ° C.) to obtain an electrolytic solution (chemical conversion solution). In the battery of Reference Example 2, 0.5 wt% Na 2 SO 4 of the positive electrode active material amount was added to dilute sulfuric acid having a specific gravity of 1.225 (20 ° C.) to obtain an electrolytic solution. In the battery of Reference Example 3, 10.0 wt% Na 2 SO 4 of the positive electrode active material amount was added to dilute sulfuric acid having a specific gravity of 1.225 (20 ° C.) to obtain an electrolyte solution.
[0020]
In the battery of Reference Example 4 , at the time of kneading the active material paste of the unformed positive electrode plate described above, 3.0 wt% of Na 2 SO 4 of the positive electrode active material amount was added, and the specific gravity was 1.225 (20 ° C.). Was used as an electrolyte. That is, in Reference Example 4 , Na 2 SO 4 is not added to the electrolytic solution, unlike the above-described Examples and Comparative Examples described later. In the battery of Reference Example 5 , 0.2 wt% Na 2 SO 4 of the positive electrode active material amount was added to dilute sulfuric acid having a specific gravity of 1.225 (20 ° C.) to obtain an electrolytic solution. In the battery of Reference Example 6 , 15.0 wt% Na 2 SO 4 of the positive electrode active material amount was added to dilute sulfuric acid having a specific gravity of 1.225 (20 ° C.) to obtain an electrolyte solution.
[0021]
<Test and evaluation>
[Test] Next, each of the batteries of Reference Examples 1 to 6 prepared as described above was subjected to a light load life test and an overdischarge leaving characteristic test at 40 ° C. and 75 ° C. In the overdischarge leaving characteristics test, each battery in an overdischarged state is left for 30 days, then charged at 1.5 A for 20 hours, a low temperature high-rate test based on JIS is performed, and the discharge time up to 6 V is higher than before % Was calculated.
[0022]
[Test Results] Table 2 shows the test results of the light load life test, and Table 3 shows the test results of the overdischarge storage property test.
[0023]
[Table 2]
Figure 0004538864
[0024]
[Table 3]
Figure 0004538864
[0025]
[Evaluation] As shown in Table 2, as a result of the 40 ° C light load life test, the batteries of Reference Examples 1 to 3 all had a life of about 6000 times, whereas Reference Examples 4 and 6 In the case of the battery, the life performance is inferior, about 3000 to 4000 times. Further, even 75 ° C light load life test results, battery of Example 1-3, while having 2800 or more times the lifetime, and about 2100 times in the battery of Reference Example 4 and Reference Example 6, life performance Is inferior. On the other hand, as shown in Table 3, as a result of the overdischarge leaving characteristics test, each battery showed a performance of 70% or more of the discharge time up to 6 V compared to that before being left, whereas the battery of Reference Example 5 showed 50%. Less than%, it is inferior to the overdischarge standing characteristics. Thus, the battery of Reference Example 1 to Reference Example 3, while maintaining high overdischarge storage characteristics, it can be seen that the life characteristics are improved.
[0026]
Each battery of Reference Examples 1 to 3 according to the present embodiment is not only suitable for in-vehicle lead storage batteries in which stress such as vibration and rapid acceleration / deceleration is directly applied to the positive electrode grid body because corrosion of the positive electrode grid body is suppressed. At the time of production, the positive electrode active material without addition of Na 2 SO 4 is filled in the positive electrode grid, and Na 2 SO 4 may be added to the electrolytic solution. The kneading time until Na 2 SO 4 is uniformly and uniformly kneaded is shortened, and the productivity can be improved.
[0027]
In the above Reference Examples 1 to 3 have been described as being added over Na 2 SO 4 of from 0.5 to 10 wt% Seikyokusunde Kakatsu material electrolytic solution as Ichikatachi state, by the following method reference The effect similar to the lead acid battery of Examples 1-3 can be acquired.
(1) 0.1 to 0.5% by weight of the positive electrode active material is added to the positive electrode active material, and 0.5 to 10% by weight of Na 2 SO 4 of the positive electrode active material is added to the chemical conversion liquid.
(2) The positive electrode active material layer is composed of at least two active material layers, an active material layer not containing Na 2 SO 4 in the vicinity of the positive electrode lattice, and 0.5 to 10 wt% of the positive electrode active material on the positive electrode plate surface. % of the Na 2 SO 4 active material layer was added.
(3) The positive electrode active material layer is composed of at least two active material layers, an active material layer to which Na 2 SO 4 is not added in the vicinity of the positive electrode lattice, and 0.1% of the positive electrode active material on the surface of the positive electrode plate. An active material layer to which ˜3% by weight of Na 2 SO 4 is added is added, and 0.5 to 10% by weight of Na 2 SO 4 of the positive electrode active material is added to the chemical conversion liquid.
[0028]
Further, in the present embodiment, the 18-cell monoblock battery case 1 having 18 cells in one row is illustrated, but the present invention defines a cell chamber in the battery case by, for example, a 6-cell monoblock battery case or a partition plate. In this embodiment, the open-type lead-acid battery 10 for in-vehicle use is exemplified, but it may be applied to a sealed lead-acid battery or a stationary lead-acid battery. Needless to say, it can be done.
[0029]
【The invention's effect】
As described above, according to the first aspect of the present invention, since the sodium sulfate in the vicinity positive grid body is first active material layer of additive-free is disposed, the corrosion of the positive grid body according sulfate ions The second active material layer in which 0.5% by weight to 10% by weight sodium sulfate of the positive electrode active material is added to the surface of the positive electrode plate while being suppressed, can extend the life of the lead storage battery. Since it is disposed, it is possible to obtain an effect that it is possible to extend the life of the lead-acid battery while maintaining the conductivity during overdischarge and improving the utilization rate of the positive electrode active material . In addition, according to the second aspect of the present invention, the positive electrode active material paste to which no sodium sulfate is added is disposed in the vicinity of the positive electrode lattice body to form the first active material layer, and the positive electrode active material 0. Since the positive electrode active material paste to which 5 wt% to 10 wt% of sodium sulfate is added is disposed on the surface of the positive electrode plate to form the second active material layer, the conductivity of the active material is maintained while maintaining the conductivity during overdischarge. it is possible to use rate increase, since sodium sulfate to place a positive electrode active material paste not added to the positive electrode grid, the positive electrode grid is suppressed corrosion by sulfate ions, possible to extend the life of the lead-acid battery The effect of being able to be obtained can be obtained.
[Brief description of the drawings]
FIG. 1 is an external perspective view of a lead storage battery according to an embodiment to which the present invention is applied.
FIG. 2 is a plan view of a battery case of the lead storage battery according to the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Battery case 2 Cover 3 Positive electrode external output terminal 4 Negative electrode external output terminal 5 Liquid stopper 6 Bulkhead 10 Lead acid battery

Claims (2)

鉛(Pb)を主成分とする正極格子体に二酸化鉛(PbO)を主成分とする正極活物質が充填された正極板を備えた鉛蓄電池において、前記正極板は、前記正極格子体近傍に配置され硫酸ナトリウム(NaSO)が無添加の第1の活物質層と、前記正極板の表面に配置され正極既化活物質の0.5重量%〜10重量%の硫酸ナトリウムが添加された第2の活物質層とを有することを特徴とする鉛蓄電池。In a lead-acid battery comprising a positive electrode plate in which a positive electrode grid mainly composed of lead (Pb) is filled with a positive electrode active material mainly composed of lead dioxide (PbO 2 ), the positive electrode plate is in the vicinity of the positive electrode grid. A first active material layer to which no sodium sulfate (Na 2 SO 4 ) is added, and 0.5 wt% to 10 wt% sodium sulfate of the positive electrode active material arranged on the surface of the positive electrode plate. A lead-acid battery comprising: an added second active material layer. 鉛を主成分とする正極格子体に二酸化鉛を主成分とする正極活物質が充填された正極板を備えた鉛蓄電池の製造方法であって、硫酸ナトリウムが無添加の正極活物質ペーストを前記正極格子体近傍に配置して第1の活物質層を形成し、正極既化活物質の0.5重量%〜10重量%の硫酸ナトリウムが添加された正極活物質ペーストを前記正極板の表面に配置して第2の活物質層を形成するステップを含むことを特徴とする鉛蓄電池の製造方法。  A method for producing a lead-acid battery comprising a positive electrode plate filled with a positive electrode active material mainly composed of lead dioxide in a positive electrode lattice body mainly composed of lead, wherein the positive electrode active material paste free of sodium sulfate is added to the positive electrode active material paste A positive electrode active material paste, which is disposed in the vicinity of the positive electrode grid body to form a first active material layer and to which 0.5 wt% to 10 wt% sodium sulfate of the positive electrode active material is added, is applied to the surface of the positive electrode plate. A method for producing a lead-acid battery comprising the step of forming a second active material layer by disposing the first active material layer.
JP15082999A 1999-05-31 1999-05-31 Lead acid battery and manufacturing method thereof Expired - Lifetime JP4538864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15082999A JP4538864B2 (en) 1999-05-31 1999-05-31 Lead acid battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15082999A JP4538864B2 (en) 1999-05-31 1999-05-31 Lead acid battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000340252A JP2000340252A (en) 2000-12-08
JP4538864B2 true JP4538864B2 (en) 2010-09-08

Family

ID=15505313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15082999A Expired - Lifetime JP4538864B2 (en) 1999-05-31 1999-05-31 Lead acid battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4538864B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5087950B2 (en) * 2007-02-27 2012-12-05 新神戸電機株式会社 Lead acid battery
WO2012043331A1 (en) * 2010-09-29 2012-04-05 株式会社Gsユアサ Lead-acid storage battery and idling-stop vehicle whereupon said lead-acid storage battery is mounted
WO2012043556A1 (en) * 2010-09-29 2012-04-05 株式会社Gsユアサ Lead storage battery and idling stop vehicle using same
FR3033328A1 (en) * 2015-03-05 2016-09-09 Arkema France LIQUID COMPOSITION OF CARBON NANOCHARGES FOR THE FORMULATIONS USED IN LEAD BATTERIES.
MY196244A (en) 2017-10-31 2023-03-24 Gs Yuasa Int Ltd Lead-Acid Battery
CN110391423B (en) * 2018-04-17 2022-03-18 中国电力科学研究院有限公司 Lead-carbon battery positive grid, preparation method thereof and lead-carbon battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302661A (en) * 1988-05-30 1989-12-06 Shin Kobe Electric Mach Co Ltd Lead acid battery and its manufacture
JPH0837002A (en) * 1994-07-25 1996-02-06 Shin Kobe Electric Mach Co Ltd Manufacture of positive electrode plate for lead-acid battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155761A (en) * 1990-10-18 1992-05-28 Matsushita Electric Ind Co Ltd Manufacture of lead-acid battery
JPH04218262A (en) * 1990-12-17 1992-08-07 Yuasa Corp Manufacture of closed type lead acid battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302661A (en) * 1988-05-30 1989-12-06 Shin Kobe Electric Mach Co Ltd Lead acid battery and its manufacture
JPH0837002A (en) * 1994-07-25 1996-02-06 Shin Kobe Electric Mach Co Ltd Manufacture of positive electrode plate for lead-acid battery

Also Published As

Publication number Publication date
JP2000340252A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
TWI459610B (en) Flooded lead-acid battery and method of making the same
WO2018229875A1 (en) Liquid-type lead storage battery
JP4538864B2 (en) Lead acid battery and manufacturing method thereof
JP2020167079A (en) Lead-acid battery
CN104067414A (en) Lead storage battery
JP3731383B2 (en) Lead acid battery
JP2000331676A (en) Lead-acid battery
JP7410683B2 (en) Positive electrode for lead-acid batteries and lead-acid batteries
JP7220371B2 (en) Electrode plates, grids and lead-acid batteries
JP7128484B2 (en) liquid lead acid battery
JP2019079778A (en) Lead acid battery
JP6999430B2 (en) Lead-acid battery
JP6778388B2 (en) Lead-acid battery
WO2021070231A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery
JPWO2019077657A1 (en) Lead acid battery, idling stop car and micro hybrid car
CN209804715U (en) Novel storage battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JP2001332290A (en) Lead-acid battery
JP2000331677A (en) Lead-acid battery
JP2024035653A (en) Lead-acid battery
JP2024035553A (en) Lead-acid battery
JP2024025093A (en) Lead storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP2023154163A (en) lead acid battery
JP2001015149A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Ref document number: 4538864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

EXPY Cancellation because of completion of term