JPH1092462A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH1092462A
JPH1092462A JP8241852A JP24185296A JPH1092462A JP H1092462 A JPH1092462 A JP H1092462A JP 8241852 A JP8241852 A JP 8241852A JP 24185296 A JP24185296 A JP 24185296A JP H1092462 A JPH1092462 A JP H1092462A
Authority
JP
Japan
Prior art keywords
acid battery
positive electrode
sealed lead
lead
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP8241852A
Other languages
Japanese (ja)
Inventor
Koichi Nobeyama
弘一 延山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP8241852A priority Critical patent/JPH1092462A/en
Publication of JPH1092462A publication Critical patent/JPH1092462A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To use a sealed lead-acid battery as it is in place of an open-type lead-acid battery used as a backup battery in a conventional communication power supply facility by adjusting electric potential of a positive electrode through a process of making a positive electrode active material contain Se, Sn, Ni, Zn, Sb or Ag. SOLUTION: In a sealed lead-acid battery, dilute sulfuric acid having the specific gravity in the range of 1.26 to 1.32 in a temperature of 20 deg.C is used as electrolyte, and the addition amount of addition agent is so determined that the sealed lead-acid battery may be used for trickle charge in which the constant voltage is in the range of 2.15 to 2.20V/cell. Se, Sn, Ni, Zn, Sb or Ag is used as the addition agent. Therefore, the sealed lead-acid battery can be trickle- charged at the trickle charge voltage of an open-type lead-acid battery and can be used as it is in place of the open-type lead-acid battery used as a backup battery in a conventional communication power supply facility.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、密閉形鉛蓄電池に
関するものであり、特にトリクル充電に使用する密閉形
鉛蓄電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery, and more particularly to a sealed lead-acid battery used for trickle charging.

【0002】[0002]

【従来の技術】いわゆる液式鉛蓄電池と呼ばれる開放形
鉛蓄電池が、従来多くの通信用電気機器装置のバックア
ップ電池や、通信用電源設備のバックアップ電池として
用いられている。この種の用途に用いられる開放形鉛蓄
電池は、定電圧でトリクル充電されている。しかしなが
ら開放形鉛蓄電池は、電解液の補充が必要であるため、
前述の用途で用いられるバックアップ電池を開放形鉛蓄
電池に代えて密閉形鉛蓄電池に変更したいという要望が
出てきている。
2. Description of the Related Art An open-type lead-acid battery called a so-called liquid lead-acid battery has conventionally been used as a backup battery for many communication electric equipment and a backup battery for communication power supply equipment. Open-type lead-acid batteries used in this type of application are trickle-charged at a constant voltage. However, open lead-acid batteries require replenishment of the electrolyte,
There has been a demand for a backup battery used for the above-mentioned applications to be replaced with a sealed lead-acid battery instead of an open lead-acid battery.

【0003】[0003]

【発明が解決しようとする課題】新しい通信用電源設備
等を作る場合に、バックアップ電池として密閉形鉛蓄電
池を採用することは簡単に行える。しかしながら過去に
製造し、現在活用されている通信用電源設備等に設置し
ている開放形鉛蓄電池を単純に密閉形鉛蓄電池に置き換
えることはできない。これは、現在一般的に製造されて
いる密閉形鉛蓄電池は、開放形鉛蓄電池に比べて希硫酸
からなる電解液の比重が高く(1.26〜1.32)、
24時間で100%以上のトリクル充電を行うために必
要な充電電圧(以下、単にトリクル充電電圧という)を
高く設定する必要があるために、既存の通信用電源設備
等に設置されているトリクル充電装置をそのまま利用し
たのでは、充電量100%以上の充電をすることができ
ないためである。例えば、一般的に用いられている通信
用電源設備においては、トリクル充電電圧が2.15〜
2.20V/セルであるのに対して、据置用の密閉形鉛
蓄電池ではトリクル充電電圧が2.23V/セルであ
り、また小形用の密閉形鉛蓄電池ではトリクル充電電圧
が2.275V/セルであった。そのため、従来の通信
用電源設備のバックアップシステムにおいては開放形鉛
蓄電池をそのまま密閉形鉛蓄電池に代えることができな
いのである。
When a new communication power supply facility or the like is manufactured, it is easy to employ a sealed lead-acid battery as a backup battery. However, it is not possible to simply replace an open-type lead-acid battery manufactured in the past and installed in a communication power supply facility or the like that is currently being used with a sealed-type lead-acid battery. This is because the specific gravity of the electrolyte solution composed of dilute sulfuric acid is higher (1.26 to 1.32) in the sealed lead-acid battery currently manufactured generally than in the open lead-acid battery,
Since it is necessary to set a high charging voltage (hereinafter simply referred to as a trickle charging voltage) required for performing a trickle charging of 100% or more in 24 hours, trickle charging installed in an existing communication power supply facility or the like is required. This is because if the device is used as it is, it is impossible to charge the battery with a charge amount of 100% or more. For example, in a generally used communication power supply, the trickle charge voltage is 2.15 to 15.
In contrast to 2.20 V / cell, the trickle charge voltage of the stationary sealed lead-acid battery is 2.23 V / cell, and the trickle charge voltage of the small sealed lead-acid battery is 2.275 V / cell. Met. Therefore, in a conventional backup system for communication power supply equipment, an open lead-acid battery cannot be directly replaced with a sealed lead-acid battery.

【0004】この問題を解決するためには、まず既存の
充電装置の充電電圧を高くするための改良が必要にな
る。また充電電圧を高くすると、トリクル充電時に充電
装置から負荷に供給される電圧と、バックアップ時にバ
ックアップ電池から負荷に供給される電圧の差が大きく
なる不具合が発生する。そのため充電電圧を高くした場
合には、バックアップ電池と負荷との間に複数のダイオ
ードを直列接続して構成した電圧ドロッパーを配置し、
またこの電圧ドロッパーと並列にスイッチ回路を設け、
トリクル充電時にはスイッチ回路を開状態にして電圧ド
ロッパーを通して負荷に電圧を印加し、バックアップ時
にはスイッチ回路を閉状態にして電圧ドロッパーを通さ
ずにバックアップ電池から負荷に電圧を印加する回路を
付加する必要がある。
[0004] In order to solve this problem, it is necessary to first improve the charging voltage of an existing charging device. Also, if the charging voltage is increased, a problem occurs in which the difference between the voltage supplied from the charging device to the load during trickle charging and the voltage supplied from the backup battery to the load during backup increases. Therefore, when the charging voltage is increased, a voltage dropper configured by connecting a plurality of diodes in series between the backup battery and the load is arranged,
Also, a switch circuit is provided in parallel with this voltage dropper,
During trickle charging, it is necessary to add a circuit that opens the switch circuit to apply voltage to the load through the voltage dropper, and adds a circuit that closes the switch circuit during backup and applies voltage from the backup battery to the load without passing through the voltage dropper. is there.

【0005】しかしながら充電装置を改良したり、更に
電圧ドロッパーとスイッチ回路を設けることは、開放型
鉛蓄電池を密閉形鉛蓄電池で置き換える際の、費用をか
なり上げることになり、この置き換えの大きな経済的障
害となる。
[0005] However, improving the charging device and further providing a voltage dropper and a switch circuit significantly increases the cost of replacing an open lead-acid battery with a sealed lead-acid battery, and this replacement is very economical. It is an obstacle.

【0006】本発明の目的は、従来の通信用電源設備等
でバックアップ電池として用いられている開放形鉛蓄電
池に代えてそのまま使用できる密閉形鉛蓄電池を提供す
ることにある。
An object of the present invention is to provide a sealed lead-acid battery which can be used as it is in place of an open lead-acid battery used as a backup battery in conventional communication power supply equipment and the like.

【0007】[0007]

【課題を解決するための手段】開放形鉛蓄電池に代えて
そのまま使用できる密閉形鉛蓄電池は、開放形鉛蓄電池
のトリクル充電電圧でトリクル充電できるものでなけれ
ばならない。そこで本発明では、密閉形鉛蓄電池を対象
にして、正極活物質中にSe,Sn,Ni,Zn,Sb
またはAgを含有させて正極電位を調整することにより
所望の定電圧でトリクル充電した場合に充電量100%
以上の充電が可能になるようにする。
A sealed lead-acid battery that can be used as it is in place of an open lead-acid battery must be capable of trickle charging at the trickle charge voltage of the open lead-acid battery. Therefore, in the present invention, Se, Sn, Ni, Zn, Sb are contained in a positive electrode active material for a sealed lead-acid battery.
Alternatively, the charge amount is 100% when trickle charging is performed at a desired constant voltage by adjusting the positive electrode potential by containing Ag.
The above charging should be possible.

【0008】本発明では、正極活物質中に添加材を添加
するだけで、所望の定電圧でのトリクル充電が可能にな
る。そのため、本発明の密閉形鉛蓄電池を用いれば、従
来の通信用電源設備等のバックアップシステムで開放形
鉛蓄電池に代えてトリクル充電を行うことができる。
In the present invention, trickle charging at a desired constant voltage becomes possible only by adding an additive to the positive electrode active material. Therefore, if the sealed lead-acid battery of the present invention is used, trickle charging can be performed in place of the open-type lead-acid battery in a backup system such as a conventional communication power supply facility.

【0009】特に20℃における比重が1.26〜1.
32の希硫酸を電解液として用い、定電圧を2.15〜
2.20V/セルとしたトリクル充電に使用することが
できるように、添加材の添加量を決定すれば従来の開放
型鉛蓄電池とそのまま置き換えることができる密閉形鉛
蓄電池となる。
Particularly, the specific gravity at 20 ° C. is 1.26 to 1.
Using 32 diluted sulfuric acid as the electrolyte, the constant voltage was 2.15 to 15.
If the amount of the additive is determined so that it can be used for trickle charging at 2.20 V / cell, the sealed lead-acid battery can be replaced with a conventional open-type lead-acid battery as it is.

【0010】所望の定電圧でのトリクル充電を可能にす
るには、負極活物質中にSe,Sn,SbまたはNiを
含有させて負極電位を調整することによっても行うこと
ができる。また、化成終了時における正極活物質の重量
比面積を調整することによっても行うこともできる。ま
た、負極活物質に含有するリグニンスルホン酸ナトリウ
ムの含有量を調整して負極電位を調整することによって
も行える。
To enable trickle charging at a desired constant voltage, it is also possible to adjust the negative electrode potential by incorporating Se, Sn, Sb or Ni in the negative electrode active material. It can also be carried out by adjusting the weight ratio area of the positive electrode active material at the end of the formation. Further, it can also be performed by adjusting the content of sodium ligninsulfonate contained in the negative electrode active material to adjust the negative electrode potential.

【0011】[0011]

【発明の実施の形態】試験に用いた密閉形鉛蓄電池を次
のようにして製造した。最初に正極板を作った。まず鉛
粉85重量%と比重1.26(20℃)の希硫酸9重量
%と水6重量%とを混練して正極活物質ペースト素材を
作り、いくつかの正極活物質ペースト素材には表1に示
すような金属をそれぞれ加えて混練して正極活物質ペー
ストを作った。なお金属の添加量は鉛粉に対して0.4
重量%になる量であり、平均粒子径10μmの粉末を用
いた。次に正極活物質ペーストをPb−0.09重量%
Ca−0.4重量%Snの合金の格子体からなる集電体
に充填してから、40℃の温度、90%の湿度中に16
時間放置する熟成を行って未化成正極板を作った。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A sealed lead-acid battery used for the test was manufactured as follows. First, a positive electrode plate was made. First, 85% by weight of lead powder, 9% by weight of dilute sulfuric acid having a specific gravity of 1.26 (20 ° C.) and 6% by weight of water are kneaded to prepare a positive electrode active material paste material. Each of the metals shown in No. 1 was added and kneaded to prepare a positive electrode active material paste. The amount of metal added was 0.4
%, And powder having an average particle diameter of 10 μm was used. Next, the positive electrode active material paste was mixed with Pb-0.09% by weight.
After filling into a current collector consisting of a lattice of an alloy of Ca-0.4% by weight Sn, 16% at a temperature of 40 ° C. and a humidity of 90%.
Aging was performed by allowing the mixture to stand for a period of time to produce an unformed positive electrode plate.

【0012】次に負極板を作った。まず鉛粉89重量%
と比重1.26(20℃)の希硫酸6重量%と水5重量
%とリグニンスルホン酸ナトリウム1重量%を混練して
負極活物質ペースト素材を作り、いくつかの負極活物質
ペースト素材には表1に示すような金属をそれぞれ加え
て混練して負極活物質ペーストを作った。なお金属の添
加量は鉛粉に対して0.4重量%になる量であり、平均
粒子径10μmの粉末を用いた。次に負極活物質ペース
トをPb−0.09重量%Ca−0.4重量%Snの合
金の格子体からなる集電体に充填してから、40℃の温
度、90%の湿度中に16時間放置する熟成を行って未
化成負極板を作った。
Next, a negative electrode plate was prepared. First, 89% by weight of lead powder
And 6% by weight of dilute sulfuric acid having a specific gravity of 1.26 (20 ° C.), 5% by weight of water and 1% by weight of sodium ligninsulfonate are kneaded to prepare a negative electrode active material paste material. A metal as shown in Table 1 was added and kneaded to prepare a negative electrode active material paste. The amount of the metal added was 0.4% by weight with respect to the lead powder, and a powder having an average particle diameter of 10 μm was used. Next, the negative electrode active material paste was filled into a current collector formed of a lattice of an alloy of Pb-0.09 wt% Ca-0.4 wt% Sn, and then charged at a temperature of 40 ° C and a humidity of 90% at 16%. Aging was performed by allowing the mixture to stand for a period of time to produce an unformed negative electrode plate.

【0013】次に表1に示すような化成比重(20℃に
おける比重)の希硫酸中に各未化成正極板及び未化成負
極板極板を組合わせて浸漬して理論容量の250%にな
るまで20時間化成した。希硫酸の比重により活物質の
重量比表面積が変化する。そして、各極板を比較例の極
板を対極として組合わせた(正極板は比較例2Aの負極
板とそれぞれ組合わせ、負極板は比較例1Aの正極板と
それぞれ組合わせた)。組み合わせは、正極板3枚と負
極板4枚とを組み合わせたものを1セルとした。そして
これを6セル作って15Ah−12Vの密閉形鉛蓄電池
をそれぞれ完成した。表1には、化成終了時における活
物質の重量比表面積及び極板の電位が示されている。な
お極板の電位は、極板を比重1.28(20℃)の希硫
酸中に浸漬し、電流密度0.04A/cm2 ,液温25
℃における5MHg/Hg2 SO4 を基準とする電位を
測定したものである。
Next, each unformed positive electrode plate and unformed negative electrode plate are immersed in a dilute sulfuric acid having a specific gravity (specific gravity at 20 ° C.) as shown in Table 1 to 250% of the theoretical capacity. Until 20 hours. The specific gravity of the diluted sulfuric acid changes the weight specific surface area of the active material. Then, each electrode plate was combined with the electrode plate of the comparative example as a counter electrode (the positive electrode plate was combined with the negative electrode plate of Comparative Example 2A, and the negative electrode plate was combined with the positive electrode plate of Comparative Example 1A). A combination of three positive electrode plates and four negative electrode plates was used as one cell. Then, six cells were made to complete sealed lead-acid batteries of 15 Ah-12 V, respectively. Table 1 shows the weight specific surface area of the active material and the potential of the electrode plate at the end of the formation. The potential of the electrode plate was determined by immersing the electrode plate in dilute sulfuric acid having a specific gravity of 1.28 (20 ° C.), a current density of 0.04 A / cm 2 , and a liquid temperature of 25.
The potential was measured at 5 ° C. based on 5 MHg / Hg 2 SO 4 .

【0014】[0014]

【表1】 次に上記の正極板を用いて作った各電池を0.05CA
で放電した後に2.15V/セル及び2.20V/セル
でそれぞれ24時間充電して充電量を測定して正極電位
と充電量との関係を調べた。図1はその測定結果を示し
ている。本図より2.15V/セル及び2.20V/セ
ル共に正極電位が低くなると充電量を高くできるのが分
る。そして、正極電位が1.53V以下の実施例1A〜
1Gの正極板を用いると、充電量を100%以上にでき
るのが分る。
[Table 1] Next, each battery made using the above-described positive electrode plate was charged at 0.05 CA.
And then charged for 24 hours at 2.15 V / cell and 2.20 V / cell, respectively, and the charge amount was measured to examine the relationship between the positive electrode potential and the charge amount. FIG. 1 shows the measurement results. From this figure, it is understood that the charge amount can be increased when the positive electrode potential is lowered for both 2.15 V / cell and 2.20 V / cell. Examples 1A to 1C in which the positive electrode potential is 1.53 V or less
It can be seen that the charge amount can be increased to 100% or more when a 1 G positive electrode plate is used.

【0015】次に上記の負極板を用いて作った各電池を
前述と同様に0.05CAで放電した後に2.15V/
セル及び2.20V/セルでそれぞれ24時間充電して
充電量を測定して負極電位と充電量との関係を調べた。
図2はその測定結果を示している。本図より2.15V
/セル及び2.20V/セル共に負極電位を高くすると
充電量を高くできるのが分る。そして、負極電位が−
1.63V以上の実施例2A〜2Eの負極板を用いる
と、充電量を100%以上にできるのが分る。
Next, each battery produced using the above negative electrode plate was discharged at 0.05 CA in the same manner as described above, and then discharged at 2.15 V /
The battery was charged with the cell and the battery at 2.20 V / cell for 24 hours, and the charge amount was measured to examine the relationship between the negative electrode potential and the charge amount.
FIG. 2 shows the measurement results. 2.15V from this figure
It can be seen that the charge amount can be increased by increasing the negative electrode potential in both the / cell and 2.20 V / cell. And the negative electrode potential is-
It can be seen that the charge amount can be increased to 100% or more by using the negative electrode plates of Examples 2A to 2E of 1.63 V or more.

【0016】次に比較例1Aの正極活物質中にSe,S
n,Ni,Zn,Sb,Agを添加した場合、及び比較
例2Aの負極活物質中にSe,Sn,Sb,Ni,A
g,Znを添加した場合の各金属の添加量(鉛粉に対す
る添加量)と正極電位及び負極電位との関係を調べた。
図3はその測定結果を示している。本図より、正極活物
質中にSe,Sn,Ni,Zn,Sb,Agを添加する
と正極電位が低くなり、これらの金属を鉛粉に対して
0.1重量%添加すると正極電位を1.53V以下にで
きるのが分る。また負極活物質中にSe,Sn,Ni,
Sbを添加すると負極電位が高くなり、これらの金属を
鉛粉に対して0.1重量%添加すると負極電位を−1.
63V以上にできるのが分る。なお、負極活物質中にA
g,Znを添加すると負極電位は低くなるのが分る。但
し、正極活物質中に金属を鉛粉に対して1.5重量%を
超えて添加したり、負極活物質中に金属を鉛粉に対して
1.5重量%を超えて添加すると、図4に示すように電
池の容量が低下する。図4は正極活物質中及び負極活物
質中にSnを添加した場合の金属量と容量比(金属無添
加の容量を100%とした容量比)との関係を示す図で
あるが、Sn以外の他の金属を用いても、添加量が1.
5重量%を超えると、容量は急激に低下する。したがっ
て、正極電位を1.53V以下にするには、正極活物質
中にSe,Sn,Ni,Zn,Sb,Agを鉛粉に対し
て0.1〜1.5重量%添加すればよく、負極電位を−
1.63V以上にするには、負極活物質中にSe,S
n,Ni,Sbを鉛粉に対して0.1〜1.5重量%添
加すればよい。
Next, in the positive electrode active material of Comparative Example 1A, Se, S
When n, Ni, Zn, Sb, and Ag were added, and in the negative electrode active material of Comparative Example 2A, Se, Sn, Sb, Ni, and A were added.
The relationship between the amount of each metal added (the amount added to the lead powder) and the positive electrode potential and the negative electrode potential when g and Zn were added was examined.
FIG. 3 shows the measurement results. As shown in the figure, when Se, Sn, Ni, Zn, Sb, and Ag are added to the positive electrode active material, the positive electrode potential decreases. When 0.1% by weight of these metals is added to the lead powder, the positive electrode potential becomes 1. It can be seen that the voltage can be reduced to 53 V or less. In addition, Se, Sn, Ni,
The addition of Sb increases the negative electrode potential, and the addition of these metals in an amount of 0.1% by weight with respect to the lead powder lowers the negative electrode potential by −1.
It can be seen that the voltage can be increased to 63 V or more. In the negative electrode active material, A
It can be seen that the addition of g and Zn lowers the negative electrode potential. However, if a metal is added to the positive electrode active material in an amount of more than 1.5% by weight based on the lead powder, or if a metal is added to the negative electrode active material in an amount of more than 1.5% by weight based on the lead powder, the figure will be reduced. As shown in FIG. 4, the capacity of the battery decreases. FIG. 4 is a diagram showing the relationship between the amount of metal and the capacity ratio when Sn is added to the positive electrode active material and the negative electrode active material (capacity ratio when the capacity with no metal added is 100%). Even if other metals are used, the addition amount is 1.
If it exceeds 5% by weight, the capacity drops sharply. Therefore, in order to make the positive electrode potential 1.53 V or less, Se, Sn, Ni, Zn, Sb, and Ag may be added to the positive electrode active material in an amount of 0.1 to 1.5% by weight based on the lead powder. Negative electrode potential
In order to increase the voltage to 1.63 V or more, Se, S
n, Ni, Sb may be added in an amount of 0.1 to 1.5% by weight based on the lead powder.

【0017】次に化成に用いる電解液の比重を変えて化
成終了時における正極活物質の重量比面積を変え、その
他は比較例1Aと同じ正極板を作り、各正極板の正極電
位を測定して、正極活物質の重量比面積と正極電位との
関係を調べた。図5はその測定結果を示している。本図
より、正極活物質の重量比面積が大きくなると正極電位
が低下するのが分り、この例では正極活物質の重量比面
積を3.5m2 /g以上にすると正極電位を1.53V
以下にできるのが分る。但し実質的に製造可能な正極活
物質の重量比面積の上限値は11m2 /gである。した
がって、この例では実質的に正極電位を1.53V以下
にするには、正極活物質の重量比面積を3.5〜11m
2 /gにすればよいことが分る。
Next, the specific gravity of the electrolytic solution used for the formation was changed to change the weight ratio area of the positive electrode active material at the end of the formation, and the same positive plate as that of Comparative Example 1A was made, and the positive electrode potential of each positive plate was measured. Thus, the relationship between the weight ratio area of the positive electrode active material and the positive electrode potential was examined. FIG. 5 shows the measurement results. From this figure, it is understood that the positive electrode potential decreases as the weight ratio area of the positive electrode active material increases. In this example, when the weight ratio area of the positive electrode active material is set to 3.5 m 2 / g or more, the positive electrode potential becomes 1.53 V
You can see below. However, the upper limit of the weight ratio area of the positive electrode active material which can be substantially manufactured is 11 m 2 / g. Therefore, in this example, in order to substantially reduce the positive electrode potential to 1.53 V or less, the weight ratio area of the positive electrode active material is 3.5 to 11 m.
It can be seen that 2 / g should be used.

【0018】次に鉛粉に対するリグニンスルホン酸ナト
リウムの含有量を変え、その他は比較例1と同じ負極板
を作り、各負極板の負極電位を測定して、リグニンスル
ホン酸ナトリウムの含有量と負極電位との関係を調べ
た。図6はその測定結果を示している。図6よりリグニ
ンスルホン酸ナトリウムの含有量を少なくすると負極電
位を高くでき、この例ではリグニンスルホン酸ナトリウ
ムの含有量を0.9重量%以下にすると負極電位を−
1.63V以上にできるのが分る。但し0.2重量%を
下回ると図7に示すように電池の容量が低下する。図7
はリグニンスルホン酸ナトリウムの含有量と容量比(リ
グニンスルホン酸ナトリウム無添加の容量を100%と
した容量比)との関係を示す図である。したがって、こ
の例では実質的に−1.63V以上にするには、鉛粉に
対するリグニンスルホン酸ナトリウムの含有量を0.2
〜0.9重量%にすればよいことが分る。
Next, the same negative electrode plate as that of Comparative Example 1 was prepared by changing the content of sodium lignin sulfonate with respect to the lead powder, and the negative electrode potential of each negative electrode plate was measured. The relationship with the potential was examined. FIG. 6 shows the measurement results. From FIG. 6, it is possible to increase the negative electrode potential by decreasing the content of sodium ligninsulfonate. In this example, when the content of sodium ligninsulfonate is 0.9% by weight or less, the negative electrode potential is reduced by-.
It can be seen that the voltage can be increased to 1.63 V or more. However, when the content is less than 0.2% by weight, the capacity of the battery decreases as shown in FIG. FIG.
FIG. 3 is a diagram showing the relationship between the content of sodium ligninsulfonate and the volume ratio (volume ratio with the volume without sodium ligninsulfonate being 100%). Therefore, in this example, in order to make the voltage substantially equal to or higher than -1.63 V, the content of sodium ligninsulfonate with respect to the lead powder is set to 0.2.
It can be seen that the content should be set to 0.9% by weight.

【0019】[0019]

【発明の効果】本発明によれば、正極活物質中に添加材
を添加するだけで、所望の定電圧でのトリクル充電が可
能になる。そのため、本発明の密閉形鉛蓄電池を用いれ
ば、従来の通信用電源設備等で用いられているバックア
ップ用の開放形鉛蓄電池とそのまま置き換えることがで
きる密閉形鉛蓄電池を得ることができる。
According to the present invention, trickle charging at a desired constant voltage becomes possible only by adding an additive to the positive electrode active material. Therefore, by using the sealed lead-acid battery of the present invention, it is possible to obtain a sealed lead-acid battery that can be directly replaced with a backup open lead-acid battery used in a conventional communication power supply facility or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 正極電位と充電量との関係を示す図である。FIG. 1 is a diagram showing a relationship between a positive electrode potential and a charged amount.

【図2】 負極電位と充電量との関係を示す図である。FIG. 2 is a diagram showing a relationship between a negative electrode potential and a charged amount.

【図3】 各金属の添加量と正極電位及び負極電位との
関係を示す図である。
FIG. 3 is a diagram showing the relationship between the amount of each metal added and the positive electrode potential and the negative electrode potential.

【図4】 Snの添加量と容量比との関係を示す図であ
る。
FIG. 4 is a diagram showing the relationship between the amount of Sn added and the capacity ratio.

【図5】 正極活物質の重量比面積と正極電位との関係
を示す図である。
FIG. 5 is a diagram showing a relationship between a weight ratio area of a positive electrode active material and a positive electrode potential.

【図6】 リグニンスルホン酸ナトリウムの含有量と負
極電位との関係を示す図である。
FIG. 6 is a graph showing the relationship between the content of sodium ligninsulfonate and the negative electrode potential.

【図7】 リグニンスルホン酸ナトリウムの含有量と容
量比との関係を示す図である。
FIG. 7 is a graph showing the relationship between the content of sodium ligninsulfonate and the volume ratio.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 定電圧でトリクル充電したときに、充電
量100%以上の充電が可能になるように正極活物質中
にSe,Sn,Ni,Zn,SbまたはAgを含有させ
て正極電位を調整したことを特徴とする密閉形鉛蓄電
池。
1. A positive electrode active material containing Se, Sn, Ni, Zn, Sb or Ag so as to be capable of charging at a charge of 100% or more when trickle-charged at a constant voltage, thereby reducing the positive electrode potential. A sealed lead-acid battery characterized by adjustment.
【請求項2】 20℃における比重が1.26〜1.3
2の希硫酸を電解液として用い、前記定電圧が2.15
〜2.20V/セルであることを特徴とする請求項1に
記載の密閉形鉛蓄電池。
2. The specific gravity at 20 ° C. is 1.26 to 1.3.
2 dilute sulfuric acid as an electrolyte and the constant voltage is 2.15
The sealed lead-acid battery according to claim 1, wherein the sealed lead-acid battery is at a voltage of −2.20 V / cell.
【請求項3】 定電圧でトリクル充電したときに、充電
量100%以上の充電が可能になるように負極活物質中
にSe,Sn,SbまたはNiを含有させて負極電位を
調整したことを特徴とする密閉形鉛蓄電池。
3. A method of controlling the negative electrode potential by adding Se, Sn, Sb, or Ni to the negative electrode active material so as to enable a charge of 100% or more when performing trickle charging at a constant voltage. Features a sealed lead-acid battery.
【請求項4】 20℃における比重が1.26〜1.3
2の希硫酸を電解液として用い、前記定電圧が2.15
〜2.20V/セルであることを特徴とする請求項3に
記載の密閉形鉛蓄電池。
4. A specific gravity at 20 ° C. of 1.26 to 1.3.
2 dilute sulfuric acid as an electrolyte and the constant voltage is 2.15
4. The sealed lead-acid battery according to claim 3, wherein the voltage is in the range of -2.20 V / cell.
【請求項5】 定電圧でトリクル充電したときに、充電
量100%以上の充電が可能になるように化成終了時に
おける正極活物質の重量比面積を調整して正極電位を調
整したことを特徴とする密閉形鉛蓄電池。
5. The positive electrode potential is adjusted by adjusting the weight ratio area of the positive electrode active material at the end of the formation so that charging at a charge of 100% or more is possible when trickle charging at a constant voltage. Sealed lead-acid battery.
【請求項6】 20℃における比重が1.26〜1.3
2の希硫酸を電解液として用い、前記定電圧が2.15
〜2.20V/セルであることを特徴とする請求項5に
記載の密閉形鉛蓄電池。
6. A specific gravity at 20 ° C. of 1.26 to 1.3.
2 dilute sulfuric acid as an electrolyte and the constant voltage is 2.15
The sealed lead-acid battery according to claim 5, wherein the voltage is from -2.20V / cell.
【請求項7】 定電圧でトリクル充電しときに、充電量
100%以上の充電が可能になるように負極活物質に含
有するリグニンスルホン酸ナトリウムの含有量を調整し
て負極電位を調整したことを特徴とする密閉形鉛蓄電
池。
7. The negative electrode potential is adjusted by adjusting the content of sodium ligninsulfonate contained in the negative electrode active material so as to enable a charge of 100% or more when performing trickle charging at a constant voltage. A sealed lead-acid battery characterized by the following.
【請求項8】 20℃における比重が1.26〜1.3
2の希硫酸を電解液として用い、前記定電圧が2.15
〜2.20V/セルであることを特徴とする請求項7に
記載の密閉形鉛蓄電池。
8. A specific gravity at 20 ° C. of 1.26 to 1.3.
2 dilute sulfuric acid as an electrolyte and the constant voltage is 2.15
8. The sealed lead-acid battery according to claim 7, wherein the voltage is from -2.20 V / cell.
JP8241852A 1996-09-12 1996-09-12 Sealed lead-acid battery Abandoned JPH1092462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8241852A JPH1092462A (en) 1996-09-12 1996-09-12 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8241852A JPH1092462A (en) 1996-09-12 1996-09-12 Sealed lead-acid battery

Publications (1)

Publication Number Publication Date
JPH1092462A true JPH1092462A (en) 1998-04-10

Family

ID=17080475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8241852A Abandoned JPH1092462A (en) 1996-09-12 1996-09-12 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JPH1092462A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142085A (en) * 2001-11-02 2003-05-16 Japan Storage Battery Co Ltd Lead-acid battery
JP2013025942A (en) * 2011-07-19 2013-02-04 Gs Yuasa Corp Lead battery and negative electrode plate using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142085A (en) * 2001-11-02 2003-05-16 Japan Storage Battery Co Ltd Lead-acid battery
JP2013025942A (en) * 2011-07-19 2013-02-04 Gs Yuasa Corp Lead battery and negative electrode plate using the same

Similar Documents

Publication Publication Date Title
EP0931360B1 (en) Method of manufacturing a lead acid cell paste having tin compounds
JPH09147869A (en) Lead-acid battery
US4086392A (en) Method for reducing the float current of maintenance-free battery
JP2000251896A (en) Lead-acid battery and its manufacture
JP4802358B2 (en) Negative electrode plate for control valve type lead-acid battery
JPH1092462A (en) Sealed lead-acid battery
JPH10302783A (en) Sealed lead-acid battery and manufacture thereof
JPWO2004047201A1 (en) Positive electrode plate for lead acid battery and lead acid battery
JP2003142147A (en) Lead-acid battery
JPH11176438A (en) Lead-acid battery, and manufacture of material lead powder for lead-acid battery
US4006035A (en) Maintenance-free battery and method for reducing the current draw of such batteries
CA1041164A (en) Maintenance-free battery and method for reducing the current draw of such batteries
JPH0414758A (en) Lead-acid accumulator
JP3038995B2 (en) Lead storage battery
JPH1140186A (en) Lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JP3013623B2 (en) Sealed lead-acid battery
JPH01176661A (en) Lead-acid battery
JP3102000B2 (en) Lead storage battery
JPH0770321B2 (en) Sealed lead acid battery
JPH0193058A (en) Lead-acid battery
JPS6255273B2 (en)
JPH0589873A (en) Negative electrode plate for lead-acid storage battery
JPS61198574A (en) Lead storage battery
JPH10188964A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20040909