JP5674246B2 - Lead acid battery and negative electrode plate thereof - Google Patents

Lead acid battery and negative electrode plate thereof Download PDF

Info

Publication number
JP5674246B2
JP5674246B2 JP2011158102A JP2011158102A JP5674246B2 JP 5674246 B2 JP5674246 B2 JP 5674246B2 JP 2011158102 A JP2011158102 A JP 2011158102A JP 2011158102 A JP2011158102 A JP 2011158102A JP 5674246 B2 JP5674246 B2 JP 5674246B2
Authority
JP
Japan
Prior art keywords
sulfonic acid
lignin sulfonic
battery
lignin
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011158102A
Other languages
Japanese (ja)
Other versions
JP2013025942A (en
Inventor
小山 潔
潔 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2011158102A priority Critical patent/JP5674246B2/en
Publication of JP2013025942A publication Critical patent/JP2013025942A/en
Application granted granted Critical
Publication of JP5674246B2 publication Critical patent/JP5674246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は鉛蓄電池およびその負極板に関する。   The present invention relates to a lead storage battery and a negative electrode plate thereof.

鉛蓄電池の極板を化成する際に、予め電槽に極板を組み入れた後に電解液を、その電槽に注入、通電する電槽化成が鉛蓄電池の製造方法の主流になっている。さらに、この電槽化成の時間を短縮して同一設備で1日2回以上の電槽化成を行うことが、製造原価を低減する上で求められている。
その際には、その化成時間を短縮するためには、その化成効率を高めることが要求される。すなわち未化成極板の鉛化合物を正/負極の活物質に酸化/還元させる化学反応に消費される電気量の、通電される総電気量に対する比率を高めることが求められる。
When forming an electrode plate of a lead storage battery, a battery case formation in which an electrolytic solution is injected into the battery case and energized after the electrode plate is previously incorporated in the battery case has become the main method of manufacturing lead acid batteries. Further, it is required to reduce the manufacturing cost by shortening the battery formation time and performing the battery formation more than twice a day with the same equipment.
In that case, in order to shorten the formation time, it is required to increase the formation efficiency. That is, it is required to increase the ratio of the amount of electricity consumed in the chemical reaction for oxidizing / reducing the lead compound of the unformed electrode plate to the positive / negative electrode active material with respect to the total amount of electricity to be energized.

このために電槽化成する鉛蓄電池の電池の温度を、例えば60℃以上に上昇させることが有効である。しかし電槽化成中の電池温度を上昇させることには、特に負極板の放電性能を劣化させる側面があった。
すなわち、化成中の電池温度が60℃を超える電槽化成に付した鉛蓄電池の放電性能は、例えば50℃で、より長い時間の電槽化成に付した鉛蓄電池に比べ、特に−15℃での高率放電時間があきらかに短くなる。
これは、負極板の放電性能が劣化したことが原因である。特に、電槽化成中の電池温度の最高値が65℃を上まわると、この傾向が著しく現れる。
For this purpose, it is effective to raise the temperature of the lead-acid battery formed in the battery case to, for example, 60 ° C. or higher. However, raising the battery temperature during the formation of the battery case has a side face that particularly deteriorates the discharge performance of the negative electrode plate.
That is, the discharge performance of the lead storage battery subjected to battery case formation in which the battery temperature during formation exceeds 60 ° C. is, for example, 50 ° C., particularly at −15 ° C. compared to the lead storage battery subjected to battery case formation for a longer time. The high rate discharge time is clearly shortened.
This is due to the deterioration of the discharge performance of the negative electrode plate. In particular, when the maximum value of the battery temperature during battery case formation exceeds 65 ° C., this tendency appears remarkably.

そこで、電池の低温高率放電時間の延長、特に、60℃を超える高温で、化成処理を施した電池における低温高率放電時間の延長を実現させるには、負極へのリグニンスルフォン酸または、その塩の添加量を増加させることが有効であることが知られている。なお、リグニンスルフォン酸は複雑な構造を持つ高分子であり、その官能基の陽イオンがすべてプロトンであったり、逆にすべて金属塩に置換されることは現実的にはあり得ず、その製造条件によってプロトンと金属塩の混成比率が変化する。以下の本文ではリグニンスルフォン酸およびその塩を一括してリグニンスルフォン酸と呼ぶ。
60℃を超える高温で化成処理を施した電池における低温高率放電時間を延長する作用は、高温化成中に負極中のリグニンスルフォン酸の一部が溶出あるいは分解しても、なお負極中にリグニンスルフォン酸が多く残存するためである。
Therefore, in order to realize the extension of the low-temperature high-rate discharge time of the battery, in particular, the extension of the low-temperature high-rate discharge time in the battery subjected to the chemical conversion treatment at a high temperature exceeding 60 ° C., lignin sulfonic acid to the negative electrode or its It is known that increasing the amount of salt added is effective. In addition, lignin sulfonic acid is a polymer with a complex structure, and it is impossible for the cation of the functional group to be all protons, or conversely to be substituted with metal salts. The mixing ratio of proton and metal salt changes depending on the conditions. In the following text, lignin sulfonic acid and its salts are collectively referred to as lignin sulfonic acid.
The effect of extending the low-temperature, high-rate discharge time in a battery subjected to chemical conversion treatment at a high temperature exceeding 60 ° C. is that even if a part of lignin sulfonic acid in the negative electrode is eluted or decomposed during high-temperature chemical conversion, the lignin is still in the negative electrode. This is because a large amount of sulfonic acid remains.

しかしながら、一方でリグニンスルフォン酸の添加量増加は、低温で電池の充電受入電流を減少させるため、過剰なリグニンスルフォン酸の添加は電池性能総体を考えると不利である。   However, on the other hand, an increase in the amount of lignin sulfonic acid added decreases the charge acceptance current of the battery at a low temperature. Therefore, excessive addition of lignin sulfonic acid is disadvantageous in view of the overall battery performance.

さらに、製造工程を考えると、電槽化成中の電池温度の制御には、大きな水槽中で水温を調整することが製造設備の設計上最も簡単で、かつ大量生産に適するが、この方法では製造環境の季節変動その他の原因で、予期せず電池温度が所定値の上下に大幅に変動することがある。化成温度が所定の温度を大きく上回ると低温高率放電性能や充電受入性能が規格値を外れることも起こりうる。   Furthermore, considering the manufacturing process, adjusting the water temperature in a large aquarium is the simplest in terms of designing a manufacturing facility and is suitable for mass production. Due to seasonal changes in the environment and other reasons, the battery temperature may fluctuate significantly above and below a predetermined value unexpectedly. If the formation temperature greatly exceeds a predetermined temperature, the low-temperature high-rate discharge performance and the charge acceptance performance may deviate from the standard values.

従来、低温高率放電時間を延長させる負極添加剤として、リグニンスルフォン酸のナトリウム塩、カリウム塩、カルシウム塩などが採用されてきた(例えば、特許文献1、2など参照)。しかし、これらのリグニンスルフォン酸ではこれまで述べた高温化成時の問題を解決するためには不十分であり、負極添加剤として低温高率放電時間の延長に顕著な効果があり、かつ充電受入電流を減少させにくいリグニンスルフォン酸が期待されていた。   Conventionally, sodium salts, potassium salts, calcium salts, and the like of lignin sulfonic acid have been employed as negative electrode additives that extend the low-temperature, high-rate discharge time (see, for example, Patent Documents 1 and 2). However, these lignin sulfonic acids are insufficient to solve the problems at high temperature formation described so far, and as a negative electrode additive, there is a remarkable effect in extending the low temperature high rate discharge time, and the charge acceptance current Therefore, lignin sulfonic acid, which is difficult to reduce the amount, was expected.

特開2004−327108号公報JP 2004-327108 A 特開2003−51307号公報JP 2003-51307 A

本発明は、化成中の電池温度が高温、例えば75℃以上でも放電性能、特に低温高率放電時間の低下が少なく、かつ充電受入電流の減少が小さい負極板および鉛蓄電池を提供することを目的とする。   An object of the present invention is to provide a negative electrode plate and a lead-acid battery in which discharge performance, particularly low temperature and high rate discharge time, is small even when the battery temperature during chemical conversion is high, for example, 75 ° C. or more, and the decrease in charge acceptance current is small And

本発明の第1の発明は、酸化鉛粉末または酸化鉛と金属鉛との混合物の粉末を主成分とし、リグニンスルフォン酸を含む負極板において、前記リグニンスルフォン酸が、保持する官能基の酸性水溶液またはアルカリ性水溶液中で電離可能な陽イオン部分の91%以上がプロトンに置換されたリグニンスルフォン酸で、前記主成分たる酸化鉛粉末、又は酸化鉛と金属鉛との混合物の粉末、100部に対して、前記リグニンスルフォン酸を0.2部以上、0.6部以下含むことを特徴とする鉛蓄電池用負極板である The first aspect of the present invention, a powder of a mixture of lead oxide powder or lead oxide and metallic lead as the main component, in including a negative electrode plate lignin sulfonate, the lignin sulfonate is a functional group that holds 100 parts of lignin sulfonic acid in which 91% or more of the cationic part ionizable in an acidic aqueous solution or alkaline aqueous solution is substituted with protons, the lead oxide powder as the main component, or a powder of a mixture of lead oxide and metal lead, 100 parts In contrast, a negative electrode plate for a lead storage battery comprising 0.2 part or more and 0.6 part or less of the lignin sulfonic acid.

本発明の第の発明は、酸化鉛粉末または酸化鉛と金属鉛との混合物の粉末を主成分とし、リグニンスルフォン酸を含む負極板において、主成分たる酸化鉛粉末または酸化鉛と金属鉛との混合物の粉末100部に対して、リグニンスルフォン酸を0.2部以上、0.7部以下含み、このリグニンスルフォン酸の内、電離可能な陽イオン部分の91%以上がプロトンに置換されたリグニンスルフォン酸の添加量が0.2部以上、0.6部以下であり、残部が陽イオン部分の80.5%以上が金属イオンに置換されたリグニンスルフォン酸であることを特徴とする鉛蓄電池用負極板である。 According to a second aspect of the present invention, in a negative electrode plate containing lead oxide powder or a mixture of lead oxide and metal lead as a main component and containing lignin sulfonic acid, the lead oxide powder or lead oxide and metal lead as the main components 100 parts by weight of the mixture of lignin sulphonic acid was contained in an amount of 0.2 part or more and 0.7 part or less, and 91% or more of the ionizable cation part in the lignin sulphonic acid was substituted with protons. amount of lignin sulfonate 0.2 parts or more and less 0.6 parts shall be the the balance being lignin sulfonic acid or 80.5% was replaced by a metal ion of cationic moiety It is a negative electrode plate for lead acid batteries.

本発明の第の発明は、第1又は第2の発明のいずれかの負極板を用いた鉛蓄電池である。 A third invention of the present invention is a lead-acid battery using the negative electrode plate of either the first or second invention.

本発明によれば、鉛蓄電池の低温高率放電性能を劣化させずに比較的短時間の電槽化成を行うことが可能となり、工業上顕著な効果を奏するものである。   According to the present invention, it is possible to perform battery case formation in a relatively short time without degrading the low-temperature high-rate discharge performance of the lead-acid battery, and there is an industrially remarkable effect.

実施例において実験に供したサンプル電池(44B20型)の構造と、化成時のセル温度の測定方法を示す平面図である。It is a top view which shows the structure of the sample battery (44B20 type) used for experiment in the Example, and the measuring method of the cell temperature at the time of chemical formation. 実験1のサンプル電池のリグニンスルフォン酸添加量と低温高率放電時間の関係を示す図である。It is a figure which shows the relationship between the amount of lignin sulfonic acid addition of the sample battery of Experiment 1, and low temperature high rate discharge time. 実験1のサンプル電池のリグニンスルフォン酸添加量と充電受入電流の関係を示す図である。It is a figure which shows the relationship between the amount of lignin sulfonic acid addition of the sample battery of Experiment 1, and a charge acceptance current. 実験2のサンプル電池のリグニンスルフォン酸添加量と低温高率放電時間の関係を示す図である。It is a figure which shows the relationship between the amount of lignin sulfonic acid addition of the sample battery of Experiment 2, and low temperature high rate discharge time. 実験2のサンプル電池のリグニンスルフォン酸添加量と充電受入電流の関係を示す図である。It is a figure which shows the relationship between the amount of lignin sulfonic acid addition of the sample battery of Experiment 2, and charge acceptance current. 実験3のサンプル電池に添加したリグニンスルフォン酸のNa置換率と低温高率放電時間の関係を示す図である。It is a figure which shows the relationship between Na substitution rate of the lignin sulfonic acid added to the sample battery of Experiment 3, and low temperature high rate discharge time. 実験3のサンプル電池に添加したリグニンスルフォン酸のNa置換率と充電受入電流の関係を示す図である。It is a figure which shows the relationship between Na substitution rate of the lignin sulfonic acid added to the sample battery of Experiment 3, and charge acceptance electric current. 実験3の低温高率放電試験後のサンプル電池を解体し、各サンプルの負極活物質中のリグニンスルフォン酸の残存量と添加したリグニンスルフォン酸のNa置換率との関係を示す図である。It is a figure which disassembles the sample battery after the low-temperature, high-rate discharge test of Experiment 3, and shows the relationship between the residual amount of lignin sulfonic acid in the negative electrode active material of each sample and the Na substitution rate of the added lignin sulfonic acid. 実験4のサンプル電池のリグニンスルフォン酸の総添加量と低温高率放電時間の関係を示す図である。It is a figure which shows the relationship between the total addition amount of lignin sulfonic acid of the sample battery of Experiment 4, and low-temperature high-rate discharge time. 実験4のサンプル電池のリグニンスルフォン酸の総添加量と充電受入電流の関係を示す図である(D_0〜D_3系列)。It is a figure which shows the relationship between the total addition amount of lignin sulfonic acid of the sample battery of Experiment 4, and a charge acceptance electric current (D_0-D_3 series). 実験4のサンプル電池のリグニンスルフォン酸の総添加量と充電受入電流の関係を示す図である(D_4〜D_6系列)。It is a figure which shows the relationship between the total addition amount of lignin sulfonic acid of the sample battery of Experiment 4, and charge acceptance current (D_4-D_6 series).

本発明は、酸化鉛粉末または酸化鉛と金属鉛との混合物の粉末(以下、鉛粉と呼ぶ)を主成分とし、それにリグニンスルフォン酸を添加して作られる鉛蓄電池用負極板と、その負極板を用いた鉛蓄電池において、添加するリグニンスルフォン酸の一部または全部が、その保持する官能基の酸またはアルカリ性水溶液中で電離可能な陽イオン部分の大部分がプロトンに置換されたリグニンスルフォン酸であることを特徴とするものである。   The present invention relates to a negative electrode plate for a lead storage battery, the main component of which is a lead oxide powder or a powder of a mixture of lead oxide and metal lead (hereinafter referred to as lead powder), to which lignin sulfonic acid is added, and its negative electrode In a lead-acid battery using a plate, a part or all of the lignin sulfonic acid to be added is a lignin sulfonic acid in which most of the cation portion that can be ionized in an acid or alkaline aqueous solution of the functional group is substituted with protons. It is characterized by being.

より好ましくは、そのリグニンスルフォン酸の一部または全部が、陽イオン部分の91%以上がプロトンに置換されたリグニンスルフォン酸であることを特徴とするものである。
さらに、この鉛蓄電池用負極板及び鉛蓄電池における主成分たる鉛粉100部に対して、陽イオン部分の91%以上がプロトンに置換されたリグニンスルフォン酸を0.2部、以上0.6部以下含み、かつ陽イオン部分の91%以上がプロトンに置換されたリグニンスルフォン酸と、陽イオン部分の大部分が金属イオンに置換されたリグニンスルフォン酸との合計の添加量が0.2部以上、0.7部以下であることを特徴とするものである。
More preferably, a part or all of the lignin sulfonic acid is lignin sulfonic acid in which 91% or more of the cation portion is substituted with protons.
Furthermore, with respect to 100 parts of lead powder as a main component in the negative electrode plate for lead acid battery and lead acid battery, 0.2 part of lignin sulfonic acid in which 91% or more of the cation part is substituted with protons, 0.6 part or more The total addition amount of lignin sulfonic acid, which includes the following and 91% or more of the cation portion is replaced with protons, and lignin sulfonic acid whose most cation portion is replaced with metal ions is 0.2 parts or more , 0.7 parts or less.

先ず、リグニンスルフォン酸が保持する官能基の酸またはアルカリ性水溶液中で電離可能な陽イオンの量の測定方法を説明する。
一般に市販されているリグニンスルフォン酸の保持する官能基の電離可能部分はプロトン、またはナトリウム、カリウム、カルシウムなどの金属イオンで占められている。
そこで、次に示す方法を用いて、リグニンスルフォン酸の保持する官能基の電離可能部分の金属イオン比率を測定する。
First, a method for measuring the amount of a cation that can be ionized in an acid or alkaline aqueous solution of a functional group held by lignin sulfonic acid will be described.
Generally, the ionizable portion of the functional group held by commercially available lignin sulfonic acid is occupied by protons or metal ions such as sodium, potassium and calcium.
Therefore, the metal ion ratio of the ionizable portion of the functional group held by lignin sulfonic acid is measured using the following method.

試料とするリグニンスルフォン酸を充分な量の、液温85℃、12規定の硫酸水溶液中に8時間さらした後に沈殿物を水洗、乾燥する。   The sample is exposed to a sufficient amount of lignin sulfonic acid in a 12N sulfuric acid aqueous solution at a liquid temperature of 85 ° C. for 8 hours, and then the precipitate is washed with water and dried.

ついで、ビーカー内に上記硫酸処理済のリグニンスルフォン酸10.0gをイオン交換水に分散させて体積100mlの水溶液Aとし、50℃の水槽内で保温、攪拌しながら、これに毎分2ml以下の速さで4規定の水酸化ナトリウム水溶液を滴下する。その水溶液AのpHをpH計で測定し、pHが14に達した時点の滴下した水酸化ナトリウムのモル数Mと、その時点の水溶液Aの体積とpHとから算出される水酸イオン[OH]のモル数mとを基に、リグニンスルフォン酸100g中の電離可能な最大陽イオン量F(モル/g)を、下記(1)式によって算出する。 Next, 10.0 g of the above-treated sulfuric acid-treated lignin sulfonic acid was dispersed in ion-exchanged water in a beaker to make an aqueous solution A having a volume of 100 ml, and kept at 50 ° C. in a water bath while stirring and stirring at 2 ml or less per minute. A 4N aqueous sodium hydroxide solution is added dropwise at a speed. The pH of the aqueous solution A was measured with a pH meter, and the hydroxide ion [OH calculated from the number M of sodium hydroxide dropped when the pH reached 14 and the volume and pH of the aqueous solution A at that time. Based on the number of moles of-], the maximum ionizable F amount (mol / g) in 100 g of lignin sulfonic acid is calculated by the following formula (1).

Figure 0005674246
Figure 0005674246

求めた電離可能な最大陽イオン量は、試料とするリグニンスルフォン酸100g当たりで表され、試料とするリグニンスルフォン酸の酸またはアルカリ性水溶液中で電離可能な官能基の陽イオン部分の最大のモル量を表す。
なお、この官能基は主としてスルフォン基であるが、他に高分子に付加するカルボキシル基などもこれに相当すると考えられる。
The obtained maximum ionizable ion amount is expressed per 100 g of sample lignin sulfonic acid, and the maximum molar amount of the cation portion of the functional group ionizable in the acid or alkaline aqueous solution of sample lignin sulfonic acid. Represents.
This functional group is mainly a sulfone group, but other carboxyl groups added to the polymer are also considered to correspond to this.

次にビーカー内に、試料とするリグニンスルフォン酸10.0gをイオン交換水に分散させて体積100mlの水溶液A’とし、段落0020に記す方法で測定し、pHが14に達した時点の滴下した水酸化ナトリウムのモル数M’と、水溶液A’の体積とpHとから算出される水酸イオンOHのモル数m’とを基に、リグニンスルフォン酸100g中の、水酸イオンと反応可能な陽イオン量F’(モル/g)を下記(2)式により算出する。 Next, 10.0 g of lignin sulfonic acid as a sample was dispersed in ion-exchanged water in a beaker to obtain an aqueous solution A ′ having a volume of 100 ml, measured by the method described in paragraph 0020, and dropped when the pH reached 14. Based on the number of moles M ′ of sodium hydroxide and the number of moles m ′ of the hydroxide ion OH calculated from the volume and pH of the aqueous solution A ′, it can react with the hydroxide ions in 100 g of lignin sulfonic acid. The amount of positive cation F ′ (mol / g) is calculated by the following equation (2).

Figure 0005674246
Figure 0005674246

次に、以下の式(3)で数値Kを求める。   Next, the numerical value K is calculated | required by the following formula | equation (3).

Figure 0005674246
Figure 0005674246

これが、試料とするリグニンスルフォン酸の官能基のNa置換率(%)である。
試料であるリグニンスルフォン酸の官能基には金属イオンとしてNa以外にK,Ca2+,Mg2+なども置換されるが、それらも含めてすべてNaとして計算する。
以下の説明では、リグニンスルフォン酸の官能基の状態を、このNa置換率で表す。すなわち、保持する官能基の酸性水溶液またはアルカリ性水溶液中で電離可能な陽イオン部分がすべてプロトンに置換されたリグニンスルフォン酸では、Na置換率は0%であり、陽イオン部分がすべて金属イオンに置換されたリグニンスルフォン酸では、Na置換率は100%となる。
This is the Na substitution rate (%) of the functional group of the lignin sulfonic acid used as a sample.
The functional group of the sample lignin sulfonic acid is substituted with K + , Ca 2+ , Mg 2+, etc. in addition to Na + as metal ions, but all of them are calculated as Na + .
In the following description, the state of the functional group of lignin sulfonic acid is represented by this Na substitution rate. In other words, in lignin sulfonic acid in which all of the cation portion that can be ionized in an acidic aqueous solution or an alkaline aqueous solution of the functional group to be retained is replaced with protons, the Na substitution rate is 0%, and all the cation portions are replaced with metal ions. In the obtained lignin sulfonic acid, the Na substitution rate is 100%.

以下、実施例を用いて本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[実験1]
公称容量30Ah(5時間率)の電池44B20を、表1に掲げる負極板を使用して組み立てた。この電池の構造は図1のとおりである。
用いた負極板の活物質量は、セル当たり254g、その見かけ密度は3.65g/cm、正極板の活物質量は、セル当たり270g、その見かけ密度は3.35g/cmである。なお負極活物質には、主成分たる鉛粉100部に対して、表1に示すリグニンスルフォン酸の他にアセチレンブラック0.2部、硫酸バリウム1部を添加した。極板の格子体は、Pb−Ca−Sn合金を使用した。
[Experiment 1]
A battery 44B20 having a nominal capacity of 30 Ah (5-hour rate) was assembled using the negative electrode plate listed in Table 1. The structure of this battery is as shown in FIG.
The active material amount of the negative electrode plate used is 254 g per cell, its apparent density is 3.65 g / cm 3 , the active material amount of the positive electrode plate is 270 g per cell, and its apparent density is 3.35 g / cm 3 . In addition to the lignin sulfonic acid shown in Table 1, 0.2 parts of acetylene black and 1 part of barium sulfate were added to 100 parts of lead powder as a main component. A Pb—Ca—Sn alloy was used for the grid of the electrode plate.

表1中のリグニンXは、サルファイト法で製造した市販のリグニンスルフォン酸(I)を、その電離可能な陽イオン部分をプロトンに置換する処理を、液温50℃、12規定の硫酸水溶液にて2時間施したリグニンスルフォン酸である。
リグニンYは、何の処理も施さないリグニンスルフォン酸(I)そのものである。
なお、これらリグニンのNa置換率は、リグニンXで概ね0.6%(即ちプロトンが99.4%)、リグニンYで概ね80.5%(同19.5%)であった。
The lignin X in Table 1 is a process of substituting a commercially available lignin sulfonic acid (I) produced by the sulfite method with protons for its ionizable cation part to a 12N sulfuric acid aqueous solution at a liquid temperature of 50 ° C. Lignin sulfonic acid applied for 2 hours.
Lignin Y is lignin sulfonic acid (I) itself without any treatment.
The lignin Na substitution rate was approximately 0.6% for lignin X (that is, proton was 99.4%) and approximately 80.5% for lignin Y (19.5%).

原料となる鉛粉100部に対してそれぞれのリグニンスルフォン酸を、表1に示すように添加して作製した未化成負極板を用いて、未化成電池を作製した。表1に未化成電池と、リグニンスルフォン酸の添加量、および化成温度との関係を合わせて示す。各電池は複数個ずつ製作した。
なおX75(75℃化成)系列、X50(50℃化成)系列の電池が本発明の電池であり、Y75、Y50系列の電池がそれぞれの比較例である。
An unformed battery was prepared using an unformed negative electrode plate prepared by adding each lignin sulfonic acid to 100 parts of lead powder as a raw material as shown in Table 1. Table 1 shows the relationship between the unformed battery, the amount of lignin sulfonic acid added, and the formation temperature. A plurality of batteries were manufactured.
The X 75 (75 ° C. conversion) series and X 50 (50 ° C. conversion) series batteries are the batteries of the present invention, and the Y 75 and Y 50 series batteries are comparative examples.

Figure 0005674246
Figure 0005674246

表1に示すX75系列、Y75系列の未化成電池を水槽中で8時間の電槽化成に付した。充電電流は19Aであり、電槽化成中の電池の中央セルの最高温度が75〜77℃の範囲になるように水槽温度を調整した。なお中央セルの温度は図1のように、その極群上方の電解液に熱電対を挿しいれて測定した。 X75 series and Y75 series non-formed batteries shown in Table 1 were subjected to battery formation for 8 hours in a water tank. The charging current was 19 A, and the water tank temperature was adjusted so that the maximum temperature of the central cell of the battery during battery case formation was in the range of 75 to 77 ° C. The temperature of the central cell was measured by inserting a thermocouple into the electrolyte above the pole group as shown in FIG.

次にこれらX75系列、Y75系列の化成済み電池を、JIS D5301による低温高率放電試験に付した。
その結果を図2に記す。なおそれぞれのサンプル電池の低温高率放電時間は、サンプル電池Y75(1)の放電時間を100として、他の電池の放電時間を電池Y75(1)との比で表した。
Then the chemical batteries of X 75 series, Y 75 series were subjected to low-temperature high-rate discharge test according to JIS D5301.
The result is shown in FIG. Note the low temperature high rate discharge time for each sample cell, the sample cell Y 75 discharge time (1) as 100, represents the discharge time of the other batteries in the ratio of the battery Y 75 (1).

次にX50系列、Y50系列の未化成電池を水槽中で8時間の電槽化成に付した。充電電流は19Aであり、電槽化成中の電池の中央セル(第3、4セル)の最高温度が50〜53℃の範囲になるよう水槽温度を調整した。 Then X 50 series, denoted by the unformed cell Y 50 series the battery jar conversion of 8 hours in a water bath. The charging current was 19 A, and the water bath temperature was adjusted so that the maximum temperature of the central cell (third and fourth cells) of the battery during battery case formation was in the range of 50 to 53 ° C.

これらX50系列、Y50系列の化成済み電池を、JIS D5301による低温高率放電試験に付した。
その結果を図2に記す。
These X 50 series and Y 50 series formed batteries were subjected to a low temperature high rate discharge test according to JIS D5301.
The result is shown in FIG.

図2の結果より、いずれの系列のサンプル電池もリグニン添加量を増加させるに従い低温高率放電時間が延長したが、50℃化成ではリグニンYを添加したY50系列の電池の方がリグニンXを添加したX50系列のサンプル電池よりも放電時間が若干長かった。
一方、75℃化成を施したX75系列とY75系列との電池を比較すると、X75系列電池の低温高率放電時間がY75系列電池のそれを上まわり、特にリグニンXを0.2部以上添加(X75(2)〜X75(12))にすると、その添加量に従い放電時間が顕著に延びた。一方リグニンYでは0.3部以上添加(Y75(3)〜Y75(12))すると、その添加量に対して、ほぼ線形に放電時間が延びたが、その増加の程度はリグニンX添加電池ほど大きくなかった。
From the results shown in FIG. 2, the low temperature high rate discharge time was extended as the amount of lignin added was increased in any of the series of sample batteries. However, in the 50 ° C. conversion, the Y 50 series batteries to which lignin Y was added had lignin X added. The discharge time was slightly longer than that of the added X50 series sample batteries.
On the other hand, when comparing the cell with X 75 sequence and Y 75 series having been subjected to 75 ° C. Kasei, X 75 series low temperature high rate discharge it over around the time Y 75 series battery cell, in particular a lignin X 0.2 When more than one part was added (X 75 (2) to X 75 (12)), the discharge time significantly increased according to the amount added. Meanwhile adding lignin Y in 0.3 parts or more (Y 75 (3) ~Y 75 (12)) Then, with respect to the amount added, but the discharge time is extended substantially linearly, the extent of the increase added lignin X It was not as big as the battery.

次に、各系列の化成済みサンプル電池を、JIS D5301による充電受入試験2に付した。
その結果を図3に記す。
Next, each series of formed sample batteries was subjected to a charge acceptance test 2 according to JIS D5301.
The results are shown in FIG.

図3の結果より、いずれの系列の電池でもリグニンスルフォン酸量の増加に伴い充電受入電流が減少したが、添加量が0.6部以下では化成温度にかかわらずX75系列とY75系列との間、あるいはX50系列とY50系列との間に、充電受入電流の値の大きな差異はなく、一方、化成温度の違いによる充電電流値の差が見られ、50℃化成電池の充電受入電流値の方が大きかった。
さらに添加量が0.8部以上では、化成温度による電流値の差異も小さくなり、リグニンスルフォン酸のNa置換率と化成温度との違いにかかわらず各系列のサンプル電池の充電受入電流の大きさに差はなかった。
From the results of FIG. 3, but any sequence of charge acceptance current with increasing lignin sulfonic acid amount in the battery is reduced, the amount is in the following 0.6 parts of X 75 series and Y 75 sequence regardless conversion temperature during or between the X 50 series and Y 50 series, rather than a large difference in the value of the charge acceptance current, whereas, seen the difference in charging current value due to the difference of the chemical conversion temperature, the charge acceptance of 50 ° C. Chemical batteries The current value was larger.
Furthermore, when the addition amount is 0.8 parts or more, the difference in current value due to the conversion temperature is also small, and the magnitude of the charge acceptance current of each series of sample batteries regardless of the difference between the Na substitution rate of lignin sulfonic acid and the conversion temperature. There was no difference.

実験1より本発明の請求項1に基づく負極板を使用した鉛蓄電池は、50℃程度の化成温度ではその効果を発揮しないが、75℃という高温化成を施した場合では、その保持する官能基の水溶液中で電離可能な陽イオン部分の大部分がNaに置換されたリグニンスルフォン酸を添加した負極板を用いた電池に比較して、低温高率放電時間の点で優れることがわかる。 From Experiment 1, the lead-acid battery using the negative electrode plate according to claim 1 of the present invention does not exhibit its effect at a chemical conversion temperature of about 50 ° C., but it retains its functional group when subjected to high temperature conversion of 75 ° C. It can be seen that this is superior in terms of low-temperature and high-rate discharge time as compared with a battery using a negative electrode plate to which lignin sulfonic acid in which most of the cation portion that can be ionized in an aqueous solution is added with Na + is added.

特に、リグニオンスルフォン酸の0.2部以上の添加により、低温高率放電時間が従来例に比較して顕著に延長することがわかる。
一方、本発明の電池の充電受入電流は、比較例の電池と比較しても減少しないことがわかる。
In particular, it can be seen that the addition of 0.2 part or more of ligion sulfonic acid significantly extends the low-temperature, high-rate discharge time compared to the conventional example.
On the other hand, it can be seen that the charge acceptance current of the battery of the present invention does not decrease even when compared with the battery of the comparative example.

[実験2]
次に、実験1と同じ電池構成の電池を表2に掲げる負極板を使用して組み立てた。
表2中のリグニンVは、クラフト法により製造された市販のリグニンスルフォン酸(II)を、その電離可能な陽イオン部分をプロトンに置換する処理を、液温50℃、12規定の硫酸水溶液にて2時間施したリグニンスルフォン酸である。
リグニンWは、何の処理も施さないリグニンスルフォン酸(II)そのものである。
なお、これらリグニンスルフォン酸のNa置換率は、リグニンVで概ね0.3%(即ちプロトンが99.7%)、リグニンWで概ね78.5%(同21.5%)であった。
[Experiment 2]
Next, a battery having the same battery configuration as in Experiment 1 was assembled using the negative electrode plate listed in Table 2.
The lignin V in Table 2 is a process of substituting a commercially available lignin sulfonic acid (II) produced by the Kraft method with protons for its ionizable cation portion to a 12N sulfuric acid aqueous solution at a liquid temperature of 50 ° C. Lignin sulfonic acid applied for 2 hours.
Lignin W is lignin sulfonic acid (II) itself which is not subjected to any treatment.
The lignin sulfonic acid had a Na substitution rate of approximately 0.3% for lignin V (that is, 99.7% protons) and approximately 78.5% (21.5% for lignin W).

負極主原料100部に対して、それぞれのリグニンスルフォン酸を表2に示すように添加して作製した未化成負極板を用いて、未化成電池を作製した。表2に未化成電池と、リグニンスルフォン酸の添加量、および化成温度との関係を合わせて示す。各電池は複数個ずつ製作した。
なおV75、V50系列の電池が本発明の電池であり、W75、W50系列の電池が比較例である。
An unformed battery was prepared using an unformed anode plate prepared by adding each lignin sulfonic acid as shown in Table 2 to 100 parts of the anode main raw material. Table 2 also shows the relationship between the unformed battery, the amount of lignin sulfonic acid added, and the formation temperature. A plurality of batteries were manufactured.
Note that the V 75 and V 50 series batteries are the batteries of the present invention, and the W 75 and W 50 series batteries are comparative examples.

Figure 0005674246
Figure 0005674246

表2に示すV75系列、W75系列の未化成電池を水槽中で8時間の電槽化成に付した。充電電流は19Aであり、電槽化成中の電池の中央セル(第3、4セル)の最高温度が75〜77℃の範囲になるように水槽温度を調整した。 The V 75 series and W 75 series unformed batteries shown in Table 2 were subjected to battery formation for 8 hours in a water tank. The charging current was 19 A, and the water bath temperature was adjusted so that the maximum temperature of the central cells (third and fourth cells) of the battery during battery case formation was in the range of 75 to 77 ° C.

次に、これらV75列、W75列の化成済み電池を、JIS D5301による低温高率放電試験に付した。
その結果を図4に記す。なお低温高率放電時間は、実験1の場合と同様にサンプル電池Y75(1)の放電時間を100として、それぞれの電池の放電時間を電池Y75(1)との比で表している。
Next, these V 75 row and W 75 row formed batteries were subjected to a low-temperature high-rate discharge test according to JIS D5301.
The results are shown in FIG. The low-temperature high-rate discharge time is represented by the ratio of the discharge time of each battery to the battery Y 75 (1), where 100 is the discharge time of the sample battery Y 75 (1), as in Experiment 1.

次に、V50系列、W50系列の未化成電池を、水槽中で8時間の電槽化成に付した。充電電流は19Aであり、電槽化成中の電池の中央セル(第3、4セル)の最高温度が50〜53℃の範囲になるように水槽温度を調整した。
これらV50系列、W50系列の化成済み電池を、JIS D5301による低温高率放電試験に付した。
その結果を図4に記す。
Next, V 50 series, the unformed cell W 50 series were subjected to battery container conversion of 8 hours in a water bath. The charging current was 19 A, and the water tank temperature was adjusted so that the maximum temperature of the central cell (third and fourth cells) of the battery during battery case formation was in the range of 50 to 53 ° C.
These V 50 series and W 50 series formed batteries were subjected to a low-temperature high-rate discharge test according to JIS D5301.
The results are shown in FIG.

図4から明らかなように、いずれの系列のサンプル電池もリグニンスルフォン酸添加量を増加させるに従い放電時間が延長したが、50℃化成ではリグニンWを添加したW50系列の電池の方が、リグニンVを添加したV50系列のサンプル電池よりも放電時間が長かった。
一方、75℃化成を施したV75系列とW75系列の電池との比較では、リグニンVを0.2部以上添加(V75(2)〜V75(12))した場合、その添加量に従い放電時間が顕著に延びている。またリグニンWでは、0.3部以上、1.0部以下の範囲で添加(W75(3)〜W75(10))した場合、その添加量に対して、ほぼ線形に放電時間が延びたが、その増加の程度はリグニンV添加電池ほど大きくなかった。
As is clear from FIG. 4, the discharge time of each sample battery increased as the amount of lignin sulfonic acid added increased. However, in the case of 50 ° C. conversion, the W 50 series battery added with lignin W was more lignin. discharge time than the sample cell of V 50 series was added V is longer.
On the other hand, in the comparison between the V 75 series battery subjected to 75 ° C. conversion and the W 75 series battery, when 0.2 parts or more of lignin V is added (V 75 (2) to V 75 (12)), the addition amount Accordingly, the discharge time is remarkably extended. In addition, when lignin W is added in the range of 0.3 part or more and 1.0 part or less (W 75 (3) to W 75 (10)), the discharge time extends almost linearly with respect to the addition amount. However, the degree of increase was not as great as that of the lignin V-added battery.

次に、各系列の化成済みサンプル電池を、JIS D5301による充電受入試験2に付した。その結果を図5に記す。
図5から明らかなように、いずれの系列の電池でもリグニンスルフォン酸量の増加に伴い充電受入電流が減少したが、それぞれの化成温度で、リグニンVを添加した電池の充電受入電流値はリグニンWのものよりも大きいか、ほぼ同等であった。
Next, each series of formed sample batteries was subjected to a charge acceptance test 2 according to JIS D5301. The results are shown in FIG.
As is clear from FIG. 5, the charge acceptance current decreased with the increase in the amount of lignin sulfonic acid in any series of batteries, but the charge acceptance current value of the battery to which lignin V was added at each conversion temperature was lignin W. It was bigger than or almost equal to

以上のように、実験2においても実験1と同様に、本発明の請求項1に基づく負極板を使用した鉛蓄電池は、50℃程度の化成温度ではその効果を発揮しないが、75℃という高温化成を施した場合では、比較例に対して低温高率放電時間の点で優れ、かつリグニンスルフォン酸の添加量に伴う放電時間の増加の程度がより大きいことがわかる。
一方、本発明の負極板を使用した電池の充電受入電流は、従来の電池と比較しても減少していないことは明らかである。
As described above, in Experiment 2, as in Experiment 1, the lead-acid battery using the negative electrode plate according to claim 1 of the present invention does not exhibit its effect at a chemical conversion temperature of about 50 ° C., but is as high as 75 ° C. It can be seen that the chemical conversion is superior to the comparative example in terms of low-temperature high-rate discharge time, and the degree of increase in discharge time accompanying the amount of lignin sulfonic acid added is greater.
On the other hand, it is clear that the charge acceptance current of the battery using the negative electrode plate of the present invention does not decrease even when compared with the conventional battery.

以上の実験1、2より、リグニンスルフォン酸の種類にかかわらず、本発明、すなわちその保持する官能基の水溶液中で電離可能な陽イオン部分の大部分がプロトンに置換されたリグニンスルフォン酸を添加した負極板を用いた鉛蓄電池は、充電受入性能を低下させることなく、かつ75℃程度の高温で化成を施した場合に従来の電池よりも低温高率放電性能を大幅に向上させることがわかる。   From the above experiments 1 and 2, regardless of the type of lignin sulfonic acid, the present invention, that is, the addition of lignin sulfonic acid in which most of the cationic part ionizable in the aqueous solution of the functional group held therein is substituted with protons is added. The lead-acid battery using the negative electrode plate shows a significant improvement in low-temperature, high-rate discharge performance over conventional batteries when it is formed at a high temperature of about 75 ° C. without deteriorating the charge acceptance performance. .

[実験3]
次に、実験1と同じリグニンスルフォン酸(I)を、硫酸水溶液で処理する際に、その水溶液のpHを調整することでNa置換率を変えたリグニンスルフォン酸を表3に示すように準備した。
これらのリグニンスルフォン酸を、負極の主原料100部に対して0.3部添加した負極板を用いて未化成電池を作製した。表3にA系列として示す。
またリグニンスルフォン酸の添加量を0.6部とした以外は、A系列の負極板と同じ作製条件で負極板を製作して、未化成電池を作製した。表3にB系列として示す。
[Experiment 3]
Next, when the same lignin sulfonic acid (I) as in Experiment 1 was treated with an aqueous sulfuric acid solution, the lignin sulfonic acid with the Na substitution rate changed by adjusting the pH of the aqueous solution was prepared as shown in Table 3. .
A non-chemical cell was produced using a negative electrode plate in which 0.3 part of these lignin sulfonic acids was added to 100 parts of the main raw material of the negative electrode. Table 3 shows the A series.
A non-chemical battery was produced by producing a negative electrode plate under the same production conditions as those of the A-series negative electrode plate except that the amount of lignin sulfonic acid added was 0.6 part. Table 3 shows the B series.

Figure 0005674246
Figure 0005674246

次に、これらの未化成電池を、最高温度75〜77℃で電槽化成した。その化成電流値と通電時間は実験1と同じである。
次に、これらA、B系列の各電池を、JIS D5301による低温高率放電試験に付した。
その結果を図6に記す。なおそれぞれの電池の低温高率放電時間は、実験1の電池Y75(1)の放電時間を100として、この値との比で表している。
Next, these non-chemical cells were formed into a battery case at a maximum temperature of 75 to 77 ° C. The formation current value and energization time are the same as in Experiment 1.
Next, each of these A and B series batteries was subjected to a low-temperature high-rate discharge test according to JIS D5301.
The result is shown in FIG. The low-temperature high-rate discharge time of each battery is expressed as a ratio to this value, assuming that the discharge time of the battery Y 75 (1) of Experiment 1 is 100.

図6から明らかなように、A系列のサンプル電池において、Na置換率が9%以下の場合(A1〜A4)は、良好な低温高率放電時間を示したが、Na置換率が9%と22.3%との間で電池の放電時間が急に減少し、22.3%以上ではほぼ同じ放電時間を示した。
一方、B系列のサンプル電池では、Na置換率が同じく9%以下の場合(B1〜B4)に良好な低温高率放電時間を示したが、Na置換率が9%と38.5%との間で電池の放電時間が急に減少し、38.5%以上ではほぼ同じ放電時間を示した。
即ち,低温高率放電時間を延長させるリグニンスルフォン酸の効果は、そのNa置換率が9%以下(プロトンが91%以上)の場合に顕著であると言え、一方9%を超えるとその添加量にかかわらず放電時間への効果が小さくなることがわかる。
As is clear from FIG. 6, in the A-series sample batteries, when the Na substitution rate was 9% or less (A1 to A4), good low-temperature high-rate discharge time was shown, but the Na substitution rate was 9%. The discharge time of the battery suddenly decreased between 22.3% and almost the same discharge time was exhibited at 22.3% or more.
On the other hand, the B-series sample batteries showed good low-temperature high-rate discharge times when the Na substitution rate was also 9% or less (B1 to B4), but the Na substitution rate was 9% and 38.5%. The discharge time of the battery decreased abruptly, and almost the same discharge time was exhibited at 38.5% or more.
In other words, the effect of lignin sulfonic acid that prolongs the low-temperature high-rate discharge time is remarkable when the Na substitution rate is 9% or less (proton is 91% or more). It can be seen that the effect on the discharge time is small regardless.

次に、A、B系列の化成済み電池を、JIS D5301による充電受入試験2に付した。その結果を図7に記す。
図7から明らかなように、A、B系列のいずれのサンプル電池でも、その充電受入電流は添加するリグニンスルフォン酸のNa置換率に拘らずほぼ一定で、この機種の電池のJIS D5301表1(2006年版)に記載される充電受入電流の規格値4.0Aを充分に上回った。
Next, the A and B series formed batteries were subjected to a charge acceptance test 2 according to JIS D5301. The result is shown in FIG.
As is clear from FIG. 7, the charge acceptance current is almost constant regardless of the Na substitution rate of the lignin sulfonic acid to be added in any of the A and B series sample batteries, and JIS D 5301 Table 1 ( The standard value of the charge acceptance current described in the 2006 edition) was sufficiently higher than 4.0A.

このように、Na置換率が9%以下のリグニンスルフォン酸を添加した本発明の負極板を使用した電池は、75℃程度の高温で化成されても、著しく良好な低温高率放電時間を発揮し、かつ充電受入電流を低下させないことが示されるが、一般的に充電受入電流のバラツキは小さくないので、ここでさらに上記のデ−タを基に以下の数値Qを算出し、充電受入電流の評価を詳しく行った。   As described above, the battery using the negative electrode plate of the present invention to which lignin sulfonic acid having a Na substitution rate of 9% or less is added exhibits a remarkably good low-temperature high-rate discharge time even when it is formed at a high temperature of about 75 ° C. However, since the variation in the charge acceptance current is generally not small, the following numerical value Q is further calculated based on the above data to obtain the charge acceptance current. The evaluation of was done in detail.

上記測定のデ−タを基に、サンプル電池の各ロット毎の充電受入電流の平均値、および全デ−タにわたりその測定値と各ロット毎の平均値との差の標準偏差(これが母標準偏差の推定値である。)を計算し、ロットごとに該平均値(これが「各ロット毎の充電受入電流の母平均の推定値」である。)と充電受入電流の下限規格値4.0Aとの差を、該母標準偏差の推定値で除した値(Q値)を計算した。その結果を表3に示す。また下記(4)式に、その計算式を示す。   Based on the data of the above measurement, the average value of the charge acceptance current for each lot of the sample battery and the standard deviation of the difference between the measured value and the average value for each lot over all data (this is the mother standard) The estimated value of the deviation is calculated, and the average value (this is the "estimated value of the population average of charge acceptance current for each lot") and the lower limit standard value of charge acceptance current of 4.0A for each lot. The value (Q value) obtained by dividing the difference between the two by the estimated value of the mother standard deviation was calculated. The results are shown in Table 3. Moreover, the calculation formula is shown in the following formula (4).

Figure 0005674246
Figure 0005674246

そして、測定値が正規分布に従うと仮定し、Q値から各系列の電池を大量生産した場合に、その電池の充電受入電流が4.0Aを下回る確率を正規分布表を基に検討した。なお、該確率が工業上許容されるのは0.3%以下であり、これに対応するQの値は2.75以上である。
その結果、A系列のその確率は0.1%以下、B系列では0.2%以下であった。したがって実験3の実施例は製造に際し、充電受入電流が規格値を下回る確率を実用上無視できる。
Then, assuming that the measured value follows a normal distribution, when the batteries of each series are mass-produced from the Q value, the probability that the charge acceptance current of the battery is below 4.0 A was examined based on the normal distribution table. In addition, it is 0.3% or less that the probability is industrially acceptable, and the corresponding Q value is 2.75 or more.
As a result, the probability of the A series was 0.1% or less, and that of the B series was 0.2% or less. Therefore, in the embodiment of Experiment 3, the probability that the charge acceptance current is lower than the standard value can be ignored in practical use.

実験3の結果より、化成中のセル最高温度が75〜77℃である電池44B20では、負極の主原料100部に対しNa置換率を変えたリグニンスルフォン酸を0.3部、または0.6部添加した場合、そのそれぞれにおいて、リグニンスルフォン酸のNa置換率が9%以下の場合では、充電電流を低下させることなく、低温高率放電時間を顕著に延長させる効果が見られた。   From the result of Experiment 3, in the battery 44B20 in which the cell maximum temperature during chemical conversion is 75 to 77 ° C., 0.3 part or 0.6 part of lignin sulfonic acid in which the Na substitution rate is changed with respect to 100 parts of the main raw material of the negative electrode. In each case, when the Na substitution rate of lignin sulfonic acid was 9% or less, the effect of remarkably extending the low-temperature high-rate discharge time without decreasing the charging current was observed.

なお、実験1、2、3に示される現象の技術的理由は、完全に説明されるものではないが、概ね以下のように考えられる。
即ち、リグニンスルフォン酸は負極製造工程にて先ず水、鉛粉とともに混錬されるが、この混錬物のpHは概ね10であり、そのリグニンスルフォン酸はよく溶解され、鉛粉の表面に吸着される。ところが高温化成工程にて、リグニンスルフォン酸の官能基の電離可能な陽イオン部分の大部分がNaなどの金属イオンに占められる場合、そのリグニンスルフォン酸は、pHが7以下の比較的低い電解液中でも溶出しやすい。特に化成開始前や開始後しばらくの間の極板内部の電解液は、極板の未化成活物質と反応してpHが4〜6であり、この時期に高温の効果もあり、リグニンスルフォン酸の溶出が著しく進み、負極板に残存するリグニンスルフォン酸は減少する。
The technical reasons for the phenomena shown in Experiments 1, 2, and 3 are not completely explained, but are generally considered as follows.
That is, lignin sulfonic acid is first kneaded with water and lead powder in the negative electrode manufacturing process, but the pH of this kneaded product is approximately 10, and the lignin sulfonic acid is well dissolved and adsorbed on the surface of the lead powder. Is done. However, when most of the ionizable cation portion of the functional group of lignin sulfonic acid is occupied by metal ions such as Na + in the high-temperature chemical conversion step, the lignin sulfonic acid has a relatively low electrolysis with a pH of 7 or less. Elution is easy even in liquid. In particular, the electrolytic solution inside the electrode plate before the start of chemical conversion or for a while after the start reacts with the unformed active material of the electrode plate to have a pH of 4 to 6, and at this time also has an effect of high temperature, lignin sulfonic acid The elution of the lignin sulfonic acid remaining in the negative electrode plate decreases.

一方、その官能基の電離可能な陽イオン部分の大部分がプロトンに占められるリグニンスルフォン酸は、pH7以下の酸性水溶液中で溶解しにくく、高温化成開始前や開始直後の時期にも電解液に溶出しにくく極板に留まる量が比較的多い。
このために、その官能基の電離可能な陽イオン部分の大部分がプロトンに占められるリグニンスルフォン酸を添加した負極板の方が高温化成後の低温高率放電性能が向上するものと考えられる。
On the other hand, lignin sulfonic acid, in which most of the ionizable cation portion of the functional group is occupied by protons, is difficult to dissolve in an acidic aqueous solution having a pH of 7 or less. It is difficult to elute and the amount remaining on the electrode plate is relatively large.
For this reason, it is considered that the negative electrode plate added with lignin sulfonic acid, in which most of the ionizable cation portion of the functional group is occupied by protons, improves the low-temperature high-rate discharge performance after high-temperature formation.

そこで、実験3の低温高率放電試験後のサンプル電池を解体し、各サンプルの負極活物質中のリグニンスルフォン酸の残存量を測定した。残存量は活物質量に対する百分率(%)で表した。その結果を図8に示す。
図8からは、リグニンスルフォン酸を0.3部添加したA系列のサンプルでも、同0.6部添加したB系列のサンプルでも、Na置換率が9%を超えたところでリグニンスルフォン酸量が急に低下することが確認される。また、Na置換率が9%以下のリグニンスルフォン酸の残存量は、負極ペースト製造時のリグニンスルフォン酸添加量に概ね比例するが、リグニンスルフォン酸のNa置換率が9%を大きく上回るほど、A系列とB系列との残存量の比率がサンプル間で差が小さくなることが示されている。
Therefore, the sample battery after the low-temperature, high-rate discharge test of Experiment 3 was disassembled, and the amount of lignin sulfonic acid remaining in the negative electrode active material of each sample was measured. The remaining amount was expressed as a percentage (%) with respect to the amount of active material. The result is shown in FIG.
From FIG. 8, it can be seen that the amount of lignin sulfonic acid in both the A series sample with 0.3 parts of lignin sulfonic acid added and the B series sample with 0.6 parts of the lignin sulfonic acid increased rapidly when the Na substitution rate exceeded 9%. It is confirmed that Further, the residual amount of lignin sulfonic acid having a Na substitution rate of 9% or less is generally proportional to the amount of lignin sulfonic acid added at the time of producing the negative electrode paste, but as the Na substitution rate of lignin sulfonic acid greatly exceeds 9%, A It is shown that the difference in the remaining amount ratio between the series and the B series is small between samples.

図8からも明らかなように、リグニンスルフォン酸のNa置換率と、このリグニンスルフォン酸の化成後の残存率には明からな関連があった。
また、これと逆に元になるリグニンスルフォン酸のそれぞれについて、図6のように予めその添加量(部)とNa置換率とに対する負極活物質中の残存量(%)、および低温高率放電時間と充電受入電流とを測定しておけば、活物質中のその残存量から製造段階の添加量を推定できる。
As is clear from FIG. 8, there was a clear relationship between the Na substitution rate of lignin sulfonic acid and the residual rate of lignin sulfonic acid after conversion.
On the contrary, with respect to each of the lignin sulfonic acids as the basis, the remaining amount (%) in the negative electrode active material with respect to the addition amount (part) and the Na substitution rate in advance as shown in FIG. If the time and charge acceptance current are measured, the amount added in the production stage can be estimated from the remaining amount in the active material.

他方、充電受入電流に対するリグニンスルフォン酸の添加量とNa置換率の影響は、より複雑であると考えられる。
すなわち、リグニンスルフォン酸は、負極活物質である金属鉛結晶の活性部分に吸着するので充電反応の速度を制限するといわれるが、他方、化成時に該金属鉛の充電反応に関与する表面積を増加させるので、充電電流を増加させる効果も併せ持つ。
したがって、リグニンスルフォン酸の添加量が比較的低い領域では、50℃化成時の充電受入電流が75℃化成時よりも大きく、また75℃化成時にはNa置換率の小さいリグニンスルフォン酸の方がNa置換率がより大きいものよりも充電受入電流を若干大きくさせるのは、後者の作用が現れたものと思われる。
On the other hand, the effects of the amount of lignin sulfonic acid added and the Na substitution rate on the charge acceptance current are considered to be more complex.
In other words, lignin sulfonic acid is said to limit the rate of the charging reaction because it is adsorbed on the active part of the metal lead crystal, which is the negative electrode active material. On the other hand, it increases the surface area involved in the charging reaction of the metal lead during formation. Therefore, it also has the effect of increasing the charging current.
Therefore, in the region where the amount of lignin sulfonic acid added is relatively low, the charge acceptance current at 50 ° C. formation is larger than that at 75 ° C., and lignin sulfonic acid with a low Na substitution rate at 75 ° C. formation is Na substitution. It seems that the latter effect appears when the charge acceptance current is made slightly larger than that with a larger rate.

[実験4]
次に実験4により、その官能基の電離可能な陽イオン部分の大部分がプロトンに占められるリグニンスルフォン酸を単独に、またはその官能基の大部分が金属イオンに占められるリグニンスルフォン酸との混合物を添加する場合に、より好ましい効果を発揮するための添加量の適正な範囲を示す。
[Experiment 4]
Next, according to Experiment 4, lignin sulfonic acid in which most of the ionizable cation portion of the functional group is occupied by protons alone or a mixture with lignin sulfonic acid in which the majority of functional groups are occupied by metal ions In the case of adding, an appropriate range of the addition amount for exhibiting a more preferable effect is shown.

実験3と同様の方法でNa置換率が9.0%のリグニンスルフォン酸を作製し、これをリグニンSとする。また実験1の、Na置換率が80.5%のリグニンスルフォン酸(リグニンY)を準備する。   A lignin sulfonic acid having a Na substitution rate of 9.0% is prepared in the same manner as in Experiment 3, and this is designated as lignin S. Also prepared in Experiment 1 is lignin sulfonic acid (lignin Y) having a Na substitution rate of 80.5%.

作製したリグニンSを単独で、またはリグニンYとの混合物として、その添加量を変えて、表4に示すサンプル電池44B20を作製した。作製したサンプル電池を、実験1と同じ条件で75〜77℃で化成した。
化成したサンプル電池を、実験1と同じ条件により低温高率放電試験と、充電受入試験に付した。低温高率放電の持続時間を図9に、充電受入電流値を図10、図11に記す。
なお、表4中の太字の部分が本発明例である。またリグニンSのみを0.3部添加したサンプル電池は、実験3のA4と同内容であり、リグニンSのみを0.6部添加したサンプル電池はB4と同一内容である。
Sample battery 44B20 shown in Table 4 was produced by changing the addition amount of the produced lignin S alone or as a mixture with lignin Y. The produced sample battery was formed at 75 to 77 ° C. under the same conditions as in Experiment 1.
The formed sample battery was subjected to a low-temperature, high-rate discharge test and a charge acceptance test under the same conditions as in Experiment 1. FIG. 9 shows the duration of the low-temperature high-rate discharge, and FIGS. 10 and 11 show the charge acceptance current values.
The bold portions in Table 4 are examples of the present invention. A sample battery added with 0.3 parts of lignin S has the same contents as A4 in Experiment 3, and a sample battery added with 0.6 parts of lignin S has the same contents as B4.

Figure 0005674246
Figure 0005674246

これらの電池の低温高率放電試験の結果を図9に示す。放電時間は、実験1と同様に、実験1の電池Y75(1)の放電持続時間を100として、それぞれの電池の放電時間を電池Y75(1)との比で表している。
なお図9では、表4の縦の列の各ロットを表示する際に、リグニンYの添加量を特徴付けるために左からD_0系列、D_1系列、D_2系列、D_3系列、D_4系列、D_5系列、D_6系列として表示している。例えば、D_0系列はD20、D30、D40、D60、D70、D80、D90、D100からなる。
比較として、実験1のX系列とY系列とのサンプル電池の結果を併せて表示した。
The results of the low temperature high rate discharge test of these batteries are shown in FIG. Discharge time, similarly as in Experiment 1, are expressed as 100 the discharge duration of the battery Y 75 Experiment 1 (1), the discharge time of each cell by the ratio of the battery Y 75 (1).
9, in order to characterize the amount of lignin Y added when displaying each lot in the vertical column of Table 4, from the left, D_0 series, D_1 series, D_2 series, D_3 series, D_4 series, D_5 series, D_6 It is displayed as a series. For example, the D_0 series includes D20, D30, D40, D60, D70, D80, D90, and D100.
For comparison, the results of the X-series and Y-series sample batteries of Experiment 1 are also displayed.

図9から明らかなように、Na置換率が9.0%であるリグニンスルフォン酸(リグニンS)を単独で添加した負極板を使用した場合、いずれの添加量においてもNa置換率が0.6%のリグニンスルフォン酸添加のもの(実験1のX系列のサンプル電池)とほぼ同程度の低温高率放電時間を発揮し、0.2部以上の添加で大きな効果を示した。
またリグニンSと、その官能基の電離可能な陽イオン部分の大部分がNaに占められるリグニンスルフォン酸(この実験の場合、リグニンY)との混合物を添加すると、その添加量の合計にしたがって低温高率放電時間が延長し、リグニンSの添加量が同じサンプル間では、リグニンYをも添加したサンプルの方がより長い低温高率放電時間を発揮した。例えばリグニンSのみを0.6%添加したD60と、リグニンS0.6%とリグニンY0.1%とを添加したD61とを比較すると、後者の低温高率放電時間がより長いことが判る。
As is clear from FIG. 9, when a negative electrode plate to which lignin sulfonic acid (lignin S) having a Na substitution rate of 9.0% was added alone was used, the Na substitution rate was 0.6 at any addition amount. % Of the lignin sulfonic acid added (X series sample battery of Experiment 1) exhibited a low temperature and high rate discharge time almost the same as that of 0.2 part or more.
In addition, when a mixture of lignin S and lignin sulfonic acid (lignin Y in this experiment) in which most of the ionizable cation portion of the functional group is occupied by Na + is added, the total amount of the addition is increased. The low temperature high rate discharge time was extended, and between samples with the same amount of lignin S added, the sample to which lignin Y was also added exhibited a longer low temperature high rate discharge time. For example, comparing D60 with 0.6% lignin S alone and D61 with 0.6% lignin S and 0.1% lignin Y shows that the latter low temperature high rate discharge time is longer.

次に、各サンプル電池の充電受入電流を測定し、その結果を図10、図11に示す。
なお、図10、図11でも、表4の縦の列の各ロットを表示する際に、リグニンYの添加量を特徴付けるために図9と同様の表記を採っている。
Next, the charge acceptance current of each sample battery was measured, and the results are shown in FIGS.
10 and 11 also use the same notation as in FIG. 9 to characterize the amount of lignin Y added when displaying each lot in the vertical column of Table 4.

図10、図11から明らかなように、各サンプル電池の充電受入電流は、リグニンスルフォン酸総添加量の増加に伴い低下する傾向であり、一部のサンプル電池の充電受入電流は規格値と同じか若干上回る程度であった。   As is apparent from FIGS. 10 and 11, the charge acceptance current of each sample battery tends to decrease as the total amount of lignin sulfonic acid increases, and the charge acceptance current of some sample batteries is the same as the standard value. It was just a little over.

そこでリグニン添加量の上限を決めるために、これらのデ−タを基に、実験3と同様にQ値を算出した。   Therefore, in order to determine the upper limit of the amount of lignin added, the Q value was calculated in the same manner as in Experiment 3 based on these data.

ここで、充電受入電流の各サンプル電池の測定値は、正規分布に従うと仮定できるから、このQ値は、各内容の電池を量産した場合に、各内容の電池の充電受入電流値が規格値4.0Aを下まわる確率に対応する。その確率を工業生産上問題がないと判断される0.3%以下にするには、Q値が2.75以上の物を選択すると良い。
表4より、本実験でこの条件に合致するリグニンスルフォン酸の組み合わせは、リグニンS単独の場合は、その添加量が0.6部以下の負極板、リグニンYとの混合使用の場合にはリグニンSの添加量が0.6部以下で、かつ総添加量が0.7部以下の負極板を使用する場合である。
Here, since it can be assumed that the measured value of each sample battery of the charge acceptance current follows a normal distribution, this Q value is the standard value of the charge acceptance current value of each content battery when each content battery is mass-produced. Corresponds to the probability of falling below 4.0A. In order to reduce the probability to 0.3% or less at which it is determined that there is no problem in industrial production, a product having a Q value of 2.75 or more may be selected.
According to Table 4, the combination of lignin sulfonic acids that meet this condition in this experiment is that lignin S alone is a negative electrode plate having an addition amount of 0.6 parts or less, and lignin is used in combination with lignin Y. This is a case where a negative electrode plate having an addition amount of S of 0.6 parts or less and a total addition amount of 0.7 parts or less is used.

以上の結果と、さらに実験3の結果とから、電離可能な陽イオン部分の大部分が、より好ましくは91%以上が、プロトンに占められるリグニンスルォン酸を単独で添加する場合、充電受入電流を低下させることなく、低温高率放電時間の延長の効果が顕著に発揮されるより好ましい添加量の範囲は、0.2部以上、0.6部以下である。
また、その官能基の電離可能な陽イオン部分の91%以上がプロトンに占められるリグニンスルォン酸と、その官能基の電離可能な陽イオン部分の大部分がNaに占められるリグニンスルフォン酸との混合物を鉛蓄電池の負極板に添加する場合に、該電池の充電受入電流を低下させず、かつその低温高率放電時間が、電離可能な陽イオン部分の大部分がプロトンに占められるリグニンスルォン酸のみを添加する場合よりもさらに延長させられる場合があり、それは電離可能な陽イオン部分の91%以上がプロトンに占められるリグニンスルォン酸の添加量が0.2部以上、0.6部以下で、かつリグニンスルフォン酸の総添加量が0.7部以下の場合である。
From the above results and further from the results of Experiment 3, when lignin sulphonic acid, in which most of the ionizable cation portion is more than 91%, preferably occupied by protons, is added alone, the charge acceptance current decreases. More preferably, the addition amount range in which the effect of extending the low-temperature high-rate discharge time is remarkably exhibited is 0.2 part or more and 0.6 part or less.
Also, a mixture of lignin sulfonic acid in which 91% or more of the ionizable cation portion of the functional group is occupied by protons and lignin sulfonic acid in which the majority of the ionizable cation portion of the functional group is occupied by Na + Is added to the negative electrode plate of a lead-acid battery, the charge acceptance current of the battery is not reduced, and the low-temperature high-rate discharge time is limited to lignin sulfonic acid in which most of the ionizable cation portion is occupied by protons. In some cases, the lignin sulfonic acid is added in an amount of 0.2 parts or more and 0.6 parts or less, and 91% or more of the ionizable cation portion is occupied by protons. This is the case when the total amount of sulfonic acid added is 0.7 parts or less.

なお実験4では、その官能基の電離可能な陽イオン部分の大部分がNaに占められるリグニンスルフォン酸として、そのNa置換率が80.5%であるリグニンYを使用したが、本発明の請求項3はこの場合に限定されるものではなく、同程度のNa置換率を持つリグニンスルフォン酸であれば本発明の効果が発揮されることは容易に推測される。 In Experiment 4, lignin Y having a Na substitution rate of 80.5% was used as the lignin sulfonic acid in which most of the ionizable cation portion of the functional group is occupied by Na + . Claim 3 is not limited to this case, and it is easily assumed that the effects of the present invention can be achieved if the lignin sulfonic acid has the same Na substitution rate.

以上の実験から本発明の効果を説明したように、本発明によれば、鉛蓄電池の低温高率放電性能を劣化させずに比較的短時間の電槽化成を行うことが可能となり、工業上顕著な効果を奏するものである。   As described above from the above experiments, according to the present invention, it is possible to perform battery formation in a relatively short time without degrading the low-temperature high-rate discharge performance of the lead-acid battery. It has a remarkable effect.

1 正極端子
2 負極端子
3 第3セル
4 第4セル
5 ストラップ
6 極群
7 電槽
8 熱電対
1 Positive terminal
2 Negative terminal
3 3rd cell 4 4th cell
5 strap 6 pole group
7 battery case
8 Thermocouple

Claims (3)

酸化鉛粉末または酸化鉛と金属鉛との混合物の粉末を主成分とし、リグニンスルフォン酸を含む負極板において、
前記リグニンスルフォン酸が、保持する官能基の酸性水溶液またはアルカリ性水溶液中で電離可能な陽イオン部分の91%以上がプロトンに置換されたリグニンスルフォン酸で、
前記主成分たる酸化鉛粉末、又は酸化鉛と金属鉛との混合物の粉末、100部に対して、前記リグニンスルフォン酸を0.2部以上、0.6部以下含むことを特徴とする鉛蓄電池用負極板。
In the negative electrode plate containing lead oxide powder or powder of a mixture of lead oxide and metal lead as a main component and containing lignin sulfonic acid,
The lignin sulfonic acid is a lignin sulfonic acid in which 91% or more of the cationic moiety ionizable in an acidic aqueous solution or an alkaline aqueous solution of a functional group to be held is substituted with a proton,
The lead storage battery characterized by containing 0.2 parts or more and 0.6 parts or less of the lignin sulfonic acid with respect to 100 parts of the lead oxide powder as the main component or powder of a mixture of lead oxide and metal lead. Negative electrode plate.
酸化鉛粉末または酸化鉛と金属鉛との混合物の粉末を主成分とし、リグニンスルフォン酸を含む負極板において、
前記主成分たる酸化鉛粉末または酸化鉛と金属鉛との混合物の粉末100部に対して、リグニンスルフォン酸を0.2部以上、0.7部以下含み、
前記リグニンスルフォン酸の内、電離可能な陽イオン部分の91%以上がプロトンに置換されたリグニンスルフォン酸の添加量が0.2部以上、0.6部以下であり、残部が陽イオン部分の80.5%以上が金属イオンに置換されたリグニンスルフォン酸であることを特徴とする鉛蓄電池用負極板。
In the negative electrode plate containing lead oxide powder or powder of a mixture of lead oxide and metal lead as a main component and containing lignin sulfonic acid,
0.2 parts or more and 0.7 parts or less of lignin sulfonic acid with respect to 100 parts of the powder of the lead oxide powder or lead oxide and metal lead as the main component,
Of the lignin sulfonic acid, 91% or more of the ionizable cation portion is substituted with protons, and the addition amount of lignin sulfonic acid is 0.2 parts or more and 0.6 parts or less , and the remainder is the cation part. negative electrode plate for a lead storage battery you characterized in that more than 80.5% is substituted lignin sulfonate to a metal ion.
負極板に請求項1又は2に記載の負極板を用いた鉛蓄電池。 The lead acid battery which used the negative electrode plate of Claim 1 or 2 for the negative electrode plate.
JP2011158102A 2011-07-19 2011-07-19 Lead acid battery and negative electrode plate thereof Active JP5674246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011158102A JP5674246B2 (en) 2011-07-19 2011-07-19 Lead acid battery and negative electrode plate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011158102A JP5674246B2 (en) 2011-07-19 2011-07-19 Lead acid battery and negative electrode plate thereof

Publications (2)

Publication Number Publication Date
JP2013025942A JP2013025942A (en) 2013-02-04
JP5674246B2 true JP5674246B2 (en) 2015-02-25

Family

ID=47784081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011158102A Active JP5674246B2 (en) 2011-07-19 2011-07-19 Lead acid battery and negative electrode plate thereof

Country Status (1)

Country Link
JP (1) JP5674246B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917422A (en) * 1995-06-29 1997-01-17 Shin Kobe Electric Mach Co Ltd Negative electrode plate for lead-acid battery
JPH1092462A (en) * 1996-09-12 1998-04-10 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP4747391B2 (en) * 1999-11-17 2011-08-17 株式会社Gsユアサ Cylindrical secondary battery
JP2001307733A (en) * 2000-04-24 2001-11-02 Matsushita Electric Ind Co Ltd Sealed lead storage battery
JP4356321B2 (en) * 2003-01-09 2009-11-04 パナソニック株式会社 Lead acid battery

Also Published As

Publication number Publication date
JP2013025942A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
Yang et al. Review on the research of failure modes and mechanism for lead–acid batteries
Ruetschi Aging mechanisms and service life of lead–acid batteries
CN104900876A (en) A novel graphene anode active compound used for lead-acid storage batteries and a preparing method thereof
JPH11250913A (en) Lead-acid battery
CN103109412B (en) Lead battery and be equipped with the idling stop vehicle of this lead battery
CN101144176B (en) Method for reducing metal and alloy hydroxide gel by hydrogen separated from electrochemistry cathode
CN105355986B (en) A kind of non-maintaining nano-colloid storage battery of high power capacity
CN102660697B (en) Lead-acid battery grid alloy for power
CN103247827A (en) Composite additive of lead-acid storage battery
CN103633320A (en) Lead plaster composition of positive electrode of internally formalized storage battery
CN100590913C (en) Lead-acid battery cathode lead paste for motorcycle and its preparing method
JP5656068B2 (en) Liquid lead-acid battery
CN103633331A (en) Positive active material for lead-acid power battery and preparation method of positive active material
JP5674246B2 (en) Lead acid battery and negative electrode plate thereof
CN103384011B (en) Long-life power lead-acid storage battery positive pole and cream
CN113206292B (en) Polymer-based composite solid electrolyte and preparation method and application thereof
CN104064816B (en) A kind of electrolysis additive of lead-acid accumulator suppression liberation of hydrogen and preparation method thereof
CN103000883A (en) Formula of positive active material for lead-acid power battery and preparation method of positive active material
JP2013073716A (en) Lead acid battery
JP2009016143A (en) Manufacturing method of paste type cathode plate for lead storage cell and lead storage cell
JP2773312B2 (en) Manufacturing method of positive electrode plate for lead-acid battery
JP2004207003A (en) Liquid type lead acid storage battery
JP2003142147A (en) Lead-acid battery
JP5708959B2 (en) Lead acid battery
CN102709599A (en) Manufacturing method of lithium/thionyl chloride battery electrolyte material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141221

R150 Certificate of patent or registration of utility model

Ref document number: 5674246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150