JP2020167095A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2020167095A
JP2020167095A JP2019068345A JP2019068345A JP2020167095A JP 2020167095 A JP2020167095 A JP 2020167095A JP 2019068345 A JP2019068345 A JP 2019068345A JP 2019068345 A JP2019068345 A JP 2019068345A JP 2020167095 A JP2020167095 A JP 2020167095A
Authority
JP
Japan
Prior art keywords
positive electrode
intermediate pole
strap
lead
pole column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019068345A
Other languages
Japanese (ja)
Inventor
亮 田井中
Akira Tainaka
亮 田井中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2019068345A priority Critical patent/JP2020167095A/en
Priority to CN202020161362.XU priority patent/CN211320203U/en
Publication of JP2020167095A publication Critical patent/JP2020167095A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a lead-acid battery capable of preventing liquid leakage.SOLUTION: A lead-acid battery comprises a connection body which connects a first electrode plate disposed in an arbitrary first cell chamber to a second electrode plate disposed in a second cell chamber adjacent to the first cell chamber across a partition wall. The connection body has: a hole interior connection part which is disposed inside a through-hole provided on the partition wall; and a hole exterior connection part which is disposed outside the through-hole. The hole exterior connection part has a fragile portion which is located lower than the hole interior connection part.SELECTED DRAWING: Figure 1

Description

本発明は、鉛蓄電池に関する。 The present invention relates to a lead storage battery.

鉛蓄電池、特に始動用鉛蓄電池は、正極板と負極板及びセパレータで構成された極板群が、電槽内の隔壁(中仕切り)によって区画されたセル室内に収納され、隣接するセル室間で極板群同士が中間極柱を介して接続された構造が一般的である(例えば、特許文献1を参照)。隣り合うセル室間で隣り合う一対の中間極柱は、隔壁に設けられた貫通孔を通して、抵抗溶接によって互いに接続される。 In lead-acid batteries, especially lead-acid batteries for starting, a group of electrode plates composed of a positive electrode plate, a negative electrode plate, and a separator is housed in a cell chamber partitioned by a partition (partition) in the battery case, and between adjacent cell chambers. In general, a group of electrode plates is connected to each other via an intermediate electrode column (see, for example, Patent Document 1). A pair of intermediate pole columns adjacent to each other between adjacent cell chambers are connected to each other by resistance welding through through holes provided in the partition wall.

特許第5034543号公報Japanese Patent No. 5034543

中間極柱の抵抗溶接部に隔壁との密着性が低い部分があると、隣接するセル室間で気密性や液密性が損なわれる可能性がある。また、ポリプロピレン製の電槽は、鉛蓄電池を高温雰囲気で使用した場合に、隔壁にたわみが発生し易く、隔壁と抵抗溶接部との密着性が低下して隙間が発生し易い。この隙間を通して、一方のセル室内の電解液が隣り合う他方のセル室内に移動する現象(以下、液リークともいう)が発生する。液リークによって、一方のセル室の正極板と他方のセル室の負極板とがセルを構成すると、これら極板間でリーク電流が発生する。このリーク電流により、鉛蓄電池の内部抵抗が上昇し、電圧が低下する可能性がある。この液リークを解消するための方法として、特許文献1には、隔壁に改良を施すことが開示されている。 If the resistance welded portion of the intermediate pole column has a portion having low adhesion to the partition wall, the airtightness and liquidtightness between adjacent cell chambers may be impaired. Further, in the polypropylene battery case, when the lead storage battery is used in a high temperature atmosphere, the partition wall tends to be bent, the adhesion between the partition wall and the resistance welded portion is lowered, and a gap is likely to be generated. Through this gap, a phenomenon occurs in which the electrolytic solution in one cell chamber moves into the adjacent cell chamber (hereinafter, also referred to as liquid leak). When the positive electrode plate of one cell chamber and the negative electrode plate of the other cell chamber form a cell due to liquid leakage, a leak current is generated between these electrode plates. Due to this leakage current, the internal resistance of the lead-acid battery may increase and the voltage may decrease. As a method for eliminating this liquid leak, Patent Document 1 discloses that the partition wall is improved.

しかしながら、本発明者は、特許文献1に記載された隔壁のたわみとは異なる現象により、液リークが発生する可能性があることがわかった。
詳しく説明すると、鉛蓄電池を車両に搭載する際には、走行中に鉛蓄電池が振動することを抑制するために、蓋の上にステーと呼ばれる固定金具を載せて、その長さ方向両端のボルトを締め付けることにより、鉛蓄電池を車両に押さえつける。この締め付けは適切な力で行う必要がある。締め付け力が強過ぎると、電槽の外装や隔壁が弓状に変形するおそれがある。また、腐食による格子の伸び(グロース)により、正極板を支持する正極ストラップ及び正極中間極柱に反りが生じるおそれがある。これらの要因が重なると、中間極柱の抵抗溶接部と隔壁との間に隙間が生じる可能性があることがわかった。この隙間を通して液リークが発生する可能性がある。
However, the present inventor has found that a liquid leak may occur due to a phenomenon different from the deflection of the partition wall described in Patent Document 1.
To explain in detail, when mounting a lead-acid battery in a vehicle, in order to prevent the lead-acid battery from vibrating while driving, a fixing bracket called a stay is placed on the lid, and bolts at both ends in the length direction are placed. Press the lead-acid battery against the vehicle by tightening. This tightening must be done with an appropriate force. If the tightening force is too strong, the exterior of the battery case and the partition wall may be deformed in a bow shape. In addition, the growth of the lattice due to corrosion may cause warpage of the positive electrode strap and the positive electrode intermediate pole column that support the positive electrode plate. It was found that when these factors are combined, a gap may be formed between the resistance welded portion of the intermediate pole column and the partition wall. Liquid leakage may occur through this gap.

本発明は上記課題に着目してなされたものであって、液リークの発生を抑制可能な鉛蓄電池を提供することを目的とする。 The present invention has been made with attention to the above problems, and an object of the present invention is to provide a lead storage battery capable of suppressing the occurrence of liquid leakage.

上記課題を解決するために、本発明の一態様に係る鉛蓄電池は、任意の第1のセル室に配置される第1の極板を前記第1のセル室と隔壁を介して隣り合う第2のセル室に配置される第2の極板に接続する接続体、を備え、前記接続体は、前記隔壁に設けられた貫通孔内に配置される孔内接続部と、前記貫通孔の外側に配置される孔外接続部と、を有し、前記孔外接続部は、前記孔内接続部よりも下側に脆弱部を有する。 In order to solve the above problems, in the lead storage battery according to one aspect of the present invention, a first electrode plate arranged in an arbitrary first cell chamber is adjacent to the first cell chamber via a partition wall. A connecting body connecting to a second electrode plate arranged in the cell chamber of 2 is provided, and the connecting body includes an in-hole connecting portion arranged in a through hole provided in the partition wall and the through hole. It has an outer hole connection portion arranged on the outside, and the outer hole connection portion has a fragile portion below the inner hole connection portion.

本発明によれば、液リークの発生を抑制可能な鉛蓄電池を提供することができる。 According to the present invention, it is possible to provide a lead storage battery capable of suppressing the occurrence of liquid leakage.

図1は、本発明の第1実施形態に係る鉛蓄電池の構成例を示す断面図である。FIG. 1 is a cross-sectional view showing a configuration example of a lead storage battery according to the first embodiment of the present invention. 図2は、本発明の第1実施形態に係る正極接続体の構成例を示す側面図である。FIG. 2 is a side view showing a configuration example of the positive electrode connector according to the first embodiment of the present invention. 図3は、本発明の第1実施形態に係る正極接続体の塑性変形の例を示す図である。FIG. 3 is a diagram showing an example of plastic deformation of the positive electrode connector according to the first embodiment of the present invention. 図4は、本発明の第1実施形態に係る正極接続体の変形例1を示す断面図である。FIG. 4 is a cross-sectional view showing a modification 1 of the positive electrode connector according to the first embodiment of the present invention. 図5は、本発明の第1実施形態に係る正極接続体の変形例2を示す側面図である。FIG. 5 is a side view showing a modification 2 of the positive electrode connector according to the first embodiment of the present invention. 図6は、本発明の第1実施形態に係る正極接続体の変形例3を示す側面図である。FIG. 6 is a side view showing a modified example 3 of the positive electrode connector according to the first embodiment of the present invention. 図7は、本発明の第1実施形態に係る正極接続体の変形例4を示す側面図である。FIG. 7 is a side view showing a modified example 4 of the positive electrode connector according to the first embodiment of the present invention. 図8は、本発明の第1実施形態に係る正極接続体の変形例5を示す断面図である。FIG. 8 is a cross-sectional view showing a modified example 5 of the positive electrode connector according to the first embodiment of the present invention. 図9は、本発明の第1実施形態に係る正極接続体の変形例6を示す断面図である。FIG. 9 is a cross-sectional view showing a modified example 6 of the positive electrode connector according to the first embodiment of the present invention. 図10は、本発明の第2実施形態に係る鉛蓄電池の構成例を示す断面図である。FIG. 10 is a cross-sectional view showing a configuration example of the lead storage battery according to the second embodiment of the present invention. 図11は、本発明の第2実施形態に係る正極接続体の塑性変形の例を示す図である。FIG. 11 is a diagram showing an example of plastic deformation of the positive electrode connector according to the second embodiment of the present invention. 図12は、本発明の第3実施形態に係る鉛蓄電池の構成例を示す断面図である。FIG. 12 is a cross-sectional view showing a configuration example of the lead storage battery according to the third embodiment of the present invention. 図13は、本発明の第4実施形態に係る鉛蓄電池の構成例を示す断面図である。FIG. 13 is a cross-sectional view showing a configuration example of the lead storage battery according to the fourth embodiment of the present invention. 図14は、本発明の第4実施形態に係る正極接続体の構成例を示す側面図である。FIG. 14 is a side view showing a configuration example of the positive electrode connector according to the fourth embodiment of the present invention. 図15は、本発明の第4実施形態に係る正極接続体の塑性変形の例を示す図である。FIG. 15 is a diagram showing an example of plastic deformation of the positive electrode connector according to the fourth embodiment of the present invention. 図16は、本発明の第4実施形態に係る正極接続体の変形例を示す断面図である。FIG. 16 is a cross-sectional view showing a modified example of the positive electrode connector according to the fourth embodiment of the present invention. 図17は、本発明の第5実施形態に係る鉛蓄電池の構成例を示す断面図である。FIG. 17 is a cross-sectional view showing a configuration example of a lead storage battery according to a fifth embodiment of the present invention. 図18は、本発明の第5実施形態に係る正極接続体の構成例を示す側面図である。FIG. 18 is a side view showing a configuration example of the positive electrode connector according to the fifth embodiment of the present invention. 図19は、本発明の第5実施形態に係る正極接続体の塑性変形の例を示す図である。FIG. 19 is a diagram showing an example of plastic deformation of the positive electrode connector according to the fifth embodiment of the present invention. 図20は、本発明の第5実施形態に係る正極接続体の変形例を示す断面図である。FIG. 20 is a cross-sectional view showing a modified example of the positive electrode connector according to the fifth embodiment of the present invention.

<実施形態>
本発明の実施形態について説明する。なお、以下に説明する実施形態は本発明の一例を示したものであって、本発明は実施形態に限定されるものではない。また、実施形態には種々の変更又は改良を加えることが可能であり、そのような変更又は改良を加えた形態も本発明に含まれ得る。
<Embodiment>
An embodiment of the present invention will be described. The embodiments described below are examples of the present invention, and the present invention is not limited to the embodiments. In addition, various changes or improvements can be added to the embodiments, and the modified or improved embodiments may be included in the present invention.

以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。 In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimension, the ratio of the thickness of each device and each member, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.

以下の図面の記載では、X軸方向、Y軸方向及びZ軸方向を用いて、方向を示す場合がある。例えば、X軸方向は、後述する中間極柱12の厚み方向である。Y軸方向は、後述する中間極柱12の幅方向である。Z軸方向は、後述する中間極柱12の長手方向である。X軸方向、Y軸方向及びZ軸方向は、互いに直交する。XYZ軸は右手系をなす。 In the following drawings, the X-axis direction, the Y-axis direction, and the Z-axis direction may be used to indicate the direction. For example, the X-axis direction is the thickness direction of the intermediate pole column 12 described later. The Y-axis direction is the width direction of the intermediate pole column 12 described later. The Z-axis direction is the longitudinal direction of the intermediate pole column 12, which will be described later. The X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other. The XYZ axes form a right-handed system.

〔全体構成の説明〕
本発明の実施形態に係る鉛蓄電池は、従来公知のモノブロックタイプの電槽と、蓋と、6個の極板群とを有する。電槽は、隔壁により6個のセル室に区画されている。6個のセル室は電槽の長手方向に沿って配列されている。各セル室に1個の極板群が収納されている。各極板群は、複数枚の正・負極板と、これら正・負極板を隔離するセパレータと、同極性の極板の耳群を接続したストラップと、ストラップから立ち上がる中間極柱とを有する。
[Explanation of overall configuration]
The lead-acid battery according to the embodiment of the present invention has a conventionally known monoblock type battery case, a lid, and a group of six plates. The battery case is divided into 6 cell chambers by a partition wall. The six cell chambers are arranged along the longitudinal direction of the battery case. One electrode plate group is stored in each cell chamber. Each electrode plate group has a plurality of positive and negative electrode plates, a separator that separates the positive and negative electrode plates, a strap that connects the ear groups of the electrode plates of the same polarity, and an intermediate pole pillar that rises from the strap.

正極板は、正極活物質を含む合剤が保持された正極基板と、正極基板から上側に突出する耳とを有する。負極板は、負極活物質を含む合剤が保持された負極基板と、負極基板から上側に突出する耳とを有する。複数枚の正極板及び負極板は、セパレータを介して交互に配置されている。極板群を構成する負極板の枚数Mは正極板の枚数Mよりも1枚多い。なお、正極板の枚数Mの方が負極板の枚数Mよりも1枚多くても良いし、負極板の枚数Mと正極板の枚数Mとは同枚数でも良い。
負極板は袋状セパレータ内に収納されている。そして、負極板が入った袋状セパレータと正極板とを交互に重ねることで、負極板と正極板との間にセパレータが配置された状態となっている。なお、正極板を袋状セパレータに収納して、負極板と交互に重ねても良い。
The positive electrode plate has a positive electrode substrate on which a mixture containing a positive electrode active material is held, and an ear protruding upward from the positive electrode substrate. The negative electrode plate has a negative electrode substrate on which a mixture containing a negative electrode active material is held, and an ear protruding upward from the negative electrode substrate. A plurality of positive electrode plates and negative electrode plates are alternately arranged via a separator. The number M n of the negative electrode plates constituting the electrode plate group is one more than the number M p of the positive electrode plates. Incidentally, the direction of the number M p of the positive electrode plate may be one than many number M n of the negative electrode plate, may be the same number of sheets and the number M p of the number M n and the positive electrode plate of the negative electrode plate.
The negative electrode plate is housed in a bag-shaped separator. Then, by alternately stacking the bag-shaped separator containing the negative electrode plate and the positive electrode plate, the separator is arranged between the negative electrode plate and the positive electrode plate. The positive electrode plate may be stored in the bag-shaped separator and alternately stacked with the negative electrode plate.

<第1実施形態>
図1は、本発明の第1実施形態に係る鉛蓄電池100の構成例を示す断面図である。図2は、本発明の第1実施形態に係る正極接続体110Aの構成例を示す側面図である。図1の断面図は、図2の側面図をX−Z面で切断した断面に対応している。X−Z面とは、X軸方向及びZ軸方向に平行な面である。図1に示すように、第1実施形態に係る鉛蓄電池100は、隔壁3を介して区画された6個のセル室1−1、1−2、…1−6(セル室1−1〜1−6は図示せず)を有する。セル室1−1〜1−6には、それぞれ、複数の正極板4Aと、複数の正極板4Aの各耳を支持する正極ストラップ11Aと、複数の負極板4Bと、複数の負極板4Bの各耳を支持する負極ストラップ11Bとが配置されている。また、セル室1−1には、正極ストラップ11Aに接続する正極中間極柱12Aが配置されている。正極ストラップ11A及び正極中間極柱12Aは、鉛又は鉛合金で構成されている。正極ストラップ11A及び正極中間極柱12Aは、鋳型を用いて一体成型されており、1つの部品として正極接続体110Aを構成している。
<First Embodiment>
FIG. 1 is a cross-sectional view showing a configuration example of the lead storage battery 100 according to the first embodiment of the present invention. FIG. 2 is a side view showing a configuration example of the positive electrode connector 110A according to the first embodiment of the present invention. The cross-sectional view of FIG. 1 corresponds to a cross section of the side view of FIG. 2 cut along the XX plane. The XZ plane is a plane parallel to the X-axis direction and the Z-axis direction. As shown in FIG. 1, the lead-acid battery 100 according to the first embodiment has six cell chambers 1-1, 1-2, ... 1-6 (cell chambers 1-1 to 1 to 1) partitioned via a partition wall 3. 1-6 is not shown). In the cell chambers 1-1 to 1-6, a plurality of positive electrode plates 4A, a positive electrode strap 11A supporting each ear of the plurality of positive electrode plates 4A, a plurality of negative electrode plates 4B, and a plurality of negative electrode plates 4B, respectively. A negative electrode strap 11B that supports each ear is arranged. Further, in the cell chamber 1-1, a positive electrode intermediate pole column 12A connected to the positive electrode strap 11A is arranged. The positive electrode strap 11A and the positive electrode intermediate pole column 12A are made of lead or a lead alloy. The positive electrode strap 11A and the positive electrode intermediate pole column 12A are integrally molded using a mold, and constitute the positive electrode connector 110A as one component.

セル室1−1に隣接するセル室1−2には、負極ストラップ11Bに接続する負極中間極柱12Bが配置されている。負極ストラップ11B及び負極中間極柱12Bは、鉛又は鉛合金で構成されている。負極ストラップ11B及び負極中間極柱12Bは、鋳型を用いて一体成型されており、1つの部品として負極接続体110Bを構成している。正極接続体110Aと、負極接続体110Bとは、互いに同一の形状で、且つ、互いに同一の大きさを有する。なお、正極接続体110Aと負極接続体110Bは、互いに異なる形状を有しても良いし、互いに異なる大きさを有しても良い。 In the cell chamber 1-2 adjacent to the cell chamber 1-1, a negative electrode intermediate pole column 12B connected to the negative electrode strap 11B is arranged. The negative electrode strap 11B and the negative electrode intermediate pole column 12B are made of lead or a lead alloy. The negative electrode strap 11B and the negative electrode intermediate pole column 12B are integrally molded using a mold, and the negative electrode connecting body 110B is formed as one component. The positive electrode connector 110A and the negative electrode connector 110B have the same shape and the same size as each other. The positive electrode connector 110A and the negative electrode connector 110B may have different shapes or different sizes.

セル室1−1に配置された正極中間極柱12Aと、セル室1−2に配置された負極中間極柱12Bとは、隔壁3を介して互いに隣り合い、且つ、セル室1−1とセル室1−2との間の隔壁3に設けられた貫通孔3Hを通して互いに接続されている。例えば、セル室1−1に配置された正極中間極柱12Aとセル室1−2に配置された負極中間極柱12Bとは、貫通孔3Hを通して抵抗溶接されている。貫通孔3H内には、正極中間極柱12Aと負極中間極柱12Bとが抵抗溶接されることにより、孔内接続部(以下、抵抗溶接部という)123が形成されている。 The positive electrode intermediate pole pillar 12A arranged in the cell chamber 1-1 and the negative electrode intermediate pole pillar 12B arranged in the cell chamber 1-2 are adjacent to each other via the partition wall 3 and are adjacent to each other with the cell chamber 1-1. They are connected to each other through a through hole 3H provided in the partition wall 3 between the cell chambers 1-2. For example, the positive electrode intermediate pole column 12A arranged in the cell chamber 1-1 and the negative electrode intermediate pole column 12B arranged in the cell chamber 1-2 are resistance welded through the through hole 3H. In the through hole 3H, the positive electrode intermediate pole column 12A and the negative electrode intermediate pole column 12B are resistance welded to form an in-hole connection portion (hereinafter referred to as a resistance welded portion) 123.

以下の説明では、セル室1−1〜1−6を区別して説明する必要がない場合は、これらをセル室1と総称する。
正極ストラップ11Aの長手方向(例えば、X軸方向)の一端に、正極中間極柱12Aが接続している。正極中間極柱12Aは、正極ストラップ11Aよりも隔壁3に近い側に位置し、且つ、隔壁3に沿って配置されている。正極中間極柱12Aは、おもて面12aと、おもて面の反対側に位置するうら面12bとを有する。うら面12bが、隔壁3と向かい合っている。
In the following description, when it is not necessary to distinguish between cell chambers 1-1 to 1-6, these are collectively referred to as cell chamber 1.
A positive electrode intermediate pole column 12A is connected to one end of the positive electrode strap 11A in the longitudinal direction (for example, the X-axis direction). The positive electrode intermediate pole column 12A is located closer to the partition wall 3 than the positive electrode strap 11A, and is arranged along the partition wall 3. The positive electrode intermediate pole column 12A has a front surface 12a and a back surface 12b located on the opposite side of the front surface. The back surface 12b faces the partition wall 3.

図1及び図2に示すように、正極中間極柱12Aには、抵抗溶接部123と正極ストラップ11Aとの間の位置に凹部125が設けられている。凹部125は、正極中間極柱12Aのおもて面12a側に設けられている。凹部125の形状は、例えば三角形の切り欠きである。 As shown in FIGS. 1 and 2, the positive electrode intermediate pole column 12A is provided with a recess 125 at a position between the resistance welded portion 123 and the positive electrode strap 11A. The recess 125 is provided on the front surface 12a side of the positive electrode intermediate pole column 12A. The shape of the recess 125 is, for example, a triangular notch.

図3は、本発明の第1実施形態に係る正極接続体110Aの塑性変形の例を示す図である。図3に示すように、鉛蓄電池100において、正極板4Aから正極ストラップ11Aに力Fがはたらくと、正極ストラップ11Aは上方向に押圧される。力Fは、腐食による格子伸び(以下、グロースという)により正極板4Aが電槽の底部に接触することにより発生する。上方向とは、鉛蓄電池100の蓋体(図示せず)に近づく方向であり、例えばZ軸の正方向である。抵抗溶接部123は貫通孔3H内の内周面に接しているため、正極中間極柱12Aは上方向への移動が制限されている。このため、正極ストラップ11Aが上方向に押圧されると、正極中間極柱12Aには曲げやねじりの力がはたらく。 FIG. 3 is a diagram showing an example of plastic deformation of the positive electrode connector 110A according to the first embodiment of the present invention. As shown in FIG. 3, in the lead-acid battery 100, when a force F acts on the positive electrode strap 11A from the positive electrode plate 4A, the positive electrode strap 11A is pressed upward. The force F is generated when the positive electrode plate 4A comes into contact with the bottom of the battery case due to lattice elongation (hereinafter referred to as growth) due to corrosion. The upward direction is a direction approaching the lid (not shown) of the lead-acid battery 100, for example, a positive direction of the Z axis. Since the resistance welded portion 123 is in contact with the inner peripheral surface in the through hole 3H, the movement of the positive electrode intermediate pole column 12A in the upward direction is restricted. Therefore, when the positive electrode strap 11A is pressed upward, a bending or twisting force acts on the positive electrode intermediate pole column 12A.

正極中間極柱12Aにおいて、凹部125の近傍に位置する部位(例えば、凹部125の底面を構成する部位(以下、底部という)126)は、正極板4Aから正極ストラップ11Aにはたらく力Fに対する剛性が低い脆弱部となっている。剛性とは、曲げやねじりの力に対する変形のしづらさの度合いを意味する。正極板4Aから正極ストラップ11Aにはたらく力Fが所定の大きさ以上の場合、図3に示すように、剛性が低い底部126が変形する。正極中間極柱12Aにおいて、底部126は、底部126の周囲に位置する他の部位よりも厚みが薄く、剛性が低い。 In the positive electrode intermediate pole column 12A, the portion located in the vicinity of the recess 125 (for example, the portion constituting the bottom surface of the recess 125 (hereinafter referred to as the bottom) 126) has rigidity against the force F acting from the positive electrode plate 4A to the positive electrode strap 11A. It is a low vulnerable part. Rigidity means the degree of difficulty in deformation with respect to bending and twisting forces. When the force F acting from the positive electrode plate 4A to the positive electrode strap 11A is equal to or greater than a predetermined magnitude, the bottom portion 126 having low rigidity is deformed as shown in FIG. In the positive electrode intermediate pole column 12A, the bottom portion 126 is thinner and has lower rigidity than other portions located around the bottom portion 126.

力Fに対して、抵抗溶接部123よりも底部126が優先的に塑性変形し、凹部125よりも下側(すなわち、正極ストラップ11A側)に位置する部位が上方向へ屈曲する。これにより、グロースが原因で正極板4Aから正極ストラップ11Aに力Fがはたらく場合でも、抵抗溶接部123にはたらく力を緩和することができ、抵抗溶接部123と貫通孔3Hとの間に隙間が生じることを防ぐことができる。 With respect to the force F, the bottom portion 126 is preferentially plastically deformed over the resistance welded portion 123, and the portion located below the recess 125 (that is, the positive electrode strap 11A side) is bent upward. As a result, even when the force F acts on the positive electrode strap 11A from the positive electrode plate 4A due to the growth, the force acting on the resistance welded portion 123 can be relaxed, and a gap is created between the resistance welded portion 123 and the through hole 3H. It can be prevented from occurring.

以上説明したように、本発明の第1実施形態に係る鉛蓄電池100は、任意の第1のセル室(例えば、セル室1−1)に配置される第1の極板(例えば、正極板4A)をセル室1−1と隔壁3を介して隣り合う第2のセル室(例えば、セル室1−2)に配置される第2の極板(例えば、負極板4B)に接続する接続体、を備える。接続体は、隔壁3に設けられた貫通孔3H内に配置される孔内接続部(例えば、抵抗溶接部123)と、貫通孔3Hの外側に配置される孔外接続部(例えば、正極接続体110A)を有する。正極接続体110Aは、抵抗溶接部123よりも下側に脆弱部を有する。例えば、下側とは、正極ストラップ11Aの下面11aに近い側であり、換言すると、電槽底部に近い側である。 As described above, the lead-acid battery 100 according to the first embodiment of the present invention has a first electrode plate (for example, a positive electrode plate) arranged in an arbitrary first cell chamber (for example, cell chamber 1-1). Connection for connecting 4A) to a second electrode plate (for example, negative electrode plate 4B) arranged in a second cell chamber (for example, cell chamber 1-2) adjacent to each other via the cell chamber 1-1 and the partition wall 3. Equipped with a body. The connecting body includes an intra-hole connection portion (for example, a resistance welded portion 123) arranged in the through hole 3H provided in the partition wall 3 and an extra-hole connection portion (for example, a positive electrode connection) arranged outside the through hole 3H. It has a body 110A). The positive electrode connector 110A has a fragile portion below the resistance welded portion 123. For example, the lower side is the side closer to the lower surface 11a of the positive electrode strap 11A, in other words, the side closer to the bottom of the battery case.

正極接続体110Aは、正極板4Aを支持するストラップ(例えば、正極ストラップ11A)と、正極ストラップ11Aと抵抗溶接部123とを接続する中間極柱(例えば、正極中間極柱12A)とを有する。抵抗溶接部123は、正極中間極柱12Aにおいて隔壁3と向かい合う面(例えば、うら面12b)から貫通孔3H内へ延設されている。
正極中間極柱12Aは、抵抗溶接部123と正極ストラップ11Aとの間の位置に凹部125を有する。正極中間極柱12Aにおいて凹部125の近傍に位置する部位が脆弱部である。
The positive electrode connecting body 110A has a strap that supports the positive electrode plate 4A (for example, the positive electrode strap 11A) and an intermediate pole column (for example, the positive electrode intermediate pole column 12A) that connects the positive electrode strap 11A and the resistance welded portion 123. The resistance welded portion 123 extends from the surface of the positive electrode intermediate pole column 12A facing the partition wall 3 (for example, the back surface 12b) into the through hole 3H.
The positive electrode intermediate pole column 12A has a recess 125 at a position between the resistance welded portion 123 and the positive electrode strap 11A. The portion of the positive electrode intermediate pole column 12A located near the recess 125 is the fragile portion.

鉛蓄電池100によれば、グロースによって正極板4Aが電槽の底部と接触し、正極板4Aが正極接続体110Aを押し上げる場合でも、正極中間極柱12Aの抵抗溶接部123が変形する前に脆弱部が変形する。脆弱部が優先的に塑性変形することによって、抵抗溶接部123にはたらく力を低減し、抵抗溶接部123の変形を抑制することができる。これにより、鉛蓄電池100は、抵抗溶接部123と隔壁3との間に隙間が生じることを抑制することができるので、隔壁3を介して隣り合うセル室1間での液リークの発生を抑制することができる。 According to the lead-acid battery 100, even when the positive electrode plate 4A comes into contact with the bottom of the battery case due to growth and the positive electrode plate 4A pushes up the positive electrode connector 110A, the resistance welded portion 123 of the positive electrode intermediate pole column 12A is fragile before being deformed. The part is deformed. By preferentially plastically deforming the fragile portion, the force acting on the resistance welded portion 123 can be reduced and the deformation of the resistance welded portion 123 can be suppressed. As a result, the lead-acid battery 100 can suppress the formation of a gap between the resistance welded portion 123 and the partition wall 3, and thus suppresses the occurrence of liquid leakage between the adjacent cell chambers 1 via the partition wall 3. can do.

隣り合うセル室間で液リークが発生すると、鉛蓄電池の内部抵抗が上昇し、電圧が低下する可能性ある。アイドリングストップ車の場合は、鉛蓄電池の電圧が低下すると、アイドリングストップが禁止される状態になる可能性がある。しかしながら、鉛蓄電池100によれば、隔壁3を介して隣り合うセル室1間で、液リークの発生が抑制される。このため、鉛蓄電池100は、内部抵抗の上昇と、電圧の低下を抑制することができる。本発明の第1実施形態によれば、液リークの発生を抑制可能であり、アイドリングストップ車に好適な信頼性の高い鉛蓄電池を提供することができる。 If a liquid leak occurs between adjacent cell chambers, the internal resistance of the lead-acid battery may increase and the voltage may decrease. In the case of an idling stop vehicle, if the voltage of the lead storage battery drops, idling stop may be prohibited. However, according to the lead-acid battery 100, the occurrence of liquid leakage is suppressed between the adjacent cell chambers 1 via the partition wall 3. Therefore, the lead-acid battery 100 can suppress an increase in internal resistance and a decrease in voltage. According to the first embodiment of the present invention, it is possible to suppress the occurrence of liquid leakage, and it is possible to provide a highly reliable lead-acid battery suitable for an idling stop vehicle.

(変形例)
図4は、本発明の第1実施形態に係る正極接続体110Aの変形例1を示す断面図である。第1実施形態に係る正極接続体110Aにおいて、凹部125は三角形の切り欠きに限定されない。例えば図4に示すように、凹部125は、四角形の溝であっても良い。また、凹部125は、例えば半円形の溝であっても良い。このような構成であっても、底部126が脆弱部として機能する。
(Modification example)
FIG. 4 is a cross-sectional view showing a modification 1 of the positive electrode connector 110A according to the first embodiment of the present invention. In the positive electrode connector 110A according to the first embodiment, the recess 125 is not limited to the triangular notch. For example, as shown in FIG. 4, the recess 125 may be a quadrangular groove. Further, the recess 125 may be, for example, a semicircular groove. Even with such a configuration, the bottom 126 functions as a fragile portion.

図5は、本発明の第1実施形態に係る正極接続体110Aの変形例2を示す側面図である。図5に示すように、凹部125は、正極中間極柱12Aの幅方向(例えば、Y軸方向)に断続的に設けられていても良い。すなわち、複数の凹部125が正極中間極柱12Aの幅方向に並ぶように設けられていても良い。このような構成であっても、底部126が脆弱部として機能する。 FIG. 5 is a side view showing a modification 2 of the positive electrode connector 110A according to the first embodiment of the present invention. As shown in FIG. 5, the recess 125 may be provided intermittently in the width direction (for example, the Y-axis direction) of the positive electrode intermediate pole column 12A. That is, a plurality of recesses 125 may be provided so as to be arranged in the width direction of the positive electrode intermediate pole column 12A. Even with such a configuration, the bottom 126 functions as a fragile portion.

図6は、本発明の第1実施形態に係る正極接続体110Aの変形例3を示す側面図である。図6に示すように、凹部125は、正極中間極柱12Aの幅方向の一方の側に偏って設けられていても良い。このような構成であっても、底部126が脆弱部として機能する。 FIG. 6 is a side view showing a modification 3 of the positive electrode connector 110A according to the first embodiment of the present invention. As shown in FIG. 6, the recess 125 may be provided unevenly on one side in the width direction of the positive electrode intermediate pole column 12A. Even with such a configuration, the bottom 126 functions as a fragile portion.

図7は、本発明の第1実施形態に係る正極接続体110Aの変形例4を示す側面図である。図7に示すように、正極接続体110Aにおいて、正極中間極柱12Aの凹部125は拡幅されていても良い。例えば、正極中間極柱12Aにおいて、凹部125の幅方向の寸法W1は、正極中間極柱12Aの幅方向の寸法W2よりも大きくても良い(W1>W2)。なお、正極中間極柱12Aを形成した後、例えば、鉛又は鉛合金が溶ける程度の温度に熱した片や棒を厚み方向(X軸要項)へ押し当てることにより拡幅された凹部125を形成できる。これによれば、底部126の断面積S1を、底部126の周囲に位置する他の部位の断面積S2に近づけることができ、S1≒S2とすることができる。ここで、断面積S1、S2は、電流が流れる方向と直交する面(例えば、X−Y平面)で切断した断面の面積である。これにより、正極中間極柱12Aにおいて、その長手方向の一端から他端までの電気抵抗を均一化することができる。 FIG. 7 is a side view showing a modified example 4 of the positive electrode connector 110A according to the first embodiment of the present invention. As shown in FIG. 7, in the positive electrode connector 110A, the recess 125 of the positive electrode intermediate pole column 12A may be widened. For example, in the positive electrode intermediate pole column 12A, the width direction dimension W1 of the recess 125 may be larger than the width direction dimension W2 of the positive electrode intermediate pole column 12A (W1> W2). After forming the positive electrode intermediate pole column 12A, for example, a widened recess 125 can be formed by pressing a piece or rod heated to a temperature at which lead or a lead alloy melts in the thickness direction (X-axis requirement). .. According to this, the cross-sectional area S1 of the bottom portion 126 can be brought close to the cross-sectional area S2 of another portion located around the bottom portion 126, and S1≈S2 can be obtained. Here, the cross-sectional areas S1 and S2 are the areas of cross sections cut along a plane (for example, an XY plane) orthogonal to the direction in which the current flows. As a result, in the positive electrode intermediate pole column 12A, the electrical resistance from one end to the other end in the longitudinal direction can be made uniform.

上記の第1実施形態では、正極中間極柱12Aに脆弱部が設けられていることを説明した。しかしながら、第1実施形態において、脆弱部が設けられる位置はこれに限定されない。正極ストラップ11Aにおいて、抵抗溶接部123よりも下側であれば、任意の位置に脆弱部が設けられていても良い。 In the first embodiment described above, it has been explained that the positive electrode intermediate pole column 12A is provided with a fragile portion. However, in the first embodiment, the position where the fragile portion is provided is not limited to this. In the positive electrode strap 11A, a fragile portion may be provided at an arbitrary position as long as it is below the resistance welded portion 123.

図8は、本発明の第1実施形態に係る正極接続体110Aの変形例5を示す断面図である。図8に示すように、抵抗溶接部123よりも下側に正極ストラップ11Aが位置する正極接続体110Aの変形例5では、正極ストラップ11Aの上面11bに凹部115が設けられている。凹部115は、正極ストラップ11Aの長手方向の途中の位置に設けられている。凹部115の形状は、例えば三角形の切り欠きである。 FIG. 8 is a cross-sectional view showing a modified example 5 of the positive electrode connector 110A according to the first embodiment of the present invention. As shown in FIG. 8, in the modified example 5 of the positive electrode connector 110A in which the positive electrode strap 11A is located below the resistance welded portion 123, the recess 115 is provided on the upper surface 11b of the positive electrode strap 11A. The recess 115 is provided at a position in the middle of the positive electrode strap 11A in the longitudinal direction. The shape of the recess 115 is, for example, a triangular notch.

この変形例5では、正極ストラップ11Aであって凹部115の近傍に位置する部位(例えば、凹部115の底部116)が脆弱部となっている。例えば、力F(図3参照)に対して、抵抗溶接部123よりも底部116が優先的に塑性変形し、ストラップ11Aが上方向へ屈曲する。これにより、グロースが原因で正極板4Aから正極ストラップ11Aに力Fがはたらく場合でも、抵抗溶接部123にはたらく力を緩和することができ、抵抗溶接部123と貫通孔3Hとの間に隙間が生じることを防ぐことができる。 In this modification 5, a portion of the positive electrode strap 11A located near the recess 115 (for example, the bottom 116 of the recess 115) is a fragile portion. For example, with respect to the force F (see FIG. 3), the bottom portion 116 is plastically deformed preferentially over the resistance welded portion 123, and the strap 11A is bent upward. As a result, even when the force F acts on the positive electrode strap 11A from the positive electrode plate 4A due to the growth, the force acting on the resistance welded portion 123 can be relaxed, and a gap is created between the resistance welded portion 123 and the through hole 3H. It can be prevented from occurring.

なお、正極ストラップ11Aの上面11bに設けられる凹部115の形状は、三角形の切り欠きに限定されない。図9は、本発明の第1実施形態に係る正極接続体110Aの変形例6を示す断面図である。図9に示すように、凹部115は、四角形の溝であっても良い。また、凹部115は、例えば半円形の溝であっても良い。このような構成であっても、底部116が脆弱部として機能する。 The shape of the recess 115 provided on the upper surface 11b of the positive electrode strap 11A is not limited to the triangular notch. FIG. 9 is a cross-sectional view showing a modified example 6 of the positive electrode connector 110A according to the first embodiment of the present invention. As shown in FIG. 9, the recess 115 may be a quadrangular groove. Further, the recess 115 may be, for example, a semicircular groove. Even with such a configuration, the bottom 116 functions as a fragile portion.

<第2実施形態>
本発明の実施形態において、脆弱部は、正極中間極柱12Aに設けられた曲部であっても良い。図10は、本発明の第2実施形態に係る鉛蓄電池200の構成例を示す断面図である。図10に示すように、第2実施形態に係る鉛蓄電池200は、貫通孔3Hの外側に配置される孔外接続部として、正極接続体210Aを備える。正極接続体210Aは、正極ストラップ11Aと正極中間極柱12Aとを有する。正極接続体210Aが有する正極中間極柱12Aは、正極中間極柱12Aの長手方向(例えば、Z軸方向)に平行な直線部127と、Z軸方向と交差する方向に曲がった曲部128と、を有する。
<Second Embodiment>
In the embodiment of the present invention, the fragile portion may be a curved portion provided on the positive electrode intermediate pole column 12A. FIG. 10 is a cross-sectional view showing a configuration example of the lead storage battery 200 according to the second embodiment of the present invention. As shown in FIG. 10, the lead-acid battery 200 according to the second embodiment includes a positive electrode connector 210A as an extra-hole connection portion arranged outside the through hole 3H. The positive electrode connector 210A has a positive electrode strap 11A and a positive electrode intermediate pole column 12A. The positive electrode intermediate pole pillar 12A included in the positive electrode connecting body 210A includes a straight portion 127 parallel to the longitudinal direction (for example, the Z-axis direction) of the positive electrode intermediate pole pillar 12A and a curved portion 128 bent in a direction intersecting the Z-axis direction. , Have.

図11は、本発明の第2実施形態に係る正極接続体210Aの塑性変形の例を示す図である。図11に示すように、鉛蓄電池200においても、正極板4Aから正極ストラップ11Aに力Fがはたらくと、正極ストラップ11Aは上方向に押圧される。抵抗溶接部123は貫通孔3H内の内周面に接しているため、正極中間極柱12Aは上方向への移動が制限されている。このため、正極ストラップ11Aが上方向に押圧されると、正極中間極柱12Aには曲げやねじりの力がはたらく。 FIG. 11 is a diagram showing an example of plastic deformation of the positive electrode connector 210A according to the second embodiment of the present invention. As shown in FIG. 11, also in the lead storage battery 200, when the force F acts on the positive electrode strap 11A from the positive electrode plate 4A, the positive electrode strap 11A is pressed upward. Since the resistance welded portion 123 is in contact with the inner peripheral surface in the through hole 3H, the movement of the positive electrode intermediate pole column 12A in the upward direction is restricted. Therefore, when the positive electrode strap 11A is pressed upward, a bending or twisting force acts on the positive electrode intermediate pole column 12A.

正極中間極柱12Aにおいて、曲部128は、正極板4Aから正極ストラップ11Aにはたらく力Fに対する剛性が低い脆弱部となっている。正極板4Aから正極ストラップ11Aにはたらく力Fが所定の大きさ以上の場合、図11に示すように、直線部127に対して剛性が低い曲部128が変形する。正極中間極柱12Aにおいて、曲部128は、直線部127よりも曲げの力がはたらき易く、剛性が低い。 In the positive electrode intermediate pole column 12A, the curved portion 128 is a fragile portion having low rigidity against the force F acting from the positive electrode plate 4A to the positive electrode strap 11A. When the force F acting from the positive electrode plate 4A to the positive electrode strap 11A is equal to or greater than a predetermined magnitude, as shown in FIG. 11, the curved portion 128 having lower rigidity with respect to the straight portion 127 is deformed. In the positive electrode intermediate pole column 12A, the curved portion 128 is more likely to exert a bending force than the straight portion 127 and has a lower rigidity.

力Fに対して、抵抗溶接部123よりも曲部128が優先的に塑性変形し、曲部128が上方向へ屈曲する。これにより、グロースが原因で正極ストラップ11Aに力Fがはたらく場合でも、抵抗溶接部123にはたらく力を緩和することができ、抵抗溶接部123と貫通孔3Hとの間に隙間が生じることを防ぐことができる。鉛蓄電池200は、抵抗溶接部123と隔壁3との間に隙間が生じることを抑制することができるので、隔壁3を介して隣り合うセル室1間での液リークの発生を抑制することができる。 With respect to the force F, the curved portion 128 is plastically deformed preferentially over the resistance welded portion 123, and the curved portion 128 is bent upward. As a result, even when the force F acts on the positive electrode strap 11A due to the growth, the force acting on the resistance welded portion 123 can be relaxed, and a gap is prevented from being generated between the resistance welded portion 123 and the through hole 3H. be able to. Since the lead-acid battery 200 can suppress the formation of a gap between the resistance welded portion 123 and the partition wall 3, it is possible to suppress the occurrence of liquid leakage between the adjacent cell chambers 1 via the partition wall 3. it can.

<第3実施形態>
本発明の実施形態においては、材料の違いや、結晶構造の違いによって脆弱部を設けるようにしても良い。図12は、本発明の第3実施形態に係る鉛蓄電池300の構成例を示す断面図である。図12に示すように、第3実施形態に係る鉛蓄電池300は、貫通孔3Hの外側に配置される孔外接続部として、正極接続体310Aを備える。正極接続体310Aは、正極ストラップ11Aと正極中間極柱12Aとを有する。正極接続体310Aが有する正極中間極柱12Aは、抵抗溶接部123に接続する上側部位131と、正極ストラップ11Aに接続する下側部位132とを有する。第3実施形態において、上側部位131は本発明の第1部位の一例であり、下側部位132は本発明の第2部位の一例である。
<Third Embodiment>
In the embodiment of the present invention, the fragile portion may be provided depending on the difference in materials and the difference in crystal structure. FIG. 12 is a cross-sectional view showing a configuration example of the lead storage battery 300 according to the third embodiment of the present invention. As shown in FIG. 12, the lead-acid battery 300 according to the third embodiment includes a positive electrode connector 310A as an extra-hole connection portion arranged outside the through hole 3H. The positive electrode connector 310A has a positive electrode strap 11A and a positive electrode intermediate pole column 12A. The positive electrode intermediate pole column 12A included in the positive electrode connecting body 310A has an upper portion 131 connected to the resistance welded portion 123 and a lower portion 132 connected to the positive electrode strap 11A. In the third embodiment, the upper part 131 is an example of the first part of the present invention, and the lower part 132 is an example of the second part of the present invention.

抵抗溶接部123は、上側部位131において、隔壁3と向かい合ううら面131bから貫通孔3H内へ延設されている。抵抗溶接部123は、上側部位131と同じ組成で且つ同じ結晶構造を有する材料で構成されている。
上側部位131と下側部位132は、互いに異なる組成の材料で構成されている。例えば、上側部位131及び下側部位132を構成する鉛合金の添加物の添加量を変化させれば良く、上側部位131を添加物であるアンチモンを5質量%以上添加した鉛合金とし、下側部位132はアンチモンを5質量%未満添加した鉛合金とすれば良い。
The resistance welded portion 123 extends from the back surface 131b facing the partition wall 3 into the through hole 3H at the upper portion 131. The resistance welded portion 123 is made of a material having the same composition and the same crystal structure as the upper portion 131.
The upper portion 131 and the lower portion 132 are made of materials having different compositions from each other. For example, the amount of the additive of the lead alloy constituting the upper portion 131 and the lower portion 132 may be changed, and the upper portion 131 is a lead alloy to which the additive antimony is added in an amount of 5% by mass or more, and the lower side is used. The site 132 may be a lead alloy containing less than 5% by mass of antimony.

上側部位131と下側部位132が、互いに同じ組成の材料で構成されている場合は、結晶の平均粒径(以下、結晶平均粒径ともいう)の違いにより脆弱部を設けても良い。例えば、下側部位132に対して、上側部位131をより高温で熱処理する(又は、より長時間熱処理する)ことによって、上側部位131の結晶平均粒径を大きくすることが可能である。結晶平均粒径の違いにより、上側部位131と下側部位132との間では剛性に差が生じ、この部分が脆弱部となる。 When the upper portion 131 and the lower portion 132 are made of materials having the same composition as each other, a fragile portion may be provided due to a difference in the average particle size of crystals (hereinafter, also referred to as crystal average particle size). For example, it is possible to increase the crystal average particle size of the upper portion 131 by heat-treating the upper portion 131 at a higher temperature (or heat-treating for a longer time) with respect to the lower portion 132. Due to the difference in crystal average particle size, there is a difference in rigidity between the upper portion 131 and the lower portion 132, and this portion becomes a fragile portion.

第3実施形態では、上側部位131と下側部位132との間が、力F(例えば、図3参照)に対する剛性が低い脆弱部となっている。力Fが所定の大きさ以上の場合、抵抗溶接部123が貫通孔3Hの内周面に押圧されて変形するよりも前に、下側部位132が屈曲する。力Fに対して、抵抗溶接部123よりも下側部位132が優先的に塑性変形する。
これにより、グロースが原因で正極ストラップ11Aに力Fがはたらく場合でも、抵抗溶接部123にはたらく力を緩和することができ、抵抗溶接部123と貫通孔3Hとの間に隙間が生じることを防ぐことができる。鉛蓄電池300は、抵抗溶接部123と隔壁3との間に隙間が生じることを抑制することができるので、隔壁3を介して隣り合うセル室1間での液リークの発生を抑制することができる。
In the third embodiment, the area between the upper portion 131 and the lower portion 132 is a fragile portion having low rigidity against a force F (see, for example, FIG. 3). When the force F is equal to or larger than a predetermined magnitude, the lower portion 132 is bent before the resistance welded portion 123 is pressed against the inner peripheral surface of the through hole 3H and deformed. With respect to the force F, the lower portion 132 is preferentially plastically deformed over the resistance welded portion 123.
As a result, even when the force F acts on the positive electrode strap 11A due to the growth, the force acting on the resistance welded portion 123 can be relaxed, and a gap is prevented from being generated between the resistance welded portion 123 and the through hole 3H. be able to. Since the lead-acid battery 300 can suppress the formation of a gap between the resistance welded portion 123 and the partition wall 3, it is possible to suppress the occurrence of liquid leakage between the adjacent cell chambers 1 via the partition wall 3. it can.

<第4実施形態>
図13は、本発明の第4実施形態に係る鉛蓄電池400の構成例を示す断面図である。図14は、本発明の第4実施形態に係る正極接続体410Aの構成例を示す側面図である。図13の断面図は、図14の側面図をX−Z面で切断した断面に対応している。X−Z面とは、X軸方向及びZ軸方向に平行な面である。図13及び図14に示すように、第4実施形態に係る鉛蓄電池400は、貫通孔3Hの外側に配置される孔外接続部として、正極接続体410Aを備える。正極接続体410Aは、正極ストラップ11Aと、正極中間極柱12Aと、正極ストラップ11Aと正極中間極柱12Aとの接続を補強する補強部15とを有する。
<Fourth Embodiment>
FIG. 13 is a cross-sectional view showing a configuration example of the lead storage battery 400 according to the fourth embodiment of the present invention. FIG. 14 is a side view showing a configuration example of the positive electrode connector 410A according to the fourth embodiment of the present invention. The cross-sectional view of FIG. 13 corresponds to a cross-section of the side view of FIG. 14 cut along the XX plane. The XZ plane is a plane parallel to the X-axis direction and the Z-axis direction. As shown in FIGS. 13 and 14, the lead-acid battery 400 according to the fourth embodiment includes a positive electrode connector 410A as an extra-hole connection portion arranged outside the through hole 3H. The positive electrode connecting body 410A has a positive electrode strap 11A, a positive electrode intermediate pole column 12A, and a reinforcing portion 15 for reinforcing the connection between the positive electrode strap 11A and the positive electrode intermediate pole column 12A.

図13に示すように、正極ストラップ11Aは、正極板4Aを支持する面(以下、下面という)11aと、下面11aの反対側に位置する上面11bと、を有する。補強部15は、正面から見た形状が三角形である。補強部15は、正極中間極柱12Aのおもて面12aに接続する部位151と、正極ストラップ11Aの上面11bに接続する部位152と、を有する。正極ストラップ11Aの上面11bに接続する部位152の先端部152tは、正極ストラップ11Aの長手方向(例えば、X軸方向)の途中に位置する。補強部15は、鉛又は鉛合金で構成されている。例えば、正極ストラップ11A、正極中間極柱12A及び補強部15は、鋳型を用いて一体成型されており、1つの部品として正極接続体410Aを構成している。 As shown in FIG. 13, the positive electrode strap 11A has a surface (hereinafter, referred to as a lower surface) 11a that supports the positive electrode plate 4A, and an upper surface 11b located on the opposite side of the lower surface 11a. The reinforcing portion 15 has a triangular shape when viewed from the front. The reinforcing portion 15 has a portion 151 connected to the front surface 12a of the positive electrode intermediate pole column 12A and a portion 152 connected to the upper surface 11b of the positive electrode strap 11A. The tip portion 152t of the portion 152 connected to the upper surface 11b of the positive electrode strap 11A is located in the middle of the positive electrode strap 11A in the longitudinal direction (for example, the X-axis direction). The reinforcing portion 15 is made of lead or a lead alloy. For example, the positive electrode strap 11A, the positive electrode intermediate pole column 12A, and the reinforcing portion 15 are integrally molded using a mold, and the positive electrode connecting body 410A is formed as one component.

図15は、本発明の第4実施形態に係る正極接続体410Aの塑性変形の例を示す図である。図15に示すように、鉛蓄電池400においても、正極板4Aから正極ストラップ11Aに力Fがはたらくと、正極ストラップ11Aは上方向に押圧される。抵抗溶接部123は貫通孔3H内の内周面に接しているため、正極中間極柱12Aは上方向への移動が制限されている。このため、正極ストラップ11Aが上方向に押圧されると、正極中間極柱12Aには曲げやねじりの力がはたらく。 FIG. 15 is a diagram showing an example of plastic deformation of the positive electrode connecting body 410A according to the fourth embodiment of the present invention. As shown in FIG. 15, also in the lead storage battery 400, when the force F acts on the positive electrode strap 11A from the positive electrode plate 4A, the positive electrode strap 11A is pressed upward. Since the resistance welded portion 123 is in contact with the inner peripheral surface in the through hole 3H, the movement of the positive electrode intermediate pole column 12A in the upward direction is restricted. Therefore, when the positive electrode strap 11A is pressed upward, a bending or twisting force acts on the positive electrode intermediate pole column 12A.

正極板4Aから正極ストラップ11Aに力Fがはたらくと、正極ストラップ11Aにおいて補強部15の先端部152tと隣り合う部位に力がかかる。このため、正極ストラップ11Aにおいて、補強部15の先端部152tと隣り合う部位は、正極板4Aから正極ストラップ11Aにはたらく力Fに対する剛性が低い脆弱部となっている。すなわち、補強部15の先端部152tが、脆弱部の位置を規定している。力Fが所定の大きさ以上の場合、抵抗溶接部123が貫通孔3Hの内周面に押圧されて変形するよりも前に、図15に示すように、先端部152tが支点となって正極ストラップ11Aが変形する。 When a force F acts from the positive electrode plate 4A to the positive electrode strap 11A, a force is applied to the portion of the positive electrode strap 11A adjacent to the tip portion 152t of the reinforcing portion 15. Therefore, in the positive electrode strap 11A, the portion adjacent to the tip portion 152t of the reinforcing portion 15 is a fragile portion having low rigidity against the force F acting from the positive electrode plate 4A to the positive electrode strap 11A. That is, the tip portion 152t of the reinforcing portion 15 defines the position of the fragile portion. When the force F is equal to or larger than a predetermined magnitude, the positive electrode portion 152t serves as a fulcrum before the resistance welded portion 123 is pressed against the inner peripheral surface of the through hole 3H and deformed, as shown in FIG. The strap 11A is deformed.

力Fに対して、抵抗溶接部123よりも正極ストラップ11Aが優先的に塑性変形する。これにより、グロースが原因で正極板4Aから正極ストラップ11Aに力Fがはたらく場合でも、抵抗溶接部123にはたらく力を緩和することができ、抵抗溶接部123と貫通孔3Hとの間に隙間が生じることを防ぐことができる。鉛蓄電池400は、抵抗溶接部123と隔壁3との間に隙間が生じることを抑制することができるので、隔壁3を介して隣り合うセル室1間での液リークの発生を抑制することができる。 The positive electrode strap 11A is preferentially plastically deformed over the resistance welded portion 123 with respect to the force F. As a result, even when the force F acts on the positive electrode strap 11A from the positive electrode plate 4A due to the growth, the force acting on the resistance welded portion 123 can be relaxed, and a gap is created between the resistance welded portion 123 and the through hole 3H. It can be prevented from occurring. Since the lead-acid battery 400 can suppress the formation of a gap between the resistance welded portion 123 and the partition wall 3, it is possible to suppress the occurrence of liquid leakage between the adjacent cell chambers 1 via the partition wall 3. it can.

(変形例)
上述の第4実施形態では、補強部15の先端部152tが、正極ストラップ11Aにおける脆弱部の位置を規定していることを説明した。しかしながら、第1実施形態において、補強部15が規定する脆弱部の位置は正極ストラップ11Aに限定されない。補強部15が規定する脆弱部の位置は、抵抗溶接部123よりも下側であれば任意の位置でよく、例えば、抵抗溶接部123よりも下側であって正極中間極柱12Aの長手方向の途中の位置であっても良い。
(Modification example)
In the fourth embodiment described above, it has been explained that the tip portion 152t of the reinforcing portion 15 defines the position of the fragile portion in the positive electrode strap 11A. However, in the first embodiment, the position of the fragile portion defined by the reinforcing portion 15 is not limited to the positive electrode strap 11A. The position of the fragile portion defined by the reinforcing portion 15 may be any position as long as it is below the resistance welded portion 123. For example, it is below the resistance welded portion 123 and is in the longitudinal direction of the positive electrode intermediate pole column 12A. It may be in the middle of.

図16は、本発明の第4実施形態に係る正極接続体410Aの変形例を示す断面図である。図16に示すように、補強部15の先端部151tは、正極中間極柱12Aのおもて面12aに接続する部位151の先端に位置する部位であり、抵抗溶接部123よりも下側である正極中間極柱12Aの長手方向(例えば、Z軸方向)の途中に位置する。この変形例では、補強部15の先端部151tが脆弱部の位置を規定しており、正極中間極柱12Aにおいて、補強部15の先端部151tと隣り合う部位が脆弱部となっている。 FIG. 16 is a cross-sectional view showing a modified example of the positive electrode connecting body 410A according to the fourth embodiment of the present invention. As shown in FIG. 16, the tip portion 151t of the reinforcing portion 15 is a portion located at the tip of the portion 151 connected to the front surface 12a of the positive electrode intermediate pole column 12A, and is located below the resistance welded portion 123. It is located in the middle of a positive electrode intermediate pole column 12A in the longitudinal direction (for example, the Z-axis direction). In this modification, the tip portion 151t of the reinforcing portion 15 defines the position of the fragile portion, and the portion of the positive electrode intermediate pole column 12A adjacent to the tip portion 151t of the reinforcing portion 15 is the fragile portion.

力Fが所定の大きさ以上の場合、抵抗溶接部123が貫通孔3Hの内周面に押圧されて変形するよりも前に、先端部151tが支点となって正極中間極柱12Aが変形する。正極中間極柱12Aにおいて、抵抗溶接部123よりも下側であり、正極中間極柱12Aの長手方向の途中に位置する部位が優先的に塑性変形する。これにより、グロースが原因で正極板4Aから正極ストラップ11Aに力Fがはたらく場合でも、抵抗溶接部123にはたらく力を緩和することができ、抵抗溶接部123と貫通孔3Hとの間に隙間が生じることを防ぐことができる。 When the force F is equal to or larger than a predetermined magnitude, the positive electrode intermediate pole column 12A is deformed with the tip portion 151t as a fulcrum before the resistance welded portion 123 is pressed against the inner peripheral surface of the through hole 3H and deformed. .. In the positive electrode intermediate pole column 12A, a portion which is below the resistance welded portion 123 and is located in the middle of the positive electrode intermediate pole column 12A in the longitudinal direction is preferentially plastically deformed. As a result, even when the force F acts on the positive electrode strap 11A from the positive electrode plate 4A due to the growth, the force acting on the resistance welded portion 123 can be relaxed, and a gap is created between the resistance welded portion 123 and the through hole 3H. It can be prevented from occurring.

<第5実施形態>
図17は、本発明の第5実施形態に係る鉛蓄電池500の構成例を示す断面図である。図18は、本発明の第5実施形態に係る正極接続体510Aの構成例を示す側面図である。図17の断面図は、図18の側面図をX−Z面で切断した断面に対応している。X−Z面とは、X軸方向及びZ軸方向に平行な面である。
図17及び図18に示すように、鉛蓄電池500は、貫通孔3Hの外側に配置される孔外接続部として、正極接続体510Aを備える。正極接続体510Aは、正極ストラップ11Aと正極中間極柱12Aとを有する。正極接続体510Aにおいて、正極中間極柱12Aは、正極ストラップ11Aに接続する下側部位121と、抵抗溶接部123に接続する上側部位122と、を有する。第5実施形態において、上側部位122は本発明の第3部位の一例であり、下側部位121は本発明の第4部位の一例である。上側部位122の平均厚み(すなわち、厚みの平均値)をAとし、下側部位121の平均厚みをBとすると、AはBよりも薄い(A<B)。
<Fifth Embodiment>
FIG. 17 is a cross-sectional view showing a configuration example of the lead storage battery 500 according to the fifth embodiment of the present invention. FIG. 18 is a side view showing a configuration example of the positive electrode connector 510A according to the fifth embodiment of the present invention. The cross-sectional view of FIG. 17 corresponds to a cross section of the side view of FIG. 18 cut along the XX plane. The XZ plane is a plane parallel to the X-axis direction and the Z-axis direction.
As shown in FIGS. 17 and 18, the lead-acid battery 500 includes a positive electrode connector 510A as an extra-hole connection portion arranged outside the through hole 3H. The positive electrode connector 510A has a positive electrode strap 11A and a positive electrode intermediate pole column 12A. In the positive electrode connecting body 510A, the positive electrode intermediate pole column 12A has a lower portion 121 connected to the positive electrode strap 11A and an upper portion 122 connected to the resistance welded portion 123. In the fifth embodiment, the upper part 122 is an example of the third part of the present invention, and the lower part 121 is an example of the fourth part of the present invention. Assuming that the average thickness of the upper portion 122 (that is, the average value of the thickness) is A and the average thickness of the lower portion 121 is B, A is thinner than B (A <B).

下側部位121と上側部位122との間には段差124がある。段差124の大きさは、平均厚みA、Bの差(=B−A)である。段差124は、正極中間極柱12Aのおもて面12a側に位置する。正極中間極柱12Aのうら面12b側には、段差は存在しない。正極中間極柱12Aのうら面12b側は、下側部位121と上側部位122との間で面一となっている。なお、平均厚みA、Bの差がわずかでもあれば段差124となり、平均厚みAは平均厚みBの1/2以上が好ましい。 There is a step 124 between the lower portion 121 and the upper portion 122. The size of the step 124 is the difference between the average thicknesses A and B (= BA). The step 124 is located on the front surface 12a side of the positive electrode intermediate pole column 12A. There is no step on the back surface 12b side of the positive electrode intermediate pole column 12A. The back surface 12b side of the positive electrode intermediate pole column 12A is flush with the lower portion 121 and the upper portion 122. If the difference between the average thicknesses A and B is small, the step difference is 124, and the average thickness A is preferably ½ or more of the average thickness B.

図19は、本発明の第5実施形態に係る正極接続体510Aの塑性変形の例を示す図である。図19に示すように、鉛蓄電池500において、正極板4Aから正極ストラップ11Aに力Fがはたらくと、正極ストラップ11Aは上方向に押圧される。力Fは、グロースにより正極板4Aが電槽の底部に接触することにより発生する。抵抗溶接部123は貫通孔3H内の内周面に接しているため、正極中間極柱12Aは上方向への移動が制限されている。このため、正極ストラップ11Aが上方向に押圧されると、正極中間極柱12Aには曲げやねじりの力がはたらく。 FIG. 19 is a diagram showing an example of plastic deformation of the positive electrode connector 510A according to the fifth embodiment of the present invention. As shown in FIG. 19, in the lead-acid battery 500, when a force F acts on the positive electrode strap 11A from the positive electrode plate 4A, the positive electrode strap 11A is pressed upward. The force F is generated when the positive electrode plate 4A comes into contact with the bottom of the battery case due to growth. Since the resistance welded portion 123 is in contact with the inner peripheral surface in the through hole 3H, the movement of the positive electrode intermediate pole column 12A in the upward direction is restricted. Therefore, when the positive electrode strap 11A is pressed upward, a bending or twisting force acts on the positive electrode intermediate pole column 12A.

正極中間極柱12Aにおいて、段差124の近傍に位置する部位(例えば、上側部位122であって、下側部位121に近い側の端部)は、正極板4Aから正極ストラップ11Aにはたらく力Fに対する剛性が低い脆弱部となっている。正極板4Aから正極ストラップ11Aにはたらく力Fが所定の大きさ以上の場合、抵抗溶接部123が貫通孔3Hの内周面に押圧されて変形するよりも前に、図19に示すように脆弱部が変形する。力Fに対して、抵抗溶接部123よりも脆弱部が優先的に塑性変形し、下側部位121が上方向へ屈曲する。これにより、グロースが原因で正極板4Aから正極ストラップ11Aに力Fがはたらく場合でも、抵抗溶接部123にはたらく力を緩和することができ、抵抗溶接部123と隔壁3の貫通孔3Hとの間に隙間が生じることを防ぐことができる。これにより、隔壁3を介して隣り合うセル室1間での液リークの発生を抑制することができる。 In the positive electrode intermediate pole column 12A, the portion located near the step 124 (for example, the upper portion 122 and the end portion on the side closer to the lower portion 121) is against the force F acting from the positive electrode plate 4A to the positive electrode strap 11A. It is a fragile part with low rigidity. When the force F acting from the positive electrode plate 4A to the positive electrode strap 11A is equal to or larger than a predetermined magnitude, the resistance welded portion 123 is fragile as shown in FIG. 19 before being pressed by the inner peripheral surface of the through hole 3H and deformed. The part is deformed. With respect to the force F, the fragile portion is preferentially plastically deformed over the resistance welded portion 123, and the lower portion 121 is bent upward. As a result, even when a force F acts on the positive electrode strap 11A from the positive electrode plate 4A due to growth, the force acting on the resistance welded portion 123 can be relaxed, and between the resistance welded portion 123 and the through hole 3H of the partition wall 3. It is possible to prevent a gap from being formed in the. As a result, it is possible to suppress the occurrence of liquid leakage between adjacent cell chambers 1 via the partition wall 3.

上述の第5実施形態では、正極中間極柱12Aにおいて、段差124の近傍に位置する部位が脆弱部となることを説明した。しかしながら、第5実施形態において、脆弱部の位置は、正極中間極柱12Aに限定されない。脆弱部の位置は、抵抗溶接部123よりも下側であれば任意の位置でよく、例えば、正極ストラップ11Aの長手方向の途中の位置であっても良い。 In the fifth embodiment described above, it has been explained that in the positive electrode intermediate pole column 12A, the portion located in the vicinity of the step 124 becomes the fragile portion. However, in the fifth embodiment, the position of the fragile portion is not limited to the positive electrode intermediate pole column 12A. The position of the fragile portion may be any position as long as it is below the resistance welded portion 123, and may be, for example, a position in the middle of the positive electrode strap 11A in the longitudinal direction.

図20は、本発明の第5実施形態に係る正極接続体510Aの変形例を示す断面図である。図20に示すように、この変形例では、正極ストラップ11Aは、正極中間極柱12Aに接続する部位(以下、厚肉部という)111と、厚肉部111を挟んで正極中間極柱12Aの反対側に位置する部位(以下、薄肉部という)112とを有する。厚肉部111の平均厚みは、薄肉部112の平均厚みよりも大きい。厚肉部111と薄肉部112との間には段差114がある。段差114の大きさは、厚肉部111と薄肉部112との厚さの差である。段差114は、正極ストラップ11Aの上面11b側に位置する。 FIG. 20 is a cross-sectional view showing a modified example of the positive electrode connector 510A according to the fifth embodiment of the present invention. As shown in FIG. 20, in this modification, the positive electrode strap 11A has a portion (hereinafter referred to as a thick portion) 111 connected to the positive electrode intermediate pole column 12A and a positive electrode intermediate pole pillar 12A sandwiching the thick portion 111. It has a portion (hereinafter referred to as a thin-walled portion) 112 located on the opposite side. The average thickness of the thick portion 111 is larger than the average thickness of the thin portion 112. There is a step 114 between the thick portion 111 and the thin portion 112. The size of the step 114 is the difference in thickness between the thick portion 111 and the thin portion 112. The step 114 is located on the upper surface 11b side of the positive electrode strap 11A.

正極ストラップ11Aにおいて、段差114の近傍に位置する部位は、正極板4Aから正極ストラップ11Aにはたらく力Fに対する剛性が低い脆弱部となっている。正極板4Aから正極ストラップ11Aにはたらく力Fが所定の大きさ以上の場合、抵抗溶接部123が貫通孔3Hの内周面に押圧されて変形するよりも前に、脆弱部が変形する。力Fに対して、抵抗溶接部123よりも脆弱部が優先的に塑性変形し、薄肉部112が上方向へ屈曲する。これにより、グロースが原因で正極板4Aから正極ストラップ11Aに力Fがはたらく場合でも、抵抗溶接部123にはたらく力を緩和することができ、抵抗溶接部123と隔壁3の貫通孔3Hとの間に隙間が生じることを防ぐことができる。 In the positive electrode strap 11A, the portion located near the step 114 is a fragile portion having low rigidity against the force F acting from the positive electrode plate 4A to the positive electrode strap 11A. When the force F acting from the positive electrode plate 4A to the positive electrode strap 11A is equal to or larger than a predetermined magnitude, the fragile portion is deformed before the resistance welded portion 123 is pressed against the inner peripheral surface of the through hole 3H and deformed. With respect to the force F, the fragile portion is preferentially plastically deformed over the resistance welded portion 123, and the thin portion 112 is bent upward. As a result, even when a force F acts on the positive electrode strap 11A from the positive electrode plate 4A due to growth, the force acting on the resistance welded portion 123 can be relaxed, and between the resistance welded portion 123 and the through hole 3H of the partition wall 3. It is possible to prevent a gap from being formed in the.

なお、本発明の実施形態に係る鉛蓄電池は、鉛又は鉛合金を圧延して成形した圧延基板を少なくとも正極基板に用いた場合により効果を奏する。圧延基板は鋳造基板と比較し、結晶粒界が大きく、反応に伴うグロースが大きいため、抵抗溶接部123で液リークが発生しやすい。圧延基板としては例えば、エキスパンド加工や打ち抜き加工によって格子を成形できる。なお、圧延基板を正極基板だけでなく、負極基板に用いても良い。 The lead-acid battery according to the embodiment of the present invention is more effective when a rolled substrate formed by rolling lead or a lead alloy is used as at least a positive electrode substrate. Compared to the cast substrate, the rolled substrate has a large grain boundary and a large growth accompanying the reaction, so that a liquid leak is likely to occur at the resistance welded portion 123. As the rolled substrate, for example, a lattice can be formed by an expanding process or a punching process. The rolled substrate may be used not only for the positive electrode substrate but also for the negative electrode substrate.

(試験電池)
第1から第5実施形態に係る鉛蓄電池と同じ構造の鉛蓄電池として、実施例1から5の鉛蓄電池を従来公知の方法で作製した。また、比較例として、脆弱部がない構造の鉛蓄電池を従来公知の方法で作製した。具体的には、電池サイズはM−42型とし、負極基板及び正極基板はエキスパンド格子とし、極板群を構成する正極板の枚数を6枚、負極板の枚数を7枚とした。鉛蓄電池は、実施例1から5と比較例とについて、それぞれ3つずつ作製した。以下、実施例1から5と比較例とを、水準と称することもある。
(Test battery)
As the lead-acid battery having the same structure as the lead-acid battery according to the first to fifth embodiments, the lead-acid batteries of Examples 1 to 5 were produced by a conventionally known method. Further, as a comparative example, a lead storage battery having a structure without fragile portions was produced by a conventionally known method. Specifically, the battery size was M-42 type, the negative electrode substrate and the positive electrode substrate were expanded lattices, the number of positive electrode plates constituting the electrode plate group was 6, and the number of negative electrode plates was 7. Three lead-acid batteries were prepared for each of Examples 1 to 5 and Comparative Example. Hereinafter, Examples 1 to 5 and Comparative Example may be referred to as a level.

(良否判定)
同水準3つの鉛蓄電池について、抵抗溶接後に全てのセルで不良が発生しなかった場合を良:〇とし、不良が1つでも発生した場合を不良:×と判定した。
(Good or bad judgment)
For three lead-acid batteries of the same level, the case where no defect occurred in all cells after resistance welding was evaluated as good: 〇, and the case where even one defect occurred was determined as defective: ×.

(過充電寿命試験)
上記の良否判定で良:〇と判定された水準について、以下の方法で過充電寿命試験を実施した。
処理1;水槽内での放電後充電の繰り返し及び休止
鉛蓄電池を、75℃の水槽内に入れて、電流25Aでの4分間の放電と、その後の制御電圧14.8V及び最大電流25Aの条件での10分間の充電を、480回繰り返す。次に、水槽から鉛蓄電池を取り出して、25℃の雰囲気で56時間静置する。
処理2:水槽外での一回の放電及び充電
25℃の雰囲気で、電流340Aで30秒間の放電を行う。なお、30秒目の終止電圧が7.2V以下となった場合は、液リークが発生したと判断して、その時点で試験を停止する。次に、制御電圧14.8V及び最大電流25Aの条件での10分間の充電を行う。
上記処理1の後に上記処理2を行うことを4回繰り返した後、上記処理1を1回行った。これにより、水槽内での放電後充電は2400回繰り返したことになり、2400回の充放電が終了した時点で隔壁を介して隣接するセル室間で、液リークが発生しなかった場合を良:〇と判定し、液リークが発生した場合を不良:×と判定した。
(Overcharge life test)
The overcharge life test was carried out by the following method for the level judged as good by the above quality judgment.
Process 1; Repeating and suspending charging after discharging in the water tank Put the lead-acid battery in the water tank at 75 ° C. for 4 minutes of discharging at a current of 25A, and then conditions of a control voltage of 14.8V and a maximum current of 25A. The charging for 10 minutes in the above is repeated 480 times. Next, the lead-acid battery is taken out from the water tank and allowed to stand in an atmosphere of 25 ° C. for 56 hours.
Treatment 2: One-time discharge and charge outside the water tank Discharge for 30 seconds at a current of 340 A in an atmosphere of 25 ° C. If the final voltage at 30 seconds is 7.2 V or less, it is determined that a liquid leak has occurred, and the test is stopped at that point. Next, charging is performed for 10 minutes under the conditions of a control voltage of 14.8 V and a maximum current of 25 A.
After the above-mentioned process 1 was repeated four times, the above-mentioned process 1 was performed once. As a result, charging after discharging in the water tank is repeated 2400 times, and it is good if no liquid leak occurs between the adjacent cell chambers via the partition wall when 2400 times of charging / discharging is completed. : It was judged as 〇, and when a liquid leak occurred, it was judged as defective: ×.

(総合判定)
良否判定及び過充電寿命試験について、いずれも良:〇と判定された水準を総合判定で良:〇と評価した。
(Comprehensive judgment)
Regarding the quality judgment and the overcharge life test, the level judged as good: 〇 was evaluated as good: 〇 in the comprehensive judgment.

(結果)
良否判定、過充電寿命試験及び総合判定の結果を表1に示す。

Figure 2020167095
(result)
Table 1 shows the results of the quality judgment, the overcharge life test, and the comprehensive judgment.
Figure 2020167095

表1に示すように、実施例1から5の鉛蓄電池は、良否判定の結果が良、過充電寿命試験の結果が良であり、総合判定が良であった。実施例1から5の鉛蓄電池は、製造不良は発生せず、液リークを防止できることがわかった。これに対して、比較例の鉛蓄電池は、良否判定の結果が不良、過充電寿命試験の結果が不良、総合判定が不良であった。 As shown in Table 1, the lead-acid batteries of Examples 1 to 5 had good quality judgment results, good results of the overcharge life test, and good overall judgment. It was found that the lead-acid batteries of Examples 1 to 5 did not cause manufacturing defects and could prevent liquid leakage. On the other hand, the lead-acid battery of the comparative example had a poor quality judgment result, a poor overcharge life test result, and a poor overall judgment.

1 セル室
3 隔壁
3H 貫通孔
4 極板
4A 正極板
4B 負極板
11 ストラップ
11a 下面
11A 正極ストラップ
11b 上面
11B 負極ストラップ
12a おもて面
12A 正極中間極柱
12b うら面
12B 負極中間極柱
15 補強部
100、200、300、400、500 鉛蓄電池
110A、210A、310A、410A、510A 正極接続体
110B、510B 負極接続体
151t、152t 先端部
1 Cell chamber 3 Partition 3H Through hole 4 Pole plate 4A Positive electrode plate 4B Negative electrode plate 11 Strap 11a Lower surface 11A Positive electrode strap 11b Upper surface 11B Negative electrode strap 12a Front surface 12A Positive electrode intermediate pole column 12b Back surface 12B Negative electrode intermediate pole column 15 Reinforcing part 100, 200, 300, 400, 500 Lead-acid batteries 110A, 210A, 310A, 410A, 510A Positive electrode connection 110B, 510B Negative electrode connection 151t, 152t Tip

Claims (8)

任意の第1のセル室に配置される第1の極板を前記第1のセル室と隔壁を介して隣り合う第2のセル室に配置される第2の極板に接続する接続体、を備え、
前記接続体は、
前記隔壁に設けられた貫通孔内に配置される孔内接続部と、
前記貫通孔の外側に配置される孔外接続部と、を有し、
前記孔外接続部は、前記孔内接続部よりも下側に脆弱部を有する、鉛蓄電池。
A connector for connecting a first plate arranged in an arbitrary first cell chamber to a second plate arranged in a second cell chamber adjacent to the first cell chamber via a partition wall. With
The connector
An in-hole connection portion arranged in a through hole provided in the partition wall,
It has an extra-hole connection portion arranged outside the through hole, and has
The outside-hole connection portion is a lead-acid battery having a fragile portion below the inside-hole connection portion.
前記孔外接続部は、
前記第1の極板を支持するストラップと、
前記ストラップと前記孔内接続部とを接続する中間極柱と、を有し、
前記孔内接続部は、前記中間極柱において前記隔壁と向かい合う面から前記貫通孔内へ延設されている、請求項1に記載の鉛蓄電池。
The outer connection portion is
A strap that supports the first electrode plate and
It has an intermediate pole column that connects the strap and the in-hole connection portion, and has.
The lead-acid battery according to claim 1, wherein the in-hole connection portion extends into the through hole from a surface of the intermediate pole column facing the partition wall.
前記中間極柱は、前記孔内接続部と前記ストラップとの間の位置に凹部を有し、
前記中間極柱において前記凹部の近傍に位置する部位が前記脆弱部である、請求項2に記載の鉛蓄電池。
The intermediate pole column has a recess at a position between the in-hole connection portion and the strap.
The lead-acid battery according to claim 2, wherein a portion of the intermediate pole column located in the vicinity of the recess is the fragile portion.
前記中間極柱は、前記孔内接続部と前記ストラップとの間の位置に、前記中間極柱の長手方向と交差する方向に曲がった曲部を有し、
前記曲部が前記脆弱部である、請求項2に記載の鉛蓄電池。
The intermediate pole column has a curved portion bent in a direction intersecting the longitudinal direction of the intermediate pole column at a position between the in-hole connection portion and the strap.
The lead-acid battery according to claim 2, wherein the curved portion is the fragile portion.
前記中間極柱は、
前記孔内接続部に接続する第1部位と、
前記第1部位と前記ストラップとの間に位置し、材料の組成及び結晶構造の少なくとも一方が前記第1部位とは異なる第2部位と、を有し、
前記第2部位が前記脆弱部である、請求項2に記載の鉛蓄電池。
The intermediate pole pillar
The first part connected to the in-hole connection part and
It is located between the first site and the strap and has a second site in which at least one of the composition and crystal structure of the material is different from the first site.
The lead-acid battery according to claim 2, wherein the second portion is the fragile portion.
前記接続体は、
前記ストラップと前記中間極柱との接続を補強する補強部、をさらに有し、
前記ストラップは、
前記第1の極板を支持する第1面と、
前記第1面の反対側に位置する第2面と、を有し、
前記補強部は、
前記中間極柱に接続する部位と、
前記第2面に接続する部位と、を有し、
前記中間極柱に接続する部位の第1の先端部は、前記孔内接続部よりも下側である前記中間極柱の長手方向の途中に位置し、
前記第2面に接続する部位の第2の先端部は、前記ストラップの長手方向の途中に位置し、
前記第1の先端部又は前記第2の先端部と隣り合う部位が前記脆弱部である、請求項2に記載の鉛蓄電池。
The connector
Further having a reinforcing portion for reinforcing the connection between the strap and the intermediate pole column,
The strap
A first surface that supports the first electrode plate and
It has a second surface located on the opposite side of the first surface, and has.
The reinforcing portion is
The part connected to the intermediate pole column and
It has a portion connected to the second surface and
The first tip portion of the portion connected to the intermediate pole pillar is located in the middle of the longitudinal direction of the intermediate pole pillar, which is below the in-hole connection portion.
The second tip of the portion connected to the second surface is located in the middle of the strap in the longitudinal direction.
The lead-acid battery according to claim 2, wherein the first tip portion or a portion adjacent to the second tip portion is the fragile portion.
前記中間極柱は、
前記孔内接続部に接続する第3部位と、
前記ストラップに接続する第4部位と、を有し、
前記第3部位の平均厚みは前記第4部位の平均厚みよりも薄く、
前記第3部位と前記第4部位との間に段差があり、
前記中間極柱において前記段差の近傍に位置する部位が前記脆弱部である、請求項2に記載の鉛蓄電池。
The intermediate pole pillar
A third portion connected to the in-hole connection portion and
It has a fourth portion that connects to the strap and
The average thickness of the third part is thinner than the average thickness of the fourth part.
There is a step between the third part and the fourth part,
The lead-acid battery according to claim 2, wherein a portion of the intermediate pole column located near the step is the fragile portion.
前記第1の極板及び前記第2の極板の少なくとも一方が圧延基板であることを特徴とする請求項1〜7のいずれか1項に記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 7, wherein at least one of the first electrode plate and the second electrode plate is a rolled substrate.
JP2019068345A 2019-03-29 2019-03-29 Lead-acid battery Pending JP2020167095A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019068345A JP2020167095A (en) 2019-03-29 2019-03-29 Lead-acid battery
CN202020161362.XU CN211320203U (en) 2019-03-29 2020-02-11 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019068345A JP2020167095A (en) 2019-03-29 2019-03-29 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2020167095A true JP2020167095A (en) 2020-10-08

Family

ID=72079460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019068345A Pending JP2020167095A (en) 2019-03-29 2019-03-29 Lead-acid battery

Country Status (2)

Country Link
JP (1) JP2020167095A (en)
CN (1) CN211320203U (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933497B1 (en) * 1966-11-14 1974-09-07
JPS5543754A (en) * 1978-09-20 1980-03-27 Yuasa Battery Co Ltd Method of manufacturing storage battery
JPS57124967U (en) * 1981-01-30 1982-08-04
JPH0294254A (en) * 1988-09-29 1990-04-05 Aisin Seiki Co Ltd Storage battery
JPH11250894A (en) * 1998-02-26 1999-09-17 Shin Kobe Electric Mach Co Ltd Lead-acid battery, and manufacture thereof
JP2001266833A (en) * 2000-03-15 2001-09-28 Yuasa Corp Cell connection structure for lead acid battery
JP2011159551A (en) * 2010-02-03 2011-08-18 Panasonic Corp Lead-acid storage battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4933497B1 (en) * 1966-11-14 1974-09-07
JPS5543754A (en) * 1978-09-20 1980-03-27 Yuasa Battery Co Ltd Method of manufacturing storage battery
JPS57124967U (en) * 1981-01-30 1982-08-04
JPH0294254A (en) * 1988-09-29 1990-04-05 Aisin Seiki Co Ltd Storage battery
JPH11250894A (en) * 1998-02-26 1999-09-17 Shin Kobe Electric Mach Co Ltd Lead-acid battery, and manufacture thereof
JP2001266833A (en) * 2000-03-15 2001-09-28 Yuasa Corp Cell connection structure for lead acid battery
JP2011159551A (en) * 2010-02-03 2011-08-18 Panasonic Corp Lead-acid storage battery

Also Published As

Publication number Publication date
CN211320203U (en) 2020-08-21

Similar Documents

Publication Publication Date Title
EP1713142B1 (en) Lead storage battery
EP2330676A1 (en) Lead acid storage battery
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JP6762974B2 (en) Positive electrode grid for lead-acid batteries and lead-acid batteries
EP0994518A1 (en) Lead acid storage battery with ribbed bag-like separator
US11158861B2 (en) Positive electrode grid body for lead-acid battery, and lead-acid battery
JP7245168B2 (en) Lead-acid battery separator and lead-acid battery
JP5061451B2 (en) Anode current collector for lead acid battery
CN103109412A (en) Lead-acid storage battery and idling-stop vehicle whereupon said lead-acid storage battery is mounted
JP5182467B2 (en) Control valve type lead storage battery manufacturing method
JP6164266B2 (en) Lead acid battery
JP6762895B2 (en) Lead-acid battery
EP1737062A1 (en) Lead storage battery
JP2020167095A (en) Lead-acid battery
JPH0337962A (en) Lead-acid battery
JP2009170129A (en) Lead storage battery and its manufacturing method
CN210866248U (en) Lead-acid battery
JP2001126735A (en) Lead accumulator
JP5903606B2 (en) Lead plate for lead storage battery, lead storage battery, and method for manufacturing lead plate for lead storage battery
JP6762975B2 (en) Positive electrode grid for lead-acid batteries and lead-acid batteries
EP1615277A1 (en) Method of producing lattice body for lead storage battery, and lead storage battery
CN211320139U (en) Lead-acid battery
JP3226169U (en) Lead acid battery
JP2006114416A (en) Lead-acid battery
JP4678117B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220125