JP4904658B2 - Method for producing lead-acid battery - Google Patents

Method for producing lead-acid battery Download PDF

Info

Publication number
JP4904658B2
JP4904658B2 JP2002357166A JP2002357166A JP4904658B2 JP 4904658 B2 JP4904658 B2 JP 4904658B2 JP 2002357166 A JP2002357166 A JP 2002357166A JP 2002357166 A JP2002357166 A JP 2002357166A JP 4904658 B2 JP4904658 B2 JP 4904658B2
Authority
JP
Japan
Prior art keywords
mass
amount
active material
positive electrode
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002357166A
Other languages
Japanese (ja)
Other versions
JP2004192870A (en
JP2004192870A5 (en
Inventor
正昭 塩見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2002357166A priority Critical patent/JP4904658B2/en
Publication of JP2004192870A publication Critical patent/JP2004192870A/en
Publication of JP2004192870A5 publication Critical patent/JP2004192870A5/ja
Application granted granted Critical
Publication of JP4904658B2 publication Critical patent/JP4904658B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池の製造方法に関する。
【0002】
【従来の技術】
鉛蓄電池の内で特に制御弁式鉛蓄電池は無漏液・無保守の特性を有していることが特徴である。無漏液とは、電解液がセパレータのみに含浸・保持され流動電解液の存在しない構造で、蓄電池を横置きにしても電解液の液漏れがないものをいう。また、無保守とは、前記蓄電池の特徴である密閉反応機能により正常な充電においてはガスが発生せず、電解液の減少がほとんどなく補液といった保守が不必要な特性をいう。
【0003】
以上のような優れた特性を有していることから、近年、制御弁式鉛蓄電池は多方面にその用途が拡大している。それに伴って、高信頼性、高エネルギー密度化、長寿命化の要求が強くなってきている。
【0004】
上述した制御弁式鉛蓄電池内における密閉反応は、下記の(1)、(2)および(3)
式で示される。
(正極) HO=1/2O+2H+2e・・・・・・・・・・・(1)
(負極) Pb+1/2O+2H+SO 2−=PbSO+HO・・・・・・(2)
PbSO+2e=Pb+SO 2−・・・・・・・・・・(3)
上記のように、正極で水(HO)が分解され、酸素ガス(O)が発生するが、上述したように該蓄電池は、電解液がセパレータのみに含浸・保持され流動電解液の存在しない構造であるため、該Oはセパレータを貫通して容易に負極に移動し、Pbと反応してPbSOとHOが生成される。すなわち、(1)式で失われたHOが(2)式で再生されたことになり全体として電解液が減少しない。
【0005】
また、(2)式で生成されたPbSOは(3)式に示すように負極の充電反応によって、Pbに還元され、負極では充電時に水素ガス(H2)が発生しない。すなわち、充電時に酸素ガスおよび水素ガスのいずれも発生しない。
【0006】
しかしながら、負極の自己放電が多くなると水素ガスが余分に発生し、上記(1)、(2)および(3)式によるHOの再生サイクルのバランスが崩れ、負極が充電不足になり、それが継続して起こると、負極がPbSOの大きな結晶となる、いわゆる、サルフェイション現象が起こり充電できなくなり、短寿命になる。
【0007】
したがって、制御弁式鉛蓄電池においては、正・負極格子に自己放電量の少ないPb、Pb−Ca合金あるいはPb−Ca−Sn合金が通常採用されている。
【0008】
しかしながら、上記格子は、絶えず充電をしながら使用する、トリクルあるいはフロート使用では問題ないが、充・放電を絶えず繰り返すサイクル使用で、特に、放電量が少なく、過充電される使用状態では正極格子の酸化が進み過ぎるため、放電時にその部分が優先的に放電し、正極格子と活物質との界面に硫酸鉛の絶縁層が形成され、早期に容量が低下(早期容量低下、また、Premature Capacity Loss 略してPCLともいう)するといった問題が発生する。
【0009】
上記、早期容量低下に関しては、制御弁式鉛蓄電池だけではなく、正・負極にSbを含まないPb、Pb−CaあるいはPb−Ca−Sn合金格子を用い、電解液が十分に存在する開放型鉛蓄電池においても同様の現象が見られる。
【0010】
上記対策の一つとして、負極格子にはPb、Pb−Ca合金あるいはPb−Ca−Sn合金を使用し、正極には、Sb濃度が0.5質量%以上、1.5質量%以下とSb濃度の低い(低アンチモンと称している)Pb−Sb系合金格子を使用する方法が提案されている。正極にSbが存在することによって、原因は明確でないが上述したサイクル使用での早期容量低下が発生しなくなる。しかし、該Sbが正極から電解液中に溶出し負極に析出すると負極の水素過電圧を下げ、水素ガスの発生を促進し、上述した密閉反応サイクルのバランスが崩れ、制御弁式鉛蓄電池の機能を失い負極板が充電不足になり蓄電池性能が劣化する。開放型蓄電池においても、水素過電圧の低下により、充電効率が低下し、電解液の減少が加速され性能が劣化する問題を抱えている。
【0011】
【発明が解決しようとする課題】
Sb濃度が0.5質量%以上、1.5質量%以下のPb−Sb系合金からなる正極格子を有する鉛蓄電池において、Sbの存在によって早期容量低下が防止されると共に、Sbの負極への弊害を極力抑制し、優れたサイクル寿命を有する鉛蓄電池の製造方法および鉛蓄電池を提供することにある。
【0012】
【課題を解決するための手段】
課題を解決するための手段として、請求項1によれば、Sb濃度が0.5質量%以上、1.5質量%以下のPb−Sb系合金からなる正極格子を有する鉛蓄電池の製造方法において、負極活物質中に負極活物質質量に対して0.3質量%以上、0.7質量%以下のオイルを添加し、電解液比重が1.29〜1.4の範囲、正極活物質中のSnの量が1.5質量%未満、負極活物質中のリグニン量が0.3〜0.8質量%の範囲、正極活物質量(g)に対する負極活物質量(g)の比率をセル当たり0.6以上とすることを特徴とするものである。
【0013】
鉛蓄電池、特に制御弁式鉛蓄電池において、Sb濃度が0.5質量%以上、1.5質量%以下のPb−Sb系合金を正極格子に使用した場合、Sbの存在により、該蓄電池のサイクル使用における早期容量低下は抑制できるが、Sbが電解液中に溶出し、負極に析出すると水素過電圧を下げ、水素ガスの発生を促進し、上述した密閉反応サイクルのバランスが崩れ、負極板が充電不足になり、サルフェイション化し蓄電池の性能劣化が促進される問題を抱えていた。該Sbの弊害を抑制する手段の一つとして負極活物質に添加されているオイルが正極から溶出したSbの負極への析出を抑制する効果を有していることを見出し、本発明はその知見に基づくものである。その添加量は、0.3質量%より少なくなるとオイルのSbを補足する機能が十分でなく、0.7質量%より多くなると、オイルが負極板表面を覆う形になり負極板の性能が低下し好ましくないことがわかった。したがって、0.3質量%以上、0.7質量%以下が適当である。
【0014】
なお、ここでのオイルとは石油(原油)を生成して得たオイルのことを意味する。本願の発明者は、種々のオイルについて試験した結果、特に鎖状構造のパラフィン系炭化水素のオイルが本発明の目的に効果的であることを見出した。
【0015】
また、本発明は、正極活物質中にSnを含有する正極板を用いたことを特徴とするものである。
【0016】
すなわち、正極活物質中にSnが含まれていると、正極格子から溶出したSbとSnとがSb−Sn化合物を生成し、Sbが正極活物質内に留まり、負極に析出するのを抑制する効果があることがわかった。
【0017】
Snの適切な添加量は、正極格子に含まれるSb量に関係しており、正極格子内に含まれるSb量をS(質量%)、正極活物質内に含まれるSn量をT(質量%)とした時に1.5>T≧0.15×S+0.05の関係を維持することによって、Snが有効に作用し、Sbの溶出を抑制することが分かった。すなわち、Sn量としては最大でも正極格子中に含まれる最大Sb量1.5質量%より少ない質量%に抑える必要がある。Sn量が1.5%以上になるとSbの存在に関係なくSnの弊害が現れ、蓄電池の性能が低下する。また、添加量の下限値は正極格子中のSb濃度に関係し、試験結果からT≧0.15×S+0.05の関係を維持する必要があることがわかった。
【0018】
上記関係は、正極格子質量(g)/正極活物質量(g)が0.5〜1.2の範囲において有効に機能することもわかった。
【0019】
また、本発明は、負極活物質中にリグニンを含有する負極板を用いることを特徴とするものである。
【0020】
負極活物質中のリグニン量は0.3〜0.8質量%の範囲であるのが好ましい。なお、ここでのリグニンの量は、紫外線吸収スペクトル法で測定した値を言う。
【0021】
すなわち、正極から溶出してきたSbが負極に析出した場合に、該リグニンがSbを捕捉してくれるので、Sbの弊害が抑制されることが分かった。しかし、リグニン量が0.8質量%より多いとリグニンが負極板表面を覆ってしまい、負極板の性能劣化をもたらす。一方、0.3質量%より少ないとSbを捕捉する能力が低下し、その効果が得られない。したがって、0.3〜0.8質量%の範囲が好ましいことがわかった。
【0022】
また、本発明は、Sb濃度が0.5質量%以上、1.5質量%以下のPb−Sb系合金からなる正極格子を有する鉛蓄電池の製造方法において、正極活物質量(g)に対する負極活物質量(g)の比率をセル当たり、0.6以上に保つのが好ましい。
【0023】
なお、ここでのセル当たりの正極活物質量に対する負極活物質量の比率は、正極活物質であるPbOの質量と負極活物質であるPbおよび各種添加剤を含んだ質量との質量比をいう。
【0024】
本発明において、正極活物質密度は3.1g/cm以上、3.8g/cm以下であることが好ましい。
【0025】
すなわち、正極活物質は多孔性の物質であり、多孔度が高い、すなわち、低密度な活物質は、活物質内に空隙が多く存在し硫酸との反応性が良く、正極活物質の利用率が上昇する。その反面、活物質同士の結合力が弱くなるのでサイクル寿命性能が劣る欠点を有していた。これに対して、Sbは正極活物質同士の結合力を高める機能を有していることから、3.1g/cm以上、3.8g/cm以下の低密度な活物質でも容量が優れ、しかもサイクル使用においても寿命の優れた蓄電池を得ることができる。
【0026】
【参考例】
まず、参考例として、上述したようにSb濃度が0.5質量%以上、1.5質量%以下のPb−Sb系合金を正極格子に使用することにより、正極格子にSbを含まない制御弁式鉛蓄電池に比べて、優れたサイクル寿命性能を有していることを明らかにするために行った試験結果について述べる。その際、使用する電解液の比重の寿命性能に及ぼす影響についても併せ試験を行った。
【0027】
正極格子中のSb量がゼロを含む6種類のPb−Sb合金からなる鋳造格子を作製し、該格子に通常のペーストを充填・乾燥して、正極板を作製した。負極板には、Pb−0.07質量%Ca−1.3質量%Sn合金の鋳造格子を用い、該格子に通常のペーストを充填・乾燥を行い、作製したものを用いた。これら正極板3枚、負極板4枚を微細ガラス繊維セパレータを介して交互に積層し、電槽に挿入し、最終比重が1.25〜1.44になるような濃度の希硫酸を所定量注液後、電槽内で化成を行い、通常の制御弁を装着した定格容量、約7Ah(20hR)、公称電圧、12Vの制御弁式鉛蓄電池を製作した。なお、本実施例では、負極活物質中のオイル量は0質量%、正極活物質中のSn量は0質量%、負極活物質中のリグニン量は0.3質量%、セルあたりの負極活物質量/正極活物質量は0.8、正極活物質密度は3.2g/cmを適用した。
【0028】
上記蓄電池を下記の条件でサイクル寿命試験を行った。
【0029】
(サイクル寿命試験条件)
放電を1.75A(0.25CA)、放電終止電圧:1.7V/セルで行った後、充電を最大電流1.4A(0.2CA)で行い、蓄電池電圧が2.4V/セルに到達した時点で、0.35A(0.05CA)の定電流充電に切り替え、放電量の110%まで行った。なお、試験雰囲気温度は25℃で、約100サイクル毎に、上記放電条件での容量の確認を行い、容量が初期の50%に低下した時点を寿命とした。
【0030】
なお、この試験では、オイルの添加量、0質量%、Snの添加量、0質量%、負極活物質量/正極活物質量、0.8、正極活物質密度、3.2g/cmをそれぞれ適用した。
【0031】
試験結果を図1に示す。
【0032】
図1に示すように、正極格子内のSb量が0.5から1.5質量%の範囲の蓄電池は、約670〜800サイクルの寿命を示したのに対して、2質量%の蓄電池は400サイクル以下に低下した。この理由は、Sb量が多く、負極板に析出し、負極板が早期に劣化したためである。一方、0.3質量%の蓄電池は、Sbの効果が現れず、Sb量が0質量%の格子を用いた蓄電池と同様の特性を示し、短寿命になった。
【0033】
蓄電池に用いる電解液濃度(比重)に関しては、1.29より低くなると、短寿命になった。その理由は、電解液比重が低いと、希硫酸中のSbの溶解度が増加し、負極板に析出する量が多くなり、負極板を劣化させたためである。一方、電解液比重が1.4より高くなった場合も短寿命になった。これは、高比重により正極活物質が軟化・脱落したためである。
【0034】
以上のように、制御弁式鉛蓄電池において、サイクル使用における短寿命を改善するためにSbを含有する正極格子を用いる場合に、該Sb量は0.5〜1.5質量%の範囲が好ましいことがわかる。また、電解液比重は、1.29以上を用いるのがSbの溶出の抑制に有効であるが、比重が高くなりすぎると正極活物質の軟化が起こるので1.4が限度といえる。
【0035】
【実施例】
次に、本発明の効果を明確にするために実施例に基づき詳細に説明する。
【0036】
(実施例1)
実施例1では、負極活物質に添加されているオイルが正極格子から溶出したSbの負極板への析出を抑制する機能を有していることを明確にするために行った試験結果について述べる。
【0037】
正極格子中のSb量がゼロを含み6種類の正極板を作成し、これらと負極活物質中のオイルの添加量がゼロを含めて8種類の極板とを組み合わせて、それ以外は、参考例と同じ処方により定格容量約7Ah、公称電圧12Vの制御弁式鉛蓄電池を作製した。オイルには、鎖状構造のパラフィン系炭化水素をベースにしたオイルを使用した。また、電解液比重は、1.32(20℃)、正極活物質中のSn量は0質量%、負極活物質中のリグニン量は0.3質量%、セルあたりの負極活物質量/正極活物質量は0.8、正極活物質密度は3.2g/cmをそれぞれ適用した。
【0038】
上記、蓄電池を参考例と同じ条件による、サイクル寿命試験を行った。その結果を図2に示す。
【0039】
図2に示すように、正極格子中のSb量が0.5から1.5質量%の範囲で、オイル量が0質量%の蓄電池のサイクル寿命が約700サイクルであったのに対して、オイル添加量が0.3質量%以上、0.7質量%の蓄電池が800〜1000サイクルの寿命を示し、オイルの効果が認められた。しかし、0.8質量%では寿命が低下していた。その理由は、オイルが多すぎて負極板表面を覆う形になり、負極板が十分に機能しなかったためと考えられる。Sb量が2.0質量%の蓄電池は、Sbの弊害が大きく、オイルの添加量に関係なく負極板が劣化し、寿命になった。一方、Sb量が0あるいは0.3質量%の蓄電池では、オイルの量に関係なくSbがその機能が十分でないかあるいは全くないことにより正極板の劣化により短寿命になった。
【0040】
以上のように、負極活物質中に0.3質量%以上、0.7質量%以下のオイルを添加することによって、該オイルが正極板から溶出してきたSbが負極に析出するのを抑制し、負極の劣化を防止し、寿命性能が改善されることがわかった。
【0041】
(実施例2)
実施例2では、正極活物質中にSnが存在すると、正極格子から溶出してきたSbと化合物を形成し、Sbが電解液中に溶出するのを抑制する効果を有していることを明らかにするために行った試験結果について述べる。
【0042】
正極格子中のSb量がゼロを含み6種類の正極板を作成し、これら極板と、正極活物質中のSnの添加量がゼロを含めて9種類の極板とを組み合せて、それ以外は、参考例と同じ処方により、定格容量約7Ah、公称電圧12Vの制御弁式鉛蓄電池を作製した。なお、正極格子質量(g)/正極活物質量(g)は1.0に設定した。
【0043】
この場合、オイル量は、0.3質量%、電解液比重は、1.32(20℃)、セルあたりの負極活物質量/正極活物質量は0.8、正極活物質密度は3.2g/cmをそれぞれ適用した。
【0044】
上記、蓄電池を参考例と同じ条件による、サイクル寿命試験を行った。その結果を図3に示す。
【0045】
図3に示すように、正極格子中のSb量が1.0質量%から1.5質量%の範囲の蓄電池で、正極活物質中のSn量が1.5>T(Sn質量%)≧0.15×S(Sb質量%)+0.05を満足する範囲においては、Snの効果が有効に機能し、負極活物質に添加されたオイルの効果が相まって、1000サイクル以上の優れた寿命性能を示した。本処方では、Sbの弊害を抑制する効果が大きく、サイクル寿命性能が大幅に改善されたので、Sb量0.5質量%の蓄電池は、Sbが少ないためのサイクル寿命における負の効果が現れ、正極板の劣化により約900サイクルに留まった。
【0046】
Sn量の影響に関しては、1.5質量%以上になると、正極格子中のSb量にかかわりなく、サイクル寿命が大幅に低下した。これは、Snの量が多いと正極とSnとの間で局部電池が形成され、自己放電が大きくなったためと考えられる。
【0047】
また、正極格子中のSb量が2.0質量%になるとSnの効果よりも、Sbの弊害が上回り、短寿命であった。
【0048】
本実施例では、オイルの添加量は、0.3質量%に固定したが、添加量が0.3〜0.7質量%の範囲で同様のサイクル寿命傾向が得られた。
【0049】
また、正極格子質量(g)/正極活物質質量(g)0.5〜1.2の範囲において、Snが有効に作用することを他の試験で確認した。
【0050】
(実施例3)
実施例3では、負極板に添加されているリグニンの量を多くすると、正極板から溶出してきたSbを捕捉し、該Sbが負極板に及ぼす弊害を抑制する機能を有していることを明確にするために行った試験結果について述べる。
【0051】
正極格子中のSb量がゼロを含み6種類の正極板を作製し、これら極板と負極活物質中のリグニンの量が異なる6種類の極板とを組み合わせ、それ以外は参考例と同じ処方により定格容量約7Ah、公称電圧12Vの制御弁式鉛蓄電池を作製した。
【0052】
この場合、オイルの添加量は、0.3質量%、正極活物質中のSn量は、0質量%、電解液比重は、1.32(20℃)、セルあたりの負極活物質量/正極活物質量は0.8、正極活物質密度は3.2g/cmをそれぞれ適用した。
【0053】
上記、蓄電池を参考例と同じ条件による、サイクル寿命試験を行った。その結果を図4に示す。
【0054】
図4に示すように、正極格子中のSb量が0.5〜1.5質量%で、負極板中のリグニン量が0.3〜0.8質量%である蓄電池は良好なサイクル寿命性能を示した。リグニン量が0.8質量%より多くなるとリグニンが負極板表面を覆ってしまい負極板が本来の機能をしなくなり、サイクル寿命は急激に低下した。リグニンの添加量が0.3質量%より少なくなると、リグニンのSb捕捉機能が低下し、正極中のSb量に関係なくサイクル寿命が悪かった。
【0055】
また、正極格子中のSb量が2質量%になると、リグニンの効果よりもSbの弊害が上回り短寿命であった。
【0056】
本実施例では、負極活物質中のオイル量は、0.3質量%、正極活物質中のSn量は、0質量%にそれぞれ固定したが、オイルの添加量、0.2質量%以上、0.7質量%以下、正極活物質中のSn量、1.5>T(Snの質量%)≧0.15×S(Sbの質量%)+0.05が適用される範囲において、それぞれ単独あるいは組み合わせて適用しても同様の寿命傾向が得られた。
【0057】
(実施例4)
実施例4では、正極格子中にSbを含有する制御弁式鉛蓄電池において、正極活物質量に対する負極活物質量の比率を変えた場合の、Sbの負極に及ぼす弊害の程度を調べる試験を行った結果について述べる。
【0058】
正極活物質量が一定であって、正極格子中のSb量がゼロを含み6種類の正極板を作製し、前記正極活物質量に対する負極活物質量の比率が異なる5種類の負極板とを組み合わせて、それ以外は参考例と同じ処方により定格容量約7Ah、公称電圧12Vの制御弁式鉛蓄電池を作製した。
【0059】
これらに対して、オイルの添加量は0.3質量%、正極活物質中のSn量は0質量%、負極活物質中のリグニン量は負極原料に対して0.3質量%、電解液比重は、1.32(20℃)、正極活物質密度は3.2g/cmをそれぞれ適用した。
【0060】
上記、蓄電池を参考例と同じ条件によるサイクル寿命試験を行った。その結果を図5に示す。
【0061】
図5に示すように、正極格子中のSb量が0.5〜1.5質量%の範囲の蓄電池では、負極活物質量/正極活物質量が0.6以上であれば、良好なサイクル寿命を示したが、0.6より小さくなると、良好なサイクル寿命を示していたSb量範囲0.5〜1.5質量%であっても、負極が早期に劣化するために短寿命になった。Sb量が2.0質量%の蓄電池は、Sbの弊害が大きいために、負極活物質量/正極活物質量が0.6以上であってもサイクル寿命性能は改善されなかった。
【0062】
本実施例では、オイルの添加量は、0.3質量%、正極活物質中のSn量は、0質量%、負極活物質中のリグニン量は、0.3質量%に固定した例について説明したが、オイルの添加量、0.2質量%以上、0.7質量%以下、正極活物質中のSn量、1.5>T≧0.15×S+0.05の適用される範囲、負極活物質中のリグニン量、0.3質量%以上、0.8質量%以下について、それぞれ単独あるいは組み合わせて適用した場合、同様の寿命性能の傾向が得られた。
【0063】
(実施例5)
周知のとおり、正極板に低密度の活物質を適用すると、正極活物質の利用率が改善され、容量が増加するが、活物質間の結合力が弱いために短寿命の傾向にあったが、正極格子中にSbを含有していると該Sbが正極活物質同士の結合力を高める機能を有しており、初期性能が良く、しかも寿命性能の優れた制御弁式鉛蓄電池が得られることを明らかにするために行った試験結果について述べる。
【0064】
正極格子中のSb量がゼロを含み6種類の正極格子と活物質密度の異なる7種類の正極板とを組み合わせた蓄電池を作製した。オイルの添加量は、0質量%、正極活物質中のSn量は、0質量%、負極活物質中のリグニン量は、0.3質量%、電解液比重は1.32(20℃)、セル当たりの負極活物質量/正極活物質量は0.8をそれぞれ適用した。
【0065】
上記蓄電池の初期容量の評価および参考例と同じ条件によるサイクル寿命試験を行った。その結果を図6および図7にそれぞれ示す。
【0066】
図6に示すように、Sb濃度が0および0.3質量%の蓄電池は、正極活物質量の密度が3.3g/cm以下になると容量が低下したのに対して、Sb濃度0.5質量%以上では、正極活物質の結合力が高められ、3.1g/cmといった低密度の正極活物質でも優れた容量を示した。しかし、正極活物質密度が3g/cmになるとSb濃度が0.5質量%以上でも容量低下は避けられなかった。
【0067】
図7は、上記蓄電池をサイクル寿命試験に供した結果を示す。上述したように正極活物質密度3g/cmの蓄電池は初期から容量が低かったので試験には供しなかった。
【0068】
図7に示すように、Sb量がゼロあるいは0.3質量%の蓄電池は、正極活物質密度が3.5g/cmになるとサイクル寿命性能が低下してきたのに対して、Sb量0.5〜1.5質量%の蓄電池は3.1g/cmでも優れたサイクル寿命性能を有していた。
【0069】
しかし、Sb量2.0質量%の蓄電池は上述したと同じ理由でSbの弊害により短寿命であった。
【0070】
一方、Sb量、0および0.3%の蓄電池は、正極活物質が低密度では短寿命であったが、3.8g/cm以上になるとサイクル寿命性能がよくなった。これは高密度によって活物質同士の結合力がよくなったことが原因していると考えられる。
【0071】
本実施例では、負極活物質中のオイルの添加量は、0質量%、正極活物質中のSn量は、0質量%、負極活物質中のリグニン量は、0.3質量%、セルあたりの負極活物質量/正極活物質量は0.8にそれぞれ固定した場合について説明したが、オイル添加量、0.2質量%以上、0.7質量%以下、Sn添加量とSb量との関係1.5>T≧0.15×S+0.05が適用される範囲〔正極格子質量(g)/正極活物質質量(g):1.0〕、リグニン量、0.3質量%以上、0.8質量%以下、セル当たりの負極活物質量/正極活物質量0.6以上についてそれぞれ単独あるいはこれらの組み合わせを適用した場合にも同様の寿命性能傾向が得られた。
【0072】
なお、実施例においては、制御弁式鉛蓄電池について説明したが、Sb濃度0.5質量%以上、1.5質量%以下のPb−Sb系合金からなる正極格子とPb、Pb−CaあるいはPb−Ca−Sn合金からなる負極格子とを有する鉛蓄電池で、電解液が十分に存在する開放型の鉛蓄電池においても、オイル添加量、0.2質量%以上、0.7質量%以下、正極活物質中のSn添加量と正極格子中のSb量との関係1.5>T≧0.15×S+0.05の適用される範囲、負極活物質中のリグニン量、0.3質量%以上、0.8質量%以下、セル当たりの負極活物質量/正極活物質量0.6以上、正極活物質密度が3.1g/cm以上、3.8g/cm以下を適用することによって絶対値は異なるが制御弁式鉛蓄電池と同様の効果が得られるのを確認した。
【0073】
【発明の効果】
正・負極格子にSbを含まない正・負極板を用いた鉛蓄電池では、サイクル使用において充・放電条件によっては早期容量低下が発生する。その対策として正極格子にSb濃度0.5質量%以上、1.5質量%以下のPb−Sb系合金を用いることによって上記問題は解消されるが、該Sbが電解液中に溶出し、負極に析出すると負極の水素過電圧を下げ、水素ガスが発生し、制御弁式鉛蓄電池の特徴である、密閉反応機能のバランスが崩れ、その機能を失うと共に、負極板の性能が劣化する問題を抱えていた。これに対して、負極活物質中にオイルを一定量添加する、正極活物質中にSnを一定量添加する、負極活物質中にリグニンを一定量添加するあるいは/およびセル当たりの負極活物質量/正極活物質量の比を0.6以上にすることによって上記、Sbの弊害が抑制され、制御弁式鉛蓄電池あるいは開放型鉛蓄電池本来の優れたサイクル寿命性能が得られ、その工業的効果が極めて大である。
【図面の簡単な説明】
【図1】制御弁式鉛蓄電池における、正極格子中のSb濃度および電解液比重とサイクル寿命との関係を示す図。
【図2】実施例1の負極活物質中のオイルの添加量(質量%)とサイクル寿命との関係を示す図。
【図3】実施例2の正極活物質中のSn量(質量%)とサイクル寿命との関係を示す図。
【図4】実施例3の負極活物質中のリグニン量(質量%)とサイクル寿命との関係を示す図。
【図5】実施例4のセルあたりの負極活物質量(g)/正極活物質量(g)とサイクル寿命との関係を示す図。
【図6】実施例5の正極活物質密度と蓄電池容量との関係において、正極格子中のSb量(質量%)の影響を示す図。
【図7】実施例5の正極活物質密度と蓄電池のサイクル寿命との関係において、正極格子中のSb量(質量%)の影響を示す図。
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a method for manufacturing a lead storage battery.
[0002]
[Prior art]
  Among lead-acid batteries, control valve-type lead-acid batteries are particularly characterized by having no leakage and no maintenance characteristics. The leak-free liquid is a structure in which the electrolytic solution is impregnated and held only in the separator and no flowing electrolytic solution is present, and there is no leakage of the electrolytic solution even when the storage battery is placed horizontally. Non-maintenance refers to a characteristic in which maintenance is not required such as a replacement liquid because gas is not generated during normal charging due to the sealed reaction function that is a characteristic of the storage battery, and there is almost no decrease in the electrolyte.
[0003]
  Due to the excellent characteristics as described above, in recent years, the use of control valve type lead-acid batteries has been expanded in various fields. Accordingly, demands for high reliability, high energy density, and long life have been increasing.
[0004]
  The sealing reaction in the above-described control valve type lead-acid battery includes the following (1), (2) and (3)
It is shown by the formula.
(Positive electrode) H2O = 1 / 2O2+ 2H++ 2e・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (1)
(Negative electrode) Pb + 1 / 2O2+ 2H++ SO4 2-= PbSO4+ H2O (2)
PbSO4+ 2e= Pb + SO4 2-(3)
  As above, water (H2O) is decomposed and oxygen gas (O2However, as described above, the storage battery has a structure in which the electrolytic solution is impregnated and held only in the separator and the flowing electrolytic solution does not exist.2Easily moves to the negative electrode through the separator and reacts with Pb to form PbSO4And H2O is generated. That is, H lost in equation (1)2Since O is regenerated by the formula (2), the electrolyte does not decrease as a whole.
[0005]
  In addition, PbSO generated by the equation (2)4Is reduced to Pb by the negative electrode charging reaction as shown in formula (3), and no hydrogen gas (H2) is generated during charging at the negative electrode. That is, neither oxygen gas nor hydrogen gas is generated during charging.
[0006]
  However, when self-discharge of the negative electrode increases, excessive hydrogen gas is generated, and H in accordance with the above formulas (1), (2) and (3)2When the balance of the O regeneration cycle is lost and the negative electrode becomes insufficiently charged, and this continues, the negative electrode becomes PbSO4A so-called sulfation phenomenon occurs, resulting in a short life.
[0007]
  Therefore, Pb, Pb—Ca alloy or Pb—Ca—Sn alloy having a small amount of self-discharge is usually adopted for the positive / negative grid in the control valve type lead storage battery.
[0008]
  However, the above grid has no problem when using a trickle or float that is used while being constantly charged, but it is used in a cycle where charging / discharging is repeated continuously, especially in a usage state where the discharge amount is small and overcharged. Since oxidation proceeds too much, the portion is preferentially discharged at the time of discharge, and an insulating layer of lead sulfate is formed at the interface between the positive electrode lattice and the active material, so that the capacity is reduced early (early capacity reduction, or premature capacity loss). (Abbreviated as PCL for short) occurs.
[0009]
  Regarding the above-mentioned early capacity reduction, not only the control valve type lead storage battery, but also an open type in which Pb, Pb-Ca or Pb-Ca-Sn alloy lattice not containing Sb is used for the positive and negative electrodes, and the electrolyte is sufficiently present. A similar phenomenon is seen in lead-acid batteries.
[0010]
  As one of the above measures, Pb, Pb—Ca alloy or Pb—Ca—Sn alloy is used for the negative electrode lattice, and the Sb concentration is 0.5 mass% or more and 1.5 mass% or less for the positive electrode. A method using a Pb—Sb alloy lattice having a low concentration (referred to as low antimony) has been proposed. Due to the presence of Sb in the positive electrode, the cause is not clear, but the above-described early capacity reduction in cycle use does not occur. However, if the Sb is eluted from the positive electrode into the electrolyte and deposited on the negative electrode, the hydrogen overvoltage of the negative electrode is lowered, the generation of hydrogen gas is promoted, the balance of the above-described sealed reaction cycle is lost, and the function of the control valve type lead-acid battery is reduced. The lost negative electrode plate becomes insufficiently charged and the storage battery performance deteriorates. Even in an open-type storage battery, there is a problem that the charging efficiency is lowered due to a decrease in hydrogen overvoltage, the decrease in the electrolyte is accelerated, and the performance is deteriorated.
[0011]
[Problems to be solved by the invention]
  In a lead-acid battery having a positive electrode lattice made of a Pb—Sb-based alloy having an Sb concentration of 0.5% by mass or more and 1.5% by mass or less, early capacity reduction is prevented by the presence of Sb, and Sb to the negative electrode An object of the present invention is to provide a lead-acid storage battery manufacturing method and a lead-acid storage battery that have an excellent cycle life while suppressing adverse effects as much as possible.
[0012]
[Means for Solving the Problems]
  As a means for solving the problem, according to claim 1, in a method for producing a lead-acid battery having a positive electrode lattice made of a Pb—Sb-based alloy having an Sb concentration of 0.5 mass% or more and 1.5 mass% or less. In the negative electrode active material, 0.3 mass% or more and 0.7 mass% or less of oil with respect to the mass of the negative electrode active material is added, and the electrolyte specific gravity is in the range of 1.29 to 1.4. The amount of Sn is less than 1.5% by mass, the amount of lignin in the negative electrode active material is in the range of 0.3 to 0.8% by mass, and the ratio of the negative electrode active material amount (g) to the positive electrode active material amount (g) is It is characterized by being 0.6 or more per cell.
[0013]
  In a lead-acid battery, particularly a control valve-type lead-acid battery, when a Pb—Sb alloy having a Sb concentration of 0.5% by mass or more and 1.5% by mass or less is used for the positive electrode lattice, the cycle of the battery is caused by the presence of Sb. Although the early capacity drop during use can be suppressed, when Sb elutes in the electrolyte and deposits on the negative electrode, the hydrogen overvoltage is lowered, the generation of hydrogen gas is promoted, the balance of the above-mentioned closed reaction cycle is lost, and the negative electrode plate is charged. There was a problem that it became insufficient, and it was sulphated and the performance deterioration of the storage battery was promoted. As one of the means for suppressing the harmful effects of Sb, it has been found that the oil added to the negative electrode active material has the effect of suppressing the precipitation of Sb eluted from the positive electrode on the negative electrode, and the present invention has found that It is based on. When the amount added is less than 0.3% by mass, the function of supplementing Sb of the oil is not sufficient, and when it exceeds 0.7% by mass, the oil covers the surface of the negative electrode plate and the performance of the negative electrode plate deteriorates. It turned out to be undesirable. Therefore, 0.3 mass% or more and 0.7 mass% or less are suitable.
[0014]
  The oil here means oil obtained by producing petroleum (crude oil). As a result of testing various oils, the inventors of the present application have found that paraffinic hydrocarbon oils having a chain structure are particularly effective for the purpose of the present invention.
[0015]
  In addition, the present invention is characterized in that a positive electrode plate containing Sn in the positive electrode active material is used.
[0016]
  That is, when Sn is contained in the positive electrode active material, Sb and Sn eluted from the positive electrode lattice produce an Sb-Sn compound, and Sb stays in the positive electrode active material and suppresses precipitation on the negative electrode. I found it effective.
[0017]
  The appropriate amount of Sn is related to the amount of Sb contained in the positive electrode lattice. The amount of Sb contained in the positive electrode lattice is S (mass%), and the amount of Sn contained in the positive electrode active material is T (mass%). It was found that by maintaining the relationship of 1.5> T ≧ 0.15 × S + 0.05, Sn effectively acts and suppresses elution of Sb. That is, it is necessary to suppress the Sn amount to a mass% smaller than the maximum Sb content of 1.5 mass% contained in the positive electrode lattice at the maximum. When the Sn amount is 1.5% or more, the adverse effect of Sn appears regardless of the presence of Sb, and the performance of the storage battery is degraded. Further, the lower limit value of the addition amount is related to the Sb concentration in the positive electrode lattice, and it was found from the test results that the relationship of T ≧ 0.15 × S + 0.05 needs to be maintained.
[0018]
  It was also found that the above relationship functions effectively when the positive electrode lattice mass (g) / positive electrode active material amount (g) is in the range of 0.5 to 1.2.
[0019]
  The present invention is also characterized in that a negative electrode plate containing lignin in the negative electrode active material is used.
[0020]
  The amount of lignin in the negative electrode active material is preferably in the range of 0.3 to 0.8% by mass. In addition, the quantity of lignin here says the value measured by the ultraviolet absorption spectrum method.
[0021]
  That is, when Sb eluted from the positive electrode was deposited on the negative electrode, it was found that the lignin captures Sb, thereby suppressing the adverse effects of Sb. However, if the amount of lignin is more than 0.8% by mass, the lignin covers the surface of the negative electrode plate, resulting in performance deterioration of the negative electrode plate. On the other hand, if the amount is less than 0.3% by mass, the ability to capture Sb is reduced, and the effect cannot be obtained. Therefore, it turned out that the range of 0.3-0.8 mass% is preferable.
[0022]
  Further, the present invention provides a method for producing a lead-acid battery having a positive electrode lattice made of a Pb—Sb-based alloy having an Sb concentration of 0.5% by mass or more and 1.5% by mass or less, and a negative electrode with respect to the positive electrode active material amount (g). The ratio of the amount of active material (g) is preferably maintained at 0.6 or more per cell.
[0023]
  Here, the ratio of the amount of the negative electrode active material to the amount of the positive electrode active material per cell is PbO which is the positive electrode active material.2The mass ratio between the mass of the negative electrode active material and the mass containing Pb and various additives.
[0024]
  In the present invention, the positive electrode active material density is 3.1 g / cm.33.8 g / cm3The following is preferable.
[0025]
  That is, the positive electrode active material is a porous material, and a high-porosity, that is, low-density active material has many voids in the active material and is highly reactive with sulfuric acid. Rises. On the other hand, since the bonding force between the active materials is weakened, the cycle life performance is inferior. On the other hand, Sb has a function of increasing the bonding strength between the positive electrode active materials, so 3.1 g / cm.33.8 g / cm3Even in the following low-density active materials, a storage battery having excellent capacity and excellent life even in cycle use can be obtained.
[0026]
[Reference example]
  First, as a reference example, as described above, by using a Pb—Sb alloy having a Sb concentration of 0.5% by mass or more and 1.5% by mass or less for the positive electrode lattice, the control valve does not contain Sb in the positive electrode lattice. The results of tests conducted to clarify that the battery has an excellent cycle life performance compared to a lead-acid battery. At that time, the effect of the specific gravity of the electrolyte used on the life performance was also tested.
[0027]
  A cast grid made of six types of Pb—Sb alloys containing zero Sb in the positive grid was prepared, and a normal paste was filled into the grid and dried to prepare a positive plate. For the negative electrode plate, a Pb-0.07 mass% Ca-1.3 mass% Sn alloy cast grid was used, and the grid was filled with a normal paste and dried, and then used. Three positive electrode plates and four negative electrode plates are alternately laminated through fine glass fiber separators, inserted into a battery case, and a predetermined amount of dilute sulfuric acid having a concentration such that the final specific gravity is 1.25 to 1.44. After injecting the solution, chemical conversion was performed in the battery case, and a control valve type lead storage battery having a rated capacity of about 7 Ah (20 hR), a nominal voltage, and 12 V with a normal control valve mounted thereon was manufactured. In this example, the amount of oil in the negative electrode active material was 0% by mass, the amount of Sn in the positive electrode active material was 0% by mass, the amount of lignin in the negative electrode active material was 0.3% by mass, and the negative electrode active material per cell. Substance amount / positive electrode active material amount is 0.8, positive electrode active material density is 3.2 g / cm3Applied.
[0028]
  The storage battery was subjected to a cycle life test under the following conditions.
[0029]
(Cycle life test conditions)
After discharging at 1.75 A (0.25 CA) and final discharge voltage: 1.7 V / cell, charging is performed at a maximum current of 1.4 A (0.2 CA), and the storage battery voltage reaches 2.4 V / cell. At that time, switching to constant current charging of 0.35 A (0.05 CA) was performed up to 110% of the discharge amount. The test atmosphere temperature was 25 ° C., and the capacity under the above discharge conditions was confirmed every about 100 cycles, and the time when the capacity decreased to the initial 50% was regarded as the life.
[0030]
  In this test, the addition amount of oil, 0 mass%, the addition amount of Sn, 0 mass%, the negative electrode active material amount / the positive electrode active material amount, 0.8, the positive electrode active material density, 3.2 g / cm.3Respectively.
[0031]
  The test results are shown in FIG.
[0032]
  As shown in FIG. 1, a storage battery with a Sb content in the positive electrode grid in the range of 0.5 to 1.5 mass% showed a life of about 670 to 800 cycles, whereas a 2 mass% storage battery It decreased to 400 cycles or less. The reason is that the amount of Sb is large and deposited on the negative electrode plate, and the negative electrode plate deteriorated early. On the other hand, the 0.3 mass% storage battery did not show the effect of Sb, showed the same characteristics as the storage battery using a lattice with 0 mass% Sb, and had a short life.
[0033]
  Regarding the electrolyte concentration (specific gravity) used for the storage battery, when it was lower than 1.29, the life was shortened. The reason is that when the electrolyte specific gravity is low, the solubility of Sb in dilute sulfuric acid increases, the amount deposited on the negative electrode plate increases, and the negative electrode plate is deteriorated. On the other hand, when the specific gravity of the electrolyte was higher than 1.4, the life was shortened. This is because the positive electrode active material was softened and dropped due to the high specific gravity.
[0034]
  As described above, in the control valve type lead-acid battery, when using a positive electrode grid containing Sb in order to improve the short life in cycle use, the Sb content is preferably in the range of 0.5 to 1.5 mass%. I understand that. In addition, using an electrolyte having a specific gravity of 1.29 or more is effective in suppressing the elution of Sb, but if the specific gravity is too high, the positive electrode active material is softened, so 1.4 can be said to be the limit.
[0035]
【Example】
  Next, in order to clarify the effect of the present invention, it explains in detail based on an example.
[0036]
Example 1
  In Example 1, the results of tests conducted to clarify that the oil added to the negative electrode active material has a function of suppressing the precipitation of Sb eluted from the positive electrode lattice onto the negative electrode plate will be described.
[0037]
  6 types of positive plates including zero amount of Sb in the positive electrode lattice were prepared, and these were combined with 8 types of plate including zero amount of oil in the negative electrode active material. A control valve type lead-acid battery having a rated capacity of about 7 Ah and a nominal voltage of 12 V was prepared according to the same formulation as the example. As the oil, an oil based on a paraffinic hydrocarbon having a chain structure was used. The electrolyte specific gravity is 1.32 (20 ° C.), the Sn amount in the positive electrode active material is 0% by mass, the lignin amount in the negative electrode active material is 0.3% by mass, the negative electrode active material amount per cell / positive electrode Active material amount is 0.8, positive electrode active material density is 3.2 g / cm3Respectively.
[0038]
  The above-mentioned storage battery was subjected to a cycle life test under the same conditions as in the reference example. The result is shown in FIG.
[0039]
  As shown in FIG. 2, the cycle life of a storage battery having an Sb content in the positive electrode lattice in the range of 0.5 to 1.5 mass% and an oil content of 0 mass% was about 700 cycles, A storage battery having an oil addition amount of 0.3 mass% or more and 0.7 mass% showed a life of 800 to 1000 cycles, and the effect of oil was recognized. However, the lifetime was reduced at 0.8% by mass. The reason is considered to be that there was too much oil to cover the surface of the negative electrode plate, and the negative electrode plate did not function sufficiently. A storage battery having an Sb content of 2.0 mass% was greatly affected by Sb, and the negative electrode plate deteriorated and reached the end of its life regardless of the amount of oil added. On the other hand, in a storage battery having an Sb content of 0 or 0.3% by mass, the life of the positive electrode plate was shortened due to the deterioration of the positive electrode plate because Sb did not function sufficiently or not at all regardless of the amount of oil.
[0040]
  As described above, by adding 0.3% by mass or more and 0.7% by mass or less of oil to the negative electrode active material, it is possible to suppress Sb that has been eluted from the positive electrode plate from being precipitated on the negative electrode. It was found that the deterioration of the negative electrode was prevented and the life performance was improved.
[0041]
(Example 2)
  In Example 2, when Sn is present in the positive electrode active material, it is clearly shown that it has an effect of forming a compound with Sb eluted from the positive electrode lattice and suppressing the dissolution of Sb into the electrolyte. The results of the tests conducted for this purpose will be described.
[0042]
  Six kinds of positive plates including zero in the positive electrode lattice including zero are prepared, and these electrode plates are combined with nine kinds of positive plates including the amount of Sn added in the positive electrode active material. Produced a control valve type lead-acid battery having a rated capacity of about 7 Ah and a nominal voltage of 12 V according to the same formulation as the reference example. The positive electrode lattice mass (g) / positive electrode active material amount (g) was set to 1.0.
[0043]
  In this case, the oil amount is 0.3 mass%, the electrolyte specific gravity is 1.32 (20 ° C.), the negative electrode active material amount / positive electrode active material amount per cell is 0.8, and the positive electrode active material density is 3. 2g / cm3Respectively.
[0044]
  The above-mentioned storage battery was subjected to a cycle life test under the same conditions as in the reference example. The result is shown in FIG.
[0045]
  As shown in FIG. 3, in the storage battery in which the amount of Sb in the positive electrode lattice is in the range of 1.0 mass% to 1.5 mass%, the amount of Sn in the positive electrode active material is 1.5> T (Sn mass%) ≧ In the range satisfying 0.15 × S (Sb mass%) + 0.05, the effect of Sn functions effectively, and combined with the effect of the oil added to the negative electrode active material, excellent life performance of 1000 cycles or more showed that. In this prescription, the effect of suppressing the harmful effects of Sb is great, and the cycle life performance is greatly improved. Therefore, a storage battery with an Sb content of 0.5% by mass has a negative effect on the cycle life due to low Sb, Due to the deterioration of the positive electrode plate, it remained at about 900 cycles.
[0046]
  Regarding the influence of the Sn amount, when it was 1.5% by mass or more, the cycle life was greatly reduced regardless of the Sb amount in the positive electrode lattice. This is considered to be because when the amount of Sn is large, a local battery is formed between the positive electrode and Sn and self-discharge increases.
[0047]
  Further, when the amount of Sb in the positive electrode lattice was 2.0% by mass, the effect of Sb exceeded the effect of Sn, and the life was short.
[0048]
  In this example, the amount of oil added was fixed at 0.3% by mass, but the same cycle life tendency was obtained when the amount added was in the range of 0.3 to 0.7% by mass.
[0049]
  Further, it was confirmed by other tests that Sn effectively acts in the range of positive electrode lattice mass (g) / positive electrode active material mass (g) of 0.5 to 1.2.
[0050]
(Example 3)
  In Example 3, it is clear that when the amount of lignin added to the negative electrode plate is increased, Sb eluted from the positive electrode plate is captured, and the Sb has a function of suppressing adverse effects on the negative electrode plate. The results of tests conducted to make this
[0051]
  Six types of positive plates including zero Sb in the positive electrode lattice were prepared, and these plates were combined with six types of plates with different amounts of lignin in the negative electrode active material. A control valve type lead-acid battery having a rated capacity of about 7 Ah and a nominal voltage of 12 V was produced.
[0052]
  In this case, the amount of oil added is 0.3% by mass, the amount of Sn in the positive electrode active material is 0% by mass, the specific gravity of the electrolyte is 1.32 (20 ° C.), the amount of negative electrode active material per cell / positive electrode Active material amount is 0.8, positive electrode active material density is 3.2 g / cm3Respectively.
[0053]
  The above-mentioned storage battery was subjected to a cycle life test under the same conditions as in the reference example. The result is shown in FIG.
[0054]
  As shown in FIG. 4, the storage battery in which the amount of Sb in the positive electrode lattice is 0.5 to 1.5 mass% and the amount of lignin in the negative electrode plate is 0.3 to 0.8 mass% is good cycle life performance. showed that. When the amount of lignin was more than 0.8% by mass, the lignin covered the surface of the negative electrode plate, the negative electrode plate did not perform its original function, and the cycle life decreased rapidly. When the amount of lignin added was less than 0.3% by mass, the Sb trapping function of lignin was lowered, and the cycle life was poor regardless of the amount of Sb in the positive electrode.
[0055]
  Further, when the amount of Sb in the positive electrode lattice was 2% by mass, the adverse effect of Sb exceeded the effect of lignin and the life was short.
[0056]
  In this example, the amount of oil in the negative electrode active material was fixed at 0.3% by mass, and the amount of Sn in the positive electrode active material was fixed at 0% by mass. However, the amount of oil added was 0.2% by mass or more, 0.7 mass% or less, Sn amount in the positive electrode active material, and 1.5> T (mass% of Sn) ≧ 0.15 × S (mass% of Sb) +0.05 each independently Or even when applied in combination, the same life tendency was obtained.
[0057]
Example 4
  In Example 4, in a valve-regulated lead-acid battery containing Sb in the positive electrode grid, a test was conducted to examine the degree of adverse effects of Sb on the negative electrode when the ratio of the negative electrode active material amount to the positive electrode active material amount was changed. We will describe the results.
[0058]
  5 types of negative electrode plates having a constant amount of positive electrode active material, 6 types of positive electrode plates including zero amount of Sb in the positive electrode lattice, and different ratios of the amount of negative electrode active material to the amount of positive electrode active material, In combination, a control valve type lead-acid battery having a rated capacity of about 7 Ah and a nominal voltage of 12 V was prepared in the same manner as in the reference example.
[0059]
  In contrast, the amount of oil added is 0.3% by mass, the amount of Sn in the positive electrode active material is 0% by mass, the amount of lignin in the negative electrode active material is 0.3% by mass with respect to the negative electrode material, and the specific gravity of the electrolyte 1.32 (20 ° C.), positive electrode active material density is 3.2 g / cm3Respectively.
[0060]
  The above-mentioned storage battery was subjected to a cycle life test under the same conditions as in the reference example. The result is shown in FIG.
[0061]
  As shown in FIG. 5, in the storage battery in which the amount of Sb in the positive electrode lattice is in the range of 0.5 to 1.5% by mass, if the negative electrode active material amount / the positive electrode active material amount is 0.6 or more, a good cycle Although the lifetime was shown, when it was smaller than 0.6, even if the Sb amount range was 0.5 to 1.5% by mass, which showed a good cycle life, the negative electrode was deteriorated early, so that the lifetime was shortened. It was. A storage battery having an Sb content of 2.0 mass% has a large negative effect of Sb, so that the cycle life performance was not improved even when the negative electrode active material amount / positive electrode active material amount was 0.6 or more.
[0062]
  In this example, the amount of oil added is 0.3% by mass, the amount of Sn in the positive electrode active material is 0% by mass, and the amount of lignin in the negative electrode active material is fixed at 0.3% by mass. However, the amount of oil added, 0.2% by mass or more and 0.7% by mass or less, the Sn amount in the positive electrode active material, the range in which 1.5> T ≧ 0.15 × S + 0.05 is applied, the negative electrode When the amount of lignin in the active material, 0.3% by mass or more and 0.8% by mass or less, was applied individually or in combination, the same trend of life performance was obtained.
[0063]
(Example 5)
  As is well known, when a low-density active material is applied to the positive electrode plate, the utilization factor of the positive electrode active material is improved and the capacity is increased. When Sb is contained in the positive electrode lattice, the Sb has a function of increasing the bonding force between the positive electrode active materials, and a control valve type lead-acid battery having good initial performance and excellent life performance can be obtained. The results of tests conducted to clarify this will be described.
[0064]
  A storage battery was produced by combining six types of positive electrode lattices including zero positive electrode lattices and seven types of positive electrode plates having different active material densities. The amount of oil added is 0% by mass, the amount of Sn in the positive electrode active material is 0% by mass, the amount of lignin in the negative electrode active material is 0.3% by mass, the electrolyte specific gravity is 1.32 (20 ° C.), The negative electrode active material amount / positive electrode active material amount per cell was 0.8.
[0065]
  The initial capacity of the storage battery was evaluated and a cycle life test was performed under the same conditions as in the reference example. The results are shown in FIGS. 6 and 7, respectively.
[0066]
  As shown in FIG. 6, the storage battery having Sb concentrations of 0 and 0.3% by mass has a density of the positive electrode active material amount of 3.3 g / cm 3.3The capacity decreased at the following, whereas when the Sb concentration was 0.5% by mass or more, the binding force of the positive electrode active material was increased and 3.1 g / cm 3.3Such a low-density positive electrode active material showed excellent capacity. However, the positive electrode active material density is 3 g / cm3Then, even when the Sb concentration was 0.5% by mass or more, a decrease in capacity was inevitable.
[0067]
  FIG. 7 shows the results of subjecting the storage battery to a cycle life test. As described above, the positive electrode active material density is 3 g / cm.3This battery was not subjected to the test because its capacity was low from the beginning.
[0068]
  As shown in FIG. 7, the storage battery with zero or 0.3 mass% Sb has a positive electrode active material density of 3.5 g / cm.3In contrast, the cycle life performance has been reduced, whereas a storage battery with an Sb content of 0.5 to 1.5 mass% is 3.1 g / cm.3But it had excellent cycle life performance.
[0069]
  However, a storage battery having an Sb amount of 2.0 mass% has a short life due to the harmful effects of Sb for the same reason as described above.
[0070]
  On the other hand, the storage batteries with Sb amounts of 0 and 0.3% had a short life when the positive electrode active material had a low density, but 3.8 g / cm3At the above, the cycle life performance improved. This is considered to be due to the fact that the bonding strength between the active materials is improved due to the high density.
[0071]
  In this example, the amount of oil added in the negative electrode active material is 0% by mass, the amount of Sn in the positive electrode active material is 0% by mass, the amount of lignin in the negative electrode active material is 0.3% by mass, and per cell. The amount of negative electrode active material / the amount of positive electrode active material was described as being fixed to 0.8. However, the amount of oil added was 0.2% by mass or more and 0.7% by mass or less, and the amount of Sn added and the amount of Sb Range in which relation 1.5> T ≧ 0.15 × S + 0.05 is applied [positive electrode lattice mass (g) / positive electrode active material mass (g): 1.0], lignin amount, 0.3 mass% or more, The same life performance tendency was obtained when 0.8% by mass or less and the amount of negative electrode active material per cell / positive electrode active material amount of 0.6 or more were used alone or in combination.
[0072]
  In the examples, the control valve type lead storage battery has been described. However, a positive electrode lattice made of a Pb—Sb alloy having an Sb concentration of 0.5% by mass or more and 1.5% by mass or less and Pb, Pb—Ca or Pb. -A lead storage battery having a negative electrode lattice made of a Ca-Sn alloy, and even in an open type lead storage battery in which an electrolyte is sufficiently present, the amount of oil added, 0.2 mass% or more, 0.7 mass% or less, positive electrode Relationship between Sn addition amount in active material and Sb amount in positive electrode lattice 1.5> T ≧ 0.15 × S + 0.05 applicable range, lignin amount in negative electrode active material, 0.3 mass% or more 0.8 mass% or less, negative electrode active material amount per cell / positive electrode active material amount 0.6 or more, positive electrode active material density 3.1 g / cm33.8 g / cm3Although the absolute value differs by applying the following, it confirmed that the effect similar to a control valve type lead acid battery was acquired.
[0073]
【The invention's effect】
  In a lead-acid battery using positive / negative electrode plates that do not contain Sb in the positive / negative electrode grid, an early capacity decrease occurs depending on charge / discharge conditions in cycle use. As a countermeasure, the above problem can be solved by using a Pb—Sb alloy having a Sb concentration of 0.5% by mass or more and 1.5% by mass or less for the positive electrode lattice. If it deposits on the negative electrode, the hydrogen overvoltage of the negative electrode is lowered, hydrogen gas is generated, the balance of the sealing reaction function that is characteristic of the control valve type lead storage battery is lost, the function is lost, and the performance of the negative electrode plate deteriorates. It was. In contrast, a certain amount of oil is added to the negative electrode active material, a certain amount of Sn is added to the positive electrode active material, a certain amount of lignin is added to the negative electrode active material, and / or the amount of the negative electrode active material per cell / By making the ratio of positive electrode active material amount 0.6 or more, the above-mentioned adverse effects of Sb are suppressed, and the excellent cycle life performance inherent in control valve type lead-acid batteries or open-type lead-acid batteries can be obtained. Is extremely large.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between Sb concentration and electrolyte specific gravity in a positive grid and cycle life in a control valve type lead-acid battery.
FIG. 2 is a graph showing the relationship between the amount of oil added (mass%) in the negative electrode active material of Example 1 and the cycle life.
3 is a graph showing the relationship between the Sn amount (% by mass) in the positive electrode active material of Example 2 and the cycle life. FIG.
4 is a graph showing the relationship between the amount of lignin (mass%) in the negative electrode active material of Example 3 and the cycle life. FIG.
5 is a graph showing the relationship between the amount of negative electrode active material per cell (g) / the amount of positive electrode active material (g) and the cycle life in Example 4. FIG.
6 is a graph showing the influence of the amount of Sb (mass%) in the positive electrode lattice in the relationship between the positive electrode active material density and the storage battery capacity in Example 5. FIG.
7 is a graph showing the influence of the amount of Sb (% by mass) in the positive electrode lattice in the relationship between the positive electrode active material density of Example 5 and the cycle life of the storage battery. FIG.

Claims (1)

Sb濃度が0.5質量%以上、1.5質量%以下のPb−Sb系合金からなる正極格子を有する鉛蓄電池の製造方法において、負極活物質中に負極活物質質量に対して0.3質量%以上、0.7質量%以下のオイルを添加し、電解液比重が1.29〜1.4の範囲、正極活物質中のSnの量が1.5質量%未満、負極活物質中のリグニン量が0.3〜0.8質量%の範囲、正極活物質量(g)に対する負極活物質量(g)の比率をセル当たり0.6以上とすることを特徴とする鉛蓄電池の製造方法。In the method for producing a lead-acid battery having a positive electrode lattice made of a Pb—Sb-based alloy having an Sb concentration of 0.5% by mass or more and 1.5% by mass or less, 0.3% of the negative electrode active material mass in the negative electrode active material More than mass% and less than 0.7 mass% oil is added, the electrolyte specific gravity is in the range of 1.29 to 1.4, the amount of Sn in the positive electrode active material is less than 1.5 mass %, The amount of lignin in the range of 0.3 to 0.8 mass %, and the ratio of the amount of negative electrode active material (g) to the amount of positive electrode active material (g) is 0.6 or more per cell. Production method.
JP2002357166A 2002-12-09 2002-12-09 Method for producing lead-acid battery Expired - Fee Related JP4904658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357166A JP4904658B2 (en) 2002-12-09 2002-12-09 Method for producing lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357166A JP4904658B2 (en) 2002-12-09 2002-12-09 Method for producing lead-acid battery

Publications (3)

Publication Number Publication Date
JP2004192870A JP2004192870A (en) 2004-07-08
JP2004192870A5 JP2004192870A5 (en) 2006-02-09
JP4904658B2 true JP4904658B2 (en) 2012-03-28

Family

ID=32757291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357166A Expired - Fee Related JP4904658B2 (en) 2002-12-09 2002-12-09 Method for producing lead-acid battery

Country Status (1)

Country Link
JP (1) JP4904658B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646572B2 (en) * 2004-08-27 2011-03-09 古河電池株式会社 Positive electrode plate for sealed lead-acid battery and sealed lead-acid battery using the positive electrode plate
JP5720947B2 (en) * 2011-11-01 2015-05-20 新神戸電機株式会社 Lead acid battery
JP2014207198A (en) * 2013-04-16 2014-10-30 新神戸電機株式会社 Control valve type lead-acid battery
JP6836315B2 (en) * 2015-03-19 2021-02-24 株式会社Gsユアサ Control valve type lead acid battery
JP6566193B2 (en) * 2015-05-29 2019-08-28 株式会社Gsユアサ Lead acid battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280358A (en) * 1990-03-28 1991-12-11 Shin Kobe Electric Mach Co Ltd Base of positive electrode for lead acid storage battery
JP3047463B2 (en) * 1990-11-27 2000-05-29 松下電器産業株式会社 Lead storage battery
JPH06342671A (en) * 1993-05-31 1994-12-13 Yuasa Corp Lead-acid battery
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP4000613B2 (en) * 1997-01-20 2007-10-31 株式会社ジーエス・ユアサコーポレーション Manufacturing method of sealed lead-acid battery
JP4041999B2 (en) * 1997-02-06 2008-02-06 株式会社ジーエス・ユアサコーポレーション Lead acid battery
JPH10270030A (en) * 1997-03-24 1998-10-09 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH11354123A (en) * 1998-06-04 1999-12-24 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2001028263A (en) * 1999-07-14 2001-01-30 Japan Storage Battery Co Ltd Lead-acid battery formation method
JP2002270215A (en) * 2001-03-08 2002-09-20 Shin Kobe Electric Mach Co Ltd Control valve type lead acid storage battery

Also Published As

Publication number Publication date
JP2004192870A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP5587523B1 (en) Lead acid battery
JP5061451B2 (en) Anode current collector for lead acid battery
JPH09306497A (en) Negative electrode plate for lead-acid battery
JP2008130516A (en) Liquid lead-acid storage battery
JP5656068B2 (en) Liquid lead-acid battery
JP4904658B2 (en) Method for producing lead-acid battery
JP2003142085A (en) Lead-acid battery
JPH11121028A (en) Sealed lead-acid battery
JP3728682B2 (en) Sealed lead acid battery
JP2004055323A (en) Control valve type lead-acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP7128482B2 (en) lead acid battery
JP2004014283A (en) Valve regulated lead battery
JP4356321B2 (en) Lead acid battery
JP2007035339A (en) Control valve type lead-acid storage battery
JP2004327299A (en) Sealed lead-acid storage battery
JP4896392B2 (en) Lead acid battery
KR870000967B1 (en) Sealed deep-cycle lead acid battery
JP2006079973A (en) Lead storage battery
JP2949839B2 (en) Negative gas absorption sealed lead-acid battery
JP2011159551A (en) Lead-acid storage battery
JPH10189029A (en) Manufacture for sealed lead storage battery
JP4742424B2 (en) Control valve type lead acid battery
JP4923399B2 (en) Lead acid battery
WO2024035663A2 (en) Titanium dioxide in flooded deep cycle lead-acid batteries

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4904658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees