JPH0837002A - Manufacture of positive electrode plate for lead-acid battery - Google Patents

Manufacture of positive electrode plate for lead-acid battery

Info

Publication number
JPH0837002A
JPH0837002A JP6172229A JP17222994A JPH0837002A JP H0837002 A JPH0837002 A JP H0837002A JP 6172229 A JP6172229 A JP 6172229A JP 17222994 A JP17222994 A JP 17222994A JP H0837002 A JPH0837002 A JP H0837002A
Authority
JP
Japan
Prior art keywords
active material
electrode plate
lead
positive electrode
material paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6172229A
Other languages
Japanese (ja)
Inventor
Katsura Mitani
桂 三谷
Toshio Shibahara
敏夫 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP6172229A priority Critical patent/JPH0837002A/en
Publication of JPH0837002A publication Critical patent/JPH0837002A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a positive electrode plate for lead-acid battery which can suppress the phenomenon that an active material at the boundary between an electricity collector and an active material layer is turned in passive state or that active material is turned muddy without causing drop of the battery discharge capacity. CONSTITUTION:An electricity collector consisting of lead or lead alloy is filled with an active material paste whereto sodium sulfate is added and which exhibits an alkalinity between pH10.5-11.5 so that an electrode plate not having undergone chemical formation. This electrode plate is immersed in an electrolytic solution of pH0.5-0.7 to which sodium sulfate is added, and thus chemical formation is conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉛蓄電池用正極板の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a positive electrode plate for a lead storage battery.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池等の鉛蓄電池に用いる正
極板を作る場合には、まず鉛または鉛合金の格子体等か
らなる集電体に酸化鉛を主成分とする鉛粉末と希硫酸と
を混練した活物質ペーストを充填して未乾燥極板を作
る。次に未乾燥極板を熟成、乾燥して未化成極板を作
り、この未化成極板を希硫酸からなる電解液中で化成し
てβ−PbO2 を主成分とする活物質層を形成する。こ
の種の鉛蓄電池で充放電を繰り返すと、正極板の集電体
と活物質層との間の界面で活物質の他の部分に比べて優
先的に放電が起こる。そのためこの界面の近傍の活物質
は充電生成物になり難くなり、いわゆる不働態化が起き
る。特にPb−Ca−Sn合金等の非アンチモン(S
b)系合金を用いて集電体を形成すると活物質の不働態
化は著しくなる。また、充放電を繰り返すと、活物質
(β−PbO2 )の粒子が微細化して活物質粒子同志の
結合力が低下し、活物質が軟化して脱落する泥状化現象
が発生する。そのため、電池の容量が低下するという問
題があった。そこで未化成極板を化成する電解液に液性
をアルカリ性にする化合物を添加して電解液のpHを調
整して集電体と活物質層との間の界面近傍に反応性の乏
しいα−PbO2 を生成し、また界面から離れた部分に
反応の活性なβ−PbO2 を生成させて、不働態化及び
泥状化を抑制することが提案された(特開平4−723
51号公報)。α−PbO2 はβ−PbO2 よりも不活
性なため、放電反応を起こし難く、集電体と活物質層と
の間の界面の不働態化や泥状化を抑制することができ
る。
2. Description of the Related Art When making a positive electrode plate for use in a lead-acid battery such as a sealed lead-acid battery, first, a lead powder containing lead oxide as a main component and dilute sulfuric acid are first added to a current collector composed of a lead or lead alloy lattice. An undried electrode plate is prepared by filling an active material paste prepared by kneading and. Next, the undried electrode plate is aged and dried to form an unformed electrode plate, and the unformed electrode plate is formed in an electrolytic solution containing dilute sulfuric acid to form an active material layer containing β-PbO 2 as a main component. To do. When charging and discharging are repeated in this type of lead storage battery, discharge is preferentially generated at the interface between the current collector of the positive electrode plate and the active material layer as compared with other portions of the active material. Therefore, the active material in the vicinity of this interface hardly becomes a charge product, and so-called passivation occurs. Especially non-antimony (Sb alloy such as Pb-Ca-Sn alloy)
When the current collector is formed by using the b) type alloy, the passivation of the active material becomes remarkable. Further, when charging and discharging are repeated, particles of the active material (β-PbO 2 ) become finer, the binding force between the active material particles decreases, and the active material softens and falls off, causing a mud phenomenon. Therefore, there is a problem that the capacity of the battery decreases. Therefore, a compound that makes the liquid alkalinity is added to the electrolytic solution forming the unformed electrode plate to adjust the pH of the electrolytic solution, and α-poor reactivity is formed in the vicinity of the interface between the current collector and the active material layer. generates a PbO 2, also by generating active beta-PbO 2 reaction to distant parts from the interface, it has been proposed to suppress the passivation and slurried (JP 4-723
No. 51). Since α-PbO 2 is more inactive than β-PbO 2, it is less likely to cause a discharge reaction, and passivation and mudification of the interface between the current collector and the active material layer can be suppressed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うにして鉛蓄電池を製造しても、集電体と活物質層との
間の界面における活物質の不働態化と活物質の泥状化の
両方を抑制するには限界があった。またこれを抑制する
ために活物質内のα−PbO2 量を多くすることが考え
られるが、α−PbO2 量が多くなり過ぎると、電池の
高率放電性能が低下する。
However, even when the lead-acid battery is manufactured in this manner, the passivation of the active material and the mudification of the active material at the interface between the current collector and the active material layer are prevented. There was a limit to suppressing both. Further, in order to suppress this, it is conceivable to increase the amount of α-PbO 2 in the active material, but if the amount of α-PbO 2 becomes too large, the high rate discharge performance of the battery deteriorates.

【0004】本発明の目的は、電池の放電容量を低下さ
せることなく、集電体と活物質層との間の界面における
活物質の不働態化と活物質の泥状化とを抑制できる鉛蓄
電池用正極板の製造方法を提供することにある。
An object of the present invention is to prevent the passivation of the active material and the mudification of the active material at the interface between the current collector and the active material layer without reducing the discharge capacity of the battery. It is to provide a method for manufacturing a positive electrode plate for a storage battery.

【0005】[0005]

【課題を解決するための手段】本発明は、鉛または鉛合
金からなる集電体に、活物質ペーストを充填して未化成
極板を作り、未化成極板を液性をアルカリ性にする化合
物を添加した電解液に浸漬して化成することにより鉛蓄
電池用正極板を製造する方法を対象にして、活物質ペー
ストとして液性がアルカリ性を示すpH10.5〜1
1.5の活物質ペーストを用い、電解液としてpH0.
5〜0.7の電解液を用いる。
According to the present invention, a current collector made of lead or a lead alloy is filled with an active material paste to form an unformed electrode plate, and a compound that makes the unformed electrode plate alkaline is liquid. A method for producing a positive electrode plate for a lead storage battery by immersing it in an electrolytic solution containing a compound to form a positive electrode plate, and a liquid having an alkaline property as an active material paste, pH 10.5 to 1
Using an active material paste of 1.5, the pH of the electrolytic solution was 0.
An electrolytic solution of 5 to 0.7 is used.

【0006】液性をアルカリ性にする化合物としてはア
ルカリ金属の中性塩を用いるのが好ましい。アルカリ金
属の中性塩を用いるとNaOH等の水酸化物を用いた場
合に比べて安全性が高いという利点がある。なおここで
いうアルカリ金属の中性塩とは硫酸ナトリウム(Na2
SO4 )等のアルカリ金属(Na等)を含む中性塩であ
る。
It is preferable to use a neutral salt of an alkali metal as the compound which makes the liquid alkaline. The use of a neutral salt of an alkali metal has an advantage that the safety is higher than that when a hydroxide such as NaOH is used. The neutral salt of alkali metal referred to here is sodium sulfate (Na 2
It is a neutral salt containing an alkali metal (Na etc.) such as SO 4 ).

【0007】また活物質ペーストはアルカリ金属の中性
塩を添加してpH10.5〜11.5とした活物質ペー
ストを用いてもよい。
As the active material paste, an active material paste having a pH of 10.5 to 11.5 obtained by adding a neutral salt of an alkali metal may be used.

【0008】アルカリ金属の中性塩は硫酸ナトリウムを
用いるのが好ましい。硫酸ナトリウムは安価なので、鉛
蓄電池用正極板を安価に製造できる。
It is preferable to use sodium sulfate as the neutral salt of the alkali metal. Since sodium sulfate is inexpensive, the positive electrode plate for lead acid battery can be manufactured at low cost.

【0009】[0009]

【作用】pH10.5〜11.5の活物質ペーストを用
いて、未化成極板を作ると集電体及び活物質中の鉛、一
酸化鉛、水酸化鉛のペースト液中への溶解度が高くな
る。これにより集電体から溶解した鉛、一酸化鉛、水酸
化鉛により、集電体と活物質層との間の界面の結合力が
増大し、活物質中から溶解した鉛、一酸化鉛、水酸化鉛
により活物質粒子の相互の結合力が増大する。またこの
ようにpH10.5〜11.5の活物質ペーストを用い
ると活物質層が化成時において内部に電解液が拡散しや
すい構造となる。そのため、活物質中のα−PbO2
量が多くなっても電池の高率放電特性が低下するのを抑
制することができる。なおpHが11.5を越えて活物
質ペーストのアルカリ性が高くなると、集電体と活物質
層との間の界面のα−PbO2 の層が厚くなり過ぎ、こ
のα−PbO2 の層に亀裂が入って化成後において集電
体と活物質層との間の界面で剥離が生じやすくなる。
[Function] When an unformed electrode plate is prepared by using an active material paste having a pH of 10.5-11.5, the solubility of lead, lead monoxide, and lead hydroxide in the current collector and the active material in the paste solution is increased. Get higher As a result, the dissolved lead, lead monoxide, and lead hydroxide from the current collector increase the binding force at the interface between the current collector and the active material layer, and lead, monoxide, dissolved from the active material, Lead hydroxide increases the mutual binding force of the active material particles. In addition, when the active material paste having a pH of 10.5 to 11.5 is used as described above, the active material layer has a structure in which the electrolytic solution easily diffuses inside during formation. Therefore, even if the amount of α-PbO 2 in the active material increases, it is possible to suppress deterioration of the high rate discharge characteristics of the battery. When the pH exceeds 11.5 and the alkalinity of the active material paste becomes high, the α-PbO 2 layer at the interface between the current collector and the active material layer becomes too thick, and this α-PbO 2 layer becomes After the formation of cracks, peeling easily occurs at the interface between the current collector and the active material layer.

【0010】そしてこの未化成極板をpH0.5〜0.
7の電解液に浸漬して化成すると、集電体との界面部近
傍に集電体と強く結合したα−PbO2 が生成され、活
物質層内にα−PbO2 の骨格が形成される。pHが
0.5を下回るとα−PbO2の骨格が十分に形成でき
ない。また電解液のpHが0.7を越えると充放電に不
活性なα−PbO2 の量が多くなり、電池の放電容量が
低下する。そのため本発明によれば、鉛蓄電池の放電容
量を低下させることなく、集電体と活物質層との間の界
面における活物質の不働態化と活物質の泥状化を抑制で
きる正極板を得ることができる。
Then, the unformed electrode plate was adjusted to pH 0.5 to 0.
When immersed in the electrolytic solution of No. 7 and formed to form α-PbO 2 strongly bound to the current collector near the interface with the current collector, a skeleton of α-PbO 2 is formed in the active material layer. . If the pH is lower than 0.5, the skeleton of α-PbO 2 cannot be sufficiently formed. Further, when the pH of the electrolytic solution exceeds 0.7, the amount of α-PbO 2 which is inactive in charge and discharge increases, and the discharge capacity of the battery decreases. Therefore, according to the present invention, a positive electrode plate capable of suppressing passivation of the active material and mudification of the active material at the interface between the current collector and the active material layer without reducing the discharge capacity of the lead storage battery. Obtainable.

【0011】[0011]

【実施例】本実施例を含む試験に用いた各正極板は次の
ようにして作った。まず、一酸化鉛(PbO)を主成分
とする鉛粉末75.4重量%と、水10重量%と、比重
1.26(20℃)の希硫酸12.4重量%とを混練し
たものの中に鉛粉末に対して所定量(下記表1の活物質
ペーストAの欄に示す量)の硫酸ナトリウム(Na2
4 )からなる中性塩を添加して更に混練してpHの異
なる各種の活物質ペーストを作った。そして、これらの
活物質ペースト各26gをPb−Ca−Sn合金からな
る非アンチモン(Sb)系合金の格子体からなる集電体
に充填して未乾燥極板を作った。次に未乾燥極板を温度
40℃、湿度98%の雰囲気中に40時間放置して熟成
してから、温度50℃の雰囲気中に16時間放置して乾
燥して未化成極板を作った。
EXAMPLES Each positive electrode plate used in the tests including this example was manufactured as follows. First, of a mixture of 75.4% by weight of lead powder containing lead monoxide (PbO) as a main component, 10% by weight of water, and 12.4% by weight of dilute sulfuric acid having a specific gravity of 1.26 (20 ° C.). In addition, a predetermined amount (the amount shown in the column of the active material paste A in Table 1 below) of sodium sulfate (Na 2 S
A neutral salt of O 4 ) was added and further kneaded to prepare various active material pastes having different pHs. Then, 26 g of each of these active material pastes was filled in a current collector composed of a lattice of a non-antimony (Sb) -based alloy composed of a Pb-Ca-Sn alloy to prepare a undried electrode plate. Next, the undried electrode plate is left for 40 hours in an atmosphere having a temperature of 40 ° C. and a humidity of 98% to be matured, and then left in an atmosphere having a temperature of 50 ° C. for 16 hours to be dried to prepare an unformed electrode plate. .

【0012】次に希硫酸に対して所定量(表1の電解液
Bの欄に示す量)の硫酸ナトリウム(Na2 SO4 )か
らなる中性塩を添加してpHの異なる比重1.05(2
0℃)の各種の電解液を作った。そして、未化成極板を
正極活物質1gに対して14mlの電解液に浸漬して、
温度40℃で理論電気量の250%の電気量を20時間
かけて通電して化成を行った。そして化成後に各極板を
水洗、乾燥して試験に用いた各種の正極板を完成した。
Next, a predetermined amount (amount shown in the column of electrolyte B of Table 1) of neutral salt of sodium sulfate (Na 2 SO 4 ) is added to dilute sulfuric acid to add 1.05 of specific gravity having different pH. (2
Various electrolytic solutions of 0 ° C.) were prepared. Then, the unformed electrode plate is dipped in 14 ml of electrolyte solution for 1 g of the positive electrode active material,
At a temperature of 40 ° C., 250% of the theoretical amount of electricity was applied for 20 hours to conduct the formation. After the formation, each electrode plate was washed with water and dried to complete various positive electrode plates used in the test.

【0013】次に各正極板2枚を公知のペースト式負極
板3枚及びガラス繊維を主体とするセパレータと組み合
わせて4Ah−2Vの密閉形鉛蓄電池を作った。なお電
解液は比重1.32(20℃)の希硫酸を用いた。そし
て各電池を用いて高率放電試験とサイクル寿命試験を行
った。高率放電試験は各電池を温度25℃において12
A(3CA)の電流で終止電圧1.3Vまで放電して放
電持続時間を測定して行った。表1にその測定結果を示
す。
Next, two positive electrode plates were combined with three known paste type negative electrode plates and a separator mainly composed of glass fibers to prepare a sealed lead acid battery of 4Ah-2V. The electrolytic solution used was dilute sulfuric acid having a specific gravity of 1.32 (20 ° C.). A high rate discharge test and a cycle life test were performed using each battery. The high rate discharge test was conducted at a temperature of 25 ° C for each battery at 12
The discharge duration was measured by discharging with a current of A (3 CA) to a final voltage of 1.3 V. Table 1 shows the measurement results.

【0014】[0014]

【表1】 本表より実施例1〜6及び比較例1,2,5,7,9,
11〜13の正極板を用いた電池は、12分以上の放電
持続時間を有しており、高率放電性能が高いのが判る。
比較例3,4,6,8,10,14の正極板を用いた電
池の高率放電性能が低いのは、活物質中にα−PbO2
が多くできたためである。
[Table 1] From this table, Examples 1 to 6 and Comparative Examples 1, 2, 5, 7, 9,
It can be seen that the batteries using the positive electrode plates 11 to 13 have a discharge duration of 12 minutes or more and high high rate discharge performance.
The high rate discharge performance of the batteries using the positive electrode plates of Comparative Examples 3, 4, 6, 8, 10, and 14 is low because α-PbO 2 is contained in the active material.
It was because there were many.

【0015】サイクル寿命試験は、前述の高率放電性能
が高い電池のみを用いて次のようにして行った。各電池
を温度25℃において1A(0.25CA)の電流で終
止電圧1.7Vまで放電した後に制限電流1.2A
(0.25CA)、設定電圧2.45Vで8時間定電流
定電圧充電を行った。そして放電容量が定格容量の50
%以下となる点を寿命として寿命に至るまでの各電池の
サイクル数を測定した。表1にその測定結果を示す。本
表より実施例1〜6の正極板を用いた電池は、300回
以上のサイクル数を有しており、サイクル寿命性能が高
く、これらの電池は、高率放電性能及びサイクル寿命性
能が共に高いのが判る。サイクル寿命の短かった比較例
1,2,5,7,9,11〜13の正極板を用いた電池
を解体すると集電体と活物質層との間の界面近傍の活物
質の不働態化や活物質の泥状化が見られた。これは、活
物質ペーストのpHが低い比較例1,2,5,7,9の
正極板を用いた電池では、化成後において活物質中のα
−PbO2 の量が少なかったためである。また活物質ペ
ーストのpHが高い比較例11〜13の正極板を用いた
電池では、化成後において集電体と活物質層との剥離が
大きかったためである。このように活物質ペーストのp
Hが高くなると、化成後において集電体と活物質層との
剥離が大きくなる。また本表より化成液のpH調整のみ
でα−PbO2 を多くした比較例2〜4の極板では容量
が低下するのが判る。
The cycle life test was conducted as follows using only the above-mentioned battery having high high rate discharge performance. After discharging each battery at a temperature of 25 ° C. with a current of 1 A (0.25 CA) to a final voltage of 1.7 V, a limiting current of 1.2 A
(0.25 CA), constant voltage constant voltage charging was performed for 8 hours at a set voltage of 2.45V. And the discharge capacity is 50 of the rated capacity.
The number of cycles of each battery up to the end of life was measured with the point at which the percentage was less than or equal to%. Table 1 shows the measurement results. From this table, the batteries using the positive electrode plates of Examples 1 to 6 have a cycle number of 300 times or more, and have high cycle life performance. These batteries have both high rate discharge performance and cycle life performance. You can see that it is expensive. When the batteries using the positive electrode plates of Comparative Examples 1, 2, 5, 7, 9, 11 to 13 having a short cycle life were disassembled, the passivation of the active material in the vicinity of the interface between the current collector and the active material layer was performed. It was observed that the active material became mud-like. This is because in the batteries using the positive electrode plates of Comparative Examples 1, 2, 5, 7, and 9 in which the pH of the active material paste was low, α in the active material after chemical conversion
This is because the amount of PbO 2 was small. This is also because in the batteries using the positive electrode plates of Comparative Examples 11 to 13 in which the pH of the active material paste was high, the current collector and the active material layer were largely peeled off after chemical conversion. In this way, p of the active material paste
When H is high, the peeling between the current collector and the active material layer becomes large after chemical conversion. Further, it can be seen from this table that the capacity of the electrode plates of Comparative Examples 2 to 4 in which the amount of α-PbO 2 is increased only by adjusting the pH of the chemical conversion liquid decreases.

【0016】なお本実施例では、中性塩として硫酸ナト
リウム(Na2 SO4 )を用いたが、K2 SO4 等他の
ものを用いても構わない。
In this embodiment, sodium sulfate (Na 2 SO 4 ) was used as the neutral salt, but other compounds such as K 2 SO 4 may be used.

【0017】以下、明細書に記載した複数の発明の中で
いくつかの発明についてその構成を示す。
The structure of some of the inventions described in the specification will be described below.

【0018】(1)鉛または鉛合金からなる集電体に活
物質ペーストを充填して未乾燥極板を作り、前記未乾燥
極板を熟成・乾燥して未化成極板を作った後に、前記未
化成極板を希硫酸からなる電解液中で化成する鉛蓄電池
用正極板の製造方法において、前記活物質ペーストとし
てpH10.5〜11.5の活物質ペーストを用い、前
記電解液にアルカリ金属の中性塩を添加して該電解液の
pHを0.5〜0.7にすることを特徴とする鉛蓄電池
用正極板の製造方法。
(1) A current collector made of lead or a lead alloy is filled with an active material paste to prepare an undried electrode plate, and the undried electrode plate is aged and dried to form an unformed electrode plate, In the method for producing a positive electrode plate for a lead storage battery, wherein the unformed electrode plate is formed in an electrolytic solution containing dilute sulfuric acid, an active material paste having a pH of 10.5 to 11.5 is used as the active material paste, and an alkaline solution is used as the electrolytic solution. A method for producing a positive electrode plate for a lead storage battery, which comprises adding a neutral salt of a metal to adjust the pH of the electrolytic solution to 0.5 to 0.7.

【0019】(2)鉛または鉛合金からなる集電体に硫
酸ナトリウムを添加したpH10.5〜11.5の活物
質ペーストを充填した未乾燥極板を熟成・乾燥して未化
成極板を作った後に、前記未化成極板を硫酸ナトリウム
を添加したpH0.5〜0.7の電解液中で化成して鉛
蓄電池用正極板を製造することを特徴とする鉛蓄電池用
正極板の製造方法。
(2) A non-formed electrode plate is prepared by aging and drying a undried electrode plate in which a current collector made of lead or a lead alloy and sodium sulfate is added and an active material paste having a pH of 10.5 to 11.5 is filled. After the production, the unformed electrode plate is formed in an electrolytic solution having a pH of 0.5 to 0.7 containing sodium sulfate to produce a positive electrode plate for a lead acid battery, which is a positive electrode plate for a lead acid battery. Method.

【0020】(3)酸化鉛を主成分とする鉛粉末と、水
と、希硫酸と、硫酸ナトリウムとを混練して作った活物
質ペーストをアンチモンを含まない鉛合金からなる集電
体に充填して未乾燥極板を作り、前記未乾燥極板を熟成
・乾燥して未化成極板を作り、前記未化成極板を希硫酸
からなる電解液中で化成する鉛蓄電池用正極板の製造方
法において、前記活物質ペーストとしてpH10.5〜
11.5の活物質ペーストを用い、前記希硫酸に硫酸ナ
トリウムを添加してpH0.5〜0.7とした電解液中
で前記未化成極板を化成することを特徴とする鉛蓄電池
用正極板の製造方法。
(3) An active material paste prepared by kneading lead powder containing lead oxide as a main component, water, dilute sulfuric acid, and sodium sulfate is filled in a current collector made of a lead alloy containing no antimony. To make a undried electrode plate, and to ripen and dry the undried electrode plate to make an unformed electrode plate, and then to form the unformed electrode plate in an electrolyte solution containing dilute sulfuric acid to produce a positive electrode plate for a lead storage battery. In the method, the active material paste has a pH of 10.5 to
A positive electrode for a lead storage battery, characterized by using the active material paste of 11.5 to form the unformed electrode plate in an electrolytic solution having a pH of 0.5 to 0.7 by adding sodium sulfate to the diluted sulfuric acid. Method of manufacturing a plate.

【0021】[0021]

【発明の効果】本発明によれば、活物質ペーストとして
pH10.5〜11.5の活物質ペーストを用い、電解
液としてpH0.5〜0.7の電解液を用いるので、鉛
蓄電池の放電容量を低下させることなく、集電体と活物
質層との間の界面における活物質の不働態化と活物質の
泥状化を抑制できる正極板を得ることができる。
According to the present invention, since the active material paste having a pH of 10.5 to 11.5 is used as the active material paste and the electrolytic solution having a pH of 0.5 to 0.7 is used as the electrolytic solution, the discharge of the lead storage battery is performed. It is possible to obtain a positive electrode plate that can suppress passivation of the active material and mudification of the active material at the interface between the current collector and the active material layer without lowering the capacity.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】鉛または鉛合金からなる集電体に、活物質
ペーストを充填して未化成極板を作り、前記未化成極板
を液性をアルカリ性にする化合物を添加した電解液に浸
漬して化成することにより鉛蓄電池用正極板を製造する
方法において、 前記活物質ペーストとして液性がアルカリ性を示すpH
10.5〜11.5の活物質ペーストを用い、 前記電解液としてpH0.5〜0.7の電解液を用いる
ことを特徴とする鉛蓄電池用正極板の製造方法。
1. A current collector made of lead or a lead alloy is filled with an active material paste to form an unformed electrode plate, and the unformed electrode plate is immersed in an electrolyte solution containing a compound that makes the liquidity alkaline. In the method for producing a positive electrode plate for a lead storage battery by chemical conversion, the active material paste has a pH of which the liquidity is alkaline.
A method for manufacturing a positive electrode plate for a lead storage battery, which comprises using an active material paste of 10.5 to 11.5 and using an electrolytic solution of pH 0.5 to 0.7 as the electrolytic solution.
【請求項2】前記液性をアルカリ性にする化合物として
アルカリ金属の中性塩を用いることを特徴とする請求項
1に記載の鉛蓄電池用正極板の製造方法。
2. The method for producing a positive electrode plate for a lead storage battery according to claim 1, wherein a neutral salt of an alkali metal is used as the compound that makes the liquid property alkaline.
【請求項3】鉛または鉛合金からなる集電体に活物質ペ
ーストを充填して未化成極板を作り、前記未化成極板を
アルカリ金属の中性塩を希硫酸に添加してpH0.5〜
0.7とした電解液に浸漬して化成することにより鉛蓄
電池用正極板を製造する方法において、 前記活物質ペーストとしてアルカリ金属の中性塩を添加
してなるpH10.5〜11.5の活物質ペーストを用
いることを特徴とする鉛蓄電池用正極板の製造方法。
3. An unformed electrode plate is prepared by filling a current collector made of lead or a lead alloy with an active material paste, and the unformed electrode plate is prepared by adding a neutral salt of an alkali metal to dilute sulfuric acid to a pH of 0. 5-
A method for producing a positive electrode plate for a lead storage battery by immersing it in an electrolyte solution having a pH of 0.7 to perform formation, wherein a pH of 10.5 to 11.5 is obtained by adding a neutral salt of an alkali metal as the active material paste. A method for manufacturing a positive electrode plate for a lead storage battery, which comprises using an active material paste.
【請求項4】前記アルカリ金属の中性塩は硫酸ナトリウ
ムである請求項2または3に記載の鉛蓄電池用正極板の
製造方法。
4. The method for producing a positive electrode plate for a lead storage battery according to claim 2, wherein the neutral salt of the alkali metal is sodium sulfate.
JP6172229A 1994-07-25 1994-07-25 Manufacture of positive electrode plate for lead-acid battery Withdrawn JPH0837002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6172229A JPH0837002A (en) 1994-07-25 1994-07-25 Manufacture of positive electrode plate for lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6172229A JPH0837002A (en) 1994-07-25 1994-07-25 Manufacture of positive electrode plate for lead-acid battery

Publications (1)

Publication Number Publication Date
JPH0837002A true JPH0837002A (en) 1996-02-06

Family

ID=15938001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6172229A Withdrawn JPH0837002A (en) 1994-07-25 1994-07-25 Manufacture of positive electrode plate for lead-acid battery

Country Status (1)

Country Link
JP (1) JPH0837002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340252A (en) * 1999-05-31 2000-12-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340252A (en) * 1999-05-31 2000-12-08 Shin Kobe Electric Mach Co Ltd Lead-acid battery and its manufacture
JP4538864B2 (en) * 1999-05-31 2010-09-08 新神戸電機株式会社 Lead acid battery and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TW201001782A (en) Flooded lead-acid battery and method of making the same
JP2000251896A (en) Lead-acid battery and its manufacture
JP4293130B2 (en) Positive electrode plate for lead acid battery and lead acid battery
JPH0837002A (en) Manufacture of positive electrode plate for lead-acid battery
JP3646462B2 (en) Method for producing active material for lead-acid battery
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JP4379928B2 (en) Manufacturing method of paste type positive electrode plate for lead acid battery
JP2773312B2 (en) Manufacturing method of positive electrode plate for lead-acid battery
JPS6216506B2 (en)
JPH0850896A (en) Manufacture of lead-acid battery
JP2004207003A (en) Liquid type lead acid storage battery
JP2003086178A (en) Sealed lead-acid battery and method of manufacturing the same
JP2773311B2 (en) Manufacturing method of sealed lead-acid battery
JP4376514B2 (en) Positive electrode for lead acid battery and method for producing the same
JPH11260357A (en) Manufacture of electrode plate for lead-acid battery and lead-acid battery using the electrode plate
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP3040718B2 (en) Lead storage battery
JP2005044703A (en) Manufacturing method of control valve type lead storage battery
JPH05166504A (en) Manufacture of lead-acid battery positive electrode plate
JPH07320728A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JP2008034286A (en) Closed lead battery
JP2002042798A (en) Method for manufacturing positive electrode plate for lead-acid battery added with minium
JP2009231014A (en) Manufacturing method of positive electrode active material paste for lead-acid storage battery, and positive electrode plate for lead-acid storage battery using the paste
JPH0822824A (en) Manufacture of lead-acid battery positive electrode plate
JP2000182615A (en) Lead-acid battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002