JP2004207003A - Liquid type lead acid storage battery - Google Patents

Liquid type lead acid storage battery Download PDF

Info

Publication number
JP2004207003A
JP2004207003A JP2002373916A JP2002373916A JP2004207003A JP 2004207003 A JP2004207003 A JP 2004207003A JP 2002373916 A JP2002373916 A JP 2002373916A JP 2002373916 A JP2002373916 A JP 2002373916A JP 2004207003 A JP2004207003 A JP 2004207003A
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolyte
electrode plate
mass
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002373916A
Other languages
Japanese (ja)
Inventor
Kazuya Sasaki
一哉 佐々木
Takayuki Arai
孝之 新井
Yoshiaki Machiyama
美昭 町山
Yasushi Uraoka
靖 浦岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2002373916A priority Critical patent/JP2004207003A/en
Publication of JP2004207003A publication Critical patent/JP2004207003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a liquid type lead acid storage battery which prevents the tendency to develop concentration difference in electrolyte solution. <P>SOLUTION: The electrolyte solution exists in abundance inside and outside an electrode plate group having a bag-like separator. In the electrolyte solution, colloidal SiO<SB>2</SB>exists. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、袋状セパレータを有する極板群の内外に電解液が豊富に存在する液式鉛蓄電池に関するものである。
【0002】
【従来の技術】
従来の液式鉛蓄電池では、充電末期のガッシングによって電解液が攪拌されるとしても、電池内において上下部で電解液の濃淡差が生じる現象が確認されている。この現象が発生すると、電池の早期寿命を引き起こす。これは、液式鉛蓄電池が充放電を繰り返すうちに極板上で局部的に電解液濃度の不均一が生じ、これの繰り返しにより電池内に上下部での濃淡差を生じる。そして、電解液濃度の高い電池下部では正極板が著しく硫酸鉛化して、極板の早期劣化を引き起こす。この現象は、電解液の攪拌が阻害され易い袋状セパレータを用いた場合に顕著である(例えば、特許文献1参照。)。
【0003】
その対策としては、ガッシングをする正極板を袋状セパレータに入れたり、袋状セパレータを全く用いない方法等がとられている。
【0004】
【特許文献1】
特開平5−144430号公報
【0005】
【発明が解決しようとする課題】
しかし、これらの方法では、正極板を入れた袋状セパレータが該正極板によって酸化劣化したり、袋状セパレータを全く用いなければ、電池使用中に活物質の脱落が起こり易くなったり、脱落した活物質による短絡を起こし易くなったりする問題点があった。
【0006】
本発明の目的は、電解液の濃淡差を生じにくくすることができる液式鉛蓄電池を提供することにある。
【0007】
本発明の他の目的は、正極板の硫酸鉛化による早期劣化を防ぐとともに、電池使用中における短絡が起こり難い液式鉛蓄電池を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、袋状セパレータを有する極板群の内外に電解液が豊富に存在する液式鉛蓄電池を改良するものである。
【0009】
本発明に係る液式鉛蓄電池では、袋状セパレータ中に負極板のみが収納されており、電解液中にコロイド状SiOが存在していることを特徴とする。
【0010】
この場合、コロイド状SiOは電解液中での存在量が電解液質量に対し0.5 〜15質量%で、特に2.0 〜15質量%であることが好ましい。
【0011】
コロイド状SiOは、それの持つ粘度の大きさにより、液式鉛蓄電池の充放電の際、電解液の移動を押さえ、偏った濃淡差を引き起こさないようにする。電解液の濃淡差が生じにくくなると、正極板の硫酸鉛化による早期劣化を防ぐことができる。また、袋状セパレータを使用しているため、電池使用中における短絡も生じ難くなる。
【0012】
コロイド状SiOは電解液中での存在量が電解液質量に対し0.5 〜15質量%で、特に2.0 〜15質量%であることが好ましい。
【0013】
コロイド状SiOの電解液中での存在量が電解液質量に対し0.5 〜15質量%であると、電解液は完全にゲル化せず、電解液として扱うことができる。特に、コロイド状SiOの電解液中での存在量が電解液質量に対し2.0 〜15質量%であると、正極板の硫酸鉛化による早期劣化を効果的に防ぐことができる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を比較例と共に説明する。
【0015】
(比較例1)
この比較例1の液式鉛蓄電池は、次のようにして製造した。最初に負極板を作った。まず、合金組成がPb−0.08%Ca−0.8 %Snからなる格子体を作成した。次に、鉛粉と、該鉛粉に対して13質量%の希硫酸(比重1.26:20℃)と、該鉛粉に対して12質量%の水とを混練して負極活物質ペーストを作った。この負極活物質ペースト73.0gを格子体に充填してから、温度50℃、湿度95%中に18時間放置して熟成した後に、温度25℃、湿度40%中に2時間放置し、乾燥して未化成負極板を作った。
【0016】
次に、正極板を作った。まず、合金組成がPb−1.6 %Sbからなる格子体を作製した。次に、鉛粉と、該鉛粉に対して13質量%の希硫酸(比重1.26:20℃)と、該鉛粉に対して12質量%の水とを混練して正極活物質ペーストを作った。この正極活物質ペースト85.5gを、平面に据付けた格子体に、その上面より充填し、比重1.060 の希硫酸に浸漬し、乾燥させた。この後、温度50℃、湿度95%中に18時間放置して熟成した後に、温度25℃、湿度40%中に2時間放置し、乾燥して未化成正極板を作った。
【0017】
次に、袋状セパレータ内に前述した未化成負極板を挿入した。この袋状セパレータ入り未化成負極板8枚と、未化成正極板7枚とガラス繊維からなるマットを積層して極板群を作った。この極板群にキャストオンストラップ法でストラップを形成した。そして、このストラップを形成した極板群を電槽内に配置し、該電槽内に電解液を注液して電解液が豊富に存在する未化成液式鉛蓄電池を作った。なお、電解液は比重1.200 (20℃)の希硫酸である。次に、この未化成液式鉛蓄電池を13Aで21時間化成して液式鉛蓄電池を完成した。
【0018】
(実施の形態1)
この実施の形態1では、比較例1の電解液にスノーテックス40(日産化学製)を、電解液に対してSiOの割合が0.5 、1.1 、2.0 、2.7 、5 、10、15、20質量%となるように添加して、電解液の性状を調べ、表1に示した。0.5 〜15質量%では電解液は完全にゲル化しなかったが、20質量%では電解液が完全にゲル化した。このことから、電解液として扱うには、電解液に対してSiOの割合が0.5 〜15質量%の範囲が望ましい。
【0019】
【表1】

Figure 2004207003
(実施の形態2)
この実施の形態2では、比較例1の電解液にスノーテックス40(日産化学製)を、電解液に対してSiOの割合が0.5 、1.1 、2.0 、2.7 、5 、10、15質量%となるように添加して、比較例1と同様に電解液を化成した。
【0020】
この実施の形態2で作製した電池と、比較例1で作製した電池を40℃の環境下で、放電(30A−1時間)、充電(24A−上限電圧14.8V−2時間)のサイクルを繰り返した。また、80サイクルにおいて電池内上下部の電解液の比重を測定した。
【0021】
図1では、電解液に対してSiOの割合が0.5 〜15質量%のいずれの添加量においても、比較例1に比べて、上下の電解液の比重差は小さくなっており、効果がみられた。特に、電解液に対してSiOの割合が1.1 〜15質量%の範囲で、上下の電解液の比重差を小さくする効果が大きかった。
【0022】
また、80サイクルにおける正極板活物質中の硫酸鉛量を極板上中下位置についてそれぞれ測定した。
【0023】
図2において、電解液に対してSiOの割合が0.5 〜15質量%の範囲で、比較例1に比べて効果がみられたが、特に2.0 〜15質量%でその効果が大きく、正極板の硫酸鉛化による早期劣化を効果的に防ぐことができる。
【0024】
【発明の効果】
本発明に係る液式鉛蓄電池では、電解液中にコロイド状SiOを存在させているので、コロイド状SiOの持つ粘度の大きさにより、液式鉛蓄電池の充放電の際、電解液の移動を押さえ、偏った濃淡差を引き起こさないようにすることができる。電解液の濃淡差が生じにくくなると、正極板の硫酸鉛化による早期劣化を防ぐことができる。また、袋状セパレータを使用しているため、電池使用中における短絡も生じ難くなる。
【0025】
また、コロイド状SiOの電解液中での存在量が電解液質量に対し0.5 〜15質量%であると、電解液は完全にゲル化せず、電解液として扱うことができる。
【0026】
特に、コロイド状SiOの電解液中での存在量が電解液質量に対し2.0 〜15質量%であると、正極板の硫酸鉛化による早期劣化を効果的に防ぐことができる。
【図面の簡単な説明】
【図1】電池内上下部の電解液比重の比較図である。
【図2】極板上中下部各位置の正極板活物質中の硫酸鉛量の比較図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid lead storage battery in which an electrolytic solution is abundant inside and outside an electrode group having a bag-shaped separator.
[0002]
[Prior art]
In a conventional liquid lead-acid battery, it has been confirmed that even when the electrolyte is agitated by gassing at the end of charging, a difference in the density of the electrolyte occurs between the upper and lower portions in the battery. The occurrence of this phenomenon causes an early life of the battery. This is because while the liquid-type lead-acid battery repeatedly charges and discharges, the electrolyte concentration locally becomes uneven on the electrode plate, and the repetition of this causes a difference in shading between the upper and lower parts in the battery. Then, in the lower part of the battery having a high electrolyte concentration, the positive electrode plate is remarkably converted to lead sulfate, causing early deterioration of the electrode plate. This phenomenon is remarkable when a bag-like separator that easily inhibits the stirring of the electrolytic solution is used (for example, see Patent Document 1).
[0003]
As a countermeasure, a positive electrode plate for gassing is put in a bag-like separator, or a method of not using a bag-like separator at all is used.
[0004]
[Patent Document 1]
JP-A-5-144430 [0005]
[Problems to be solved by the invention]
However, in these methods, the bag-like separator containing the positive electrode plate is oxidized and degraded by the positive electrode plate, or if no bag-like separator is used, the active material is likely to fall off during use of the battery, or it falls off. There has been a problem that a short circuit due to the active material is likely to occur.
[0006]
An object of the present invention is to provide a liquid-type lead-acid battery that can make it unlikely that the concentration difference of an electrolytic solution occurs.
[0007]
Another object of the present invention is to provide a liquid lead-acid battery that prevents early deterioration due to lead sulfate of the positive electrode plate and that is less likely to cause a short circuit during use of the battery.
[0008]
[Means for Solving the Problems]
The present invention is to improve a liquid-type lead storage battery in which an electrolyte is abundant inside and outside an electrode group having a bag-shaped separator.
[0009]
The liquid-type lead storage battery according to the present invention is characterized in that only the negative electrode plate is housed in the bag-like separator, and that the colloidal SiO 2 is present in the electrolyte.
[0010]
In this case, colloidal SiO 2 is 0.5 to 15 wt% abundance Whereas electrolyte mass in the electrolytic solution, and particularly preferably 2.0 to 15 mass%.
[0011]
The colloidal SiO 2 suppresses the movement of the electrolyte during charging / discharging of the liquid lead storage battery due to the viscosity of the colloidal SiO 2 , and does not cause a biased concentration difference. If the difference in the density of the electrolytic solution is less likely to occur, it is possible to prevent early deterioration of the positive electrode plate due to lead sulfate. In addition, since the bag-shaped separator is used, a short circuit is less likely to occur during use of the battery.
[0012]
Colloidal SiO 2 is 0.5 to 15 wt% relative abundance electrolyte mass in the electrolytic solution, and particularly preferably 2.0 to 15 mass%.
[0013]
When the presence of at colloidal SiO 2 electrolytic solution is from 0.5 to 15% by mass with respect to the electrolyte solution weight, the electrolyte does not fully gelled, it can be treated as an electrolyte. In particular, the abundance of at colloidal SiO 2 electrolytic solution is from 2.0 to 15% by mass with respect to the electrolyte solution weight, it is possible to prevent premature deterioration due to sulfuric acid lead content of the positive electrode plate effectively.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described together with comparative examples.
[0015]
(Comparative Example 1)
The liquid lead storage battery of Comparative Example 1 was manufactured as follows. First, a negative electrode plate was made. First, a lattice body having an alloy composition of Pb-0.08% Ca-0.8% Sn was prepared. Next, a lead powder, 13% by mass of dilute sulfuric acid (specific gravity: 1.26: 20 ° C.) with respect to the lead powder, and 12% by mass of water with respect to the lead powder are kneaded to prepare a negative electrode active material paste. Was. After 73.0 g of this negative electrode active material paste was filled in a lattice, it was left for 18 hours at a temperature of 50 ° C. and a humidity of 95% for aging, then left at a temperature of 25 ° C. and a humidity of 40% for 2 hours, and dried. To produce an unformed negative electrode plate.
[0016]
Next, a positive electrode plate was made. First, a lattice body having an alloy composition of Pb-1.6% Sb was prepared. Next, a positive electrode active material paste is prepared by kneading lead powder, 13% by mass of dilute sulfuric acid (specific gravity 1.26: 20 ° C.) with respect to the lead powder, and 12% by mass of water with respect to the lead powder. Was. 85.5 g of this positive electrode active material paste was filled in a grid placed on a flat surface from above, immersed in dilute sulfuric acid having a specific gravity of 1.060, and dried. After aging for 18 hours in a temperature of 50 ° C. and a humidity of 95%, the mixture was left in a temperature of 25 ° C. and a humidity of 40% for 2 hours and dried to form an unformed positive electrode plate.
[0017]
Next, the aforementioned unformed negative electrode plate was inserted into the bag-like separator. An electrode group was formed by laminating eight unformed negative electrode plates containing the bag-like separator, seven unformed positive electrode plates, and a mat made of glass fiber. A strap was formed on this electrode group by a cast-on strap method. Then, the electrode group having the strap formed therein was placed in a battery case, and an electrolytic solution was injected into the battery case to produce an unchemically formed lead-acid battery in which the electrolytic solution was abundant. The electrolyte is diluted sulfuric acid having a specific gravity of 1.200 (20 ° C.). Next, this non-chemical liquid lead storage battery was formed at 13 A for 21 hours to complete a liquid lead storage battery.
[0018]
(Embodiment 1)
In the first embodiment, Snowtex 40 (manufactured by Nissan Chemical Industries) is used as the electrolytic solution of Comparative Example 1, and the ratio of SiO 2 to the electrolytic solution is 0.5, 1.1, 2.0, 2.7, 5, 10, 15, and 20 mass. %, And the properties of the electrolytic solution were examined. At 0.5 to 15% by mass, the electrolyte did not completely gel, but at 20% by mass, the electrolyte completely gelled. For this reason, in order to be treated as an electrolytic solution, the ratio of SiO 2 to the electrolytic solution is preferably in the range of 0.5 to 15% by mass.
[0019]
[Table 1]
Figure 2004207003
(Embodiment 2)
In the second embodiment, Snowtex 40 (manufactured by Nissan Chemical Industries, Ltd.) is used as the electrolyte of Comparative Example 1, and the ratio of SiO 2 to the electrolyte is 0.5, 1.1, 2.0, 2.7, 5, 10, 15% by mass. To form an electrolytic solution in the same manner as in Comparative Example 1.
[0020]
A cycle of discharging (30 A-1 hour) and charging (24 A-upper limit voltage 14.8 V-2 hours) of the battery fabricated in Embodiment 2 and the battery fabricated in Comparative Example 1 were repeated at 40 ° C. Was. Further, the specific gravity of the electrolytic solution in the upper and lower portions of the battery was measured at 80 cycles.
[0021]
In FIG. 1, the difference in specific gravity between the upper and lower electrolytic solutions is smaller than that in Comparative Example 1 at any addition amount where the ratio of SiO 2 to the electrolytic solution is 0.5 to 15% by mass. Was done. In particular, when the ratio of SiO 2 to the electrolyte was in the range of 1.1 to 15% by mass, the effect of reducing the specific gravity difference between the upper and lower electrolytes was great.
[0022]
In addition, the amount of lead sulfate in the positive electrode plate active material in 80 cycles was measured at each of the positions above and below the electrode plate.
[0023]
In FIG. 2, when the ratio of SiO 2 to the electrolytic solution was in the range of 0.5 to 15% by mass, the effect was observed as compared with Comparative Example 1. In particular, the effect was large at 2.0 to 15% by mass. Premature deterioration due to lead sulfate can be effectively prevented.
[0024]
【The invention's effect】
In the liquid lead-acid battery according to the present invention, since the colloidal SiO 2 is present in the electrolytic solution, the amount of the electrolytic solution during charging / discharging of the liquid-type lead-acid battery depends on the viscosity of the colloidal SiO 2 . The movement can be suppressed so as not to cause a biased grayscale difference. If the difference in the density of the electrolytic solution is less likely to occur, it is possible to prevent early deterioration of the positive electrode plate due to lead sulfate. In addition, since the bag-shaped separator is used, a short circuit is less likely to occur during use of the battery.
[0025]
Further, when the abundance of at colloidal SiO 2 electrolytic solution is from 0.5 to 15% by mass with respect to the electrolyte solution weight, the electrolyte does not fully gelled, it can be treated as an electrolyte.
[0026]
In particular, the abundance of at colloidal SiO 2 electrolytic solution is from 2.0 to 15% by mass with respect to the electrolyte solution weight, it is possible to prevent premature deterioration due to sulfuric acid lead content of the positive electrode plate effectively.
[Brief description of the drawings]
FIG. 1 is a comparison diagram of the specific gravity of an electrolytic solution in the upper and lower portions of a battery.
FIG. 2 is a comparison diagram of the amount of lead sulfate in the positive electrode plate active material at each of the upper, middle, and lower positions of the electrode plate.

Claims (3)

袋状セパレータを有する極板群の内外に電解液が豊富に存在する液式鉛蓄電池であって、
前記袋状セパレータ中に負極板のみが収納されており、前記電解液中にコロイド状SiOが存在していることを特徴とする液式鉛蓄電池。
A liquid lead-acid battery in which an electrolyte is abundant inside and outside the electrode group having a bag-shaped separator,
A liquid lead-acid battery, wherein only the negative electrode plate is accommodated in the bag-like separator, and colloidal SiO 2 is present in the electrolytic solution.
前記コロイド状SiOは電解液中での存在量が電解液質量に対し0.5 〜15質量%であることを特徴とする請求項1に記載の液式鉛蓄電池。Liquid type lead-acid battery according to claim 1 wherein the colloidal SiO 2 is characterized in that abundance in the electrolytic solution is from 0.5 to 15% by mass with respect to the electrolyte solution weight. 前記コロイド状SiOは電解液中での存在量が電解液質量に対し特に2.0 〜15質量%であることを特徴とする請求項2に記載の液式鉛蓄電池。The colloidal SiO 2 is liquid-type lead-acid battery according to claim 2, wherein the abundance in the electrolytic solution is particularly 2.0 to 15 wt% with respect to the electrolyte solution weight.
JP2002373916A 2002-12-25 2002-12-25 Liquid type lead acid storage battery Pending JP2004207003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373916A JP2004207003A (en) 2002-12-25 2002-12-25 Liquid type lead acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373916A JP2004207003A (en) 2002-12-25 2002-12-25 Liquid type lead acid storage battery

Publications (1)

Publication Number Publication Date
JP2004207003A true JP2004207003A (en) 2004-07-22

Family

ID=32812082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373916A Pending JP2004207003A (en) 2002-12-25 2002-12-25 Liquid type lead acid storage battery

Country Status (1)

Country Link
JP (1) JP2004207003A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311051A (en) * 2007-06-14 2008-12-25 Gs Yuasa Corporation:Kk Lead storage battery
KR101470332B1 (en) * 2011-09-19 2014-12-09 주식회사 엘지화학 Functional Separator and Secondary Battery Comprising the Same
CN104466272A (en) * 2014-11-28 2015-03-25 长兴铁鹰电气有限公司 Granular silicon dioxide electrolyte and storage battery
CN104538680A (en) * 2015-01-17 2015-04-22 王帅 Preparation method for power battery gel electrolyte

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311051A (en) * 2007-06-14 2008-12-25 Gs Yuasa Corporation:Kk Lead storage battery
KR101470332B1 (en) * 2011-09-19 2014-12-09 주식회사 엘지화학 Functional Separator and Secondary Battery Comprising the Same
CN104466272A (en) * 2014-11-28 2015-03-25 长兴铁鹰电气有限公司 Granular silicon dioxide electrolyte and storage battery
CN104538680A (en) * 2015-01-17 2015-04-22 王帅 Preparation method for power battery gel electrolyte

Similar Documents

Publication Publication Date Title
JPH11250913A (en) Lead-acid battery
JP5532245B2 (en) Lead-acid battery and method for manufacturing the same
JP2008277244A (en) Lead-acid battery
JP2009187776A (en) Control valve type lead-acid storage battery
JP2005044759A (en) Lead-acid storage battery and manufacturing method of the same
JP2004207003A (en) Liquid type lead acid storage battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP4441934B2 (en) Method for producing lead-acid battery
JPH09289020A (en) Positive plate for lead-acid battery and its manufacture
JP4984430B2 (en) Method for producing paste active material for negative electrode
JP2004055309A (en) Manufacturing method of pasty active material for positive electrodes, and lead storage battery using it
JP4069743B2 (en) Lead acid battery
JP2773312B2 (en) Manufacturing method of positive electrode plate for lead-acid battery
JP5025317B2 (en) Lattice substrate for lead acid battery
JP4501246B2 (en) Control valve type stationary lead acid battery manufacturing method
JPH07147160A (en) Lead-acid battery
JP2005044703A (en) Manufacturing method of control valve type lead storage battery
JP5674246B2 (en) Lead acid battery and negative electrode plate thereof
JP3637797B2 (en) Lead acid battery
JPH07320728A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH0652654B2 (en) Lead acid battery electrode plate manufacturing method
JP2002270215A (en) Control valve type lead acid storage battery
JP2008091189A (en) Sealed lead acid storage battery
JPH07288128A (en) Activation method for sealed lead-acid battery
JP2002231233A (en) Control valve-type lead-acid battery