JP6762974B2 - Positive electrode grid for lead-acid batteries and lead-acid batteries - Google Patents

Positive electrode grid for lead-acid batteries and lead-acid batteries Download PDF

Info

Publication number
JP6762974B2
JP6762974B2 JP2018035606A JP2018035606A JP6762974B2 JP 6762974 B2 JP6762974 B2 JP 6762974B2 JP 2018035606 A JP2018035606 A JP 2018035606A JP 2018035606 A JP2018035606 A JP 2018035606A JP 6762974 B2 JP6762974 B2 JP 6762974B2
Authority
JP
Japan
Prior art keywords
positive electrode
frame bone
openings
bone
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018035606A
Other languages
Japanese (ja)
Other versions
JP2019153384A (en
Inventor
祐太朗 川口
祐太朗 川口
由涼 荻野
由涼 荻野
真也 菅
真也 菅
章宏 西村
章宏 西村
嵩清 竹本
嵩清 竹本
亮 田井中
亮 田井中
古川 淳
淳 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2018035606A priority Critical patent/JP6762974B2/en
Publication of JP2019153384A publication Critical patent/JP2019153384A/en
Application granted granted Critical
Publication of JP6762974B2 publication Critical patent/JP6762974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、鉛蓄電池用正極格子体及び鉛蓄電池に関する。 The present invention relates to a positive electrode lattice for a lead storage battery and a lead storage battery.

近年の環境問題の深刻化と排出ガス規制に対応するため、停車時に一時的にエンジンを停止させるアイドリングストップ機能を搭載した自動車(以下、「ISS車」と表記する。)が普及しつつある。ISS車は、信号待ち等で停車した際のアイドリングによる燃料の消費を抑制できるため、燃費が向上し、さらに排出ガス量も低減できる。 In order to respond to the seriousness of environmental problems and exhaust gas regulations in recent years, automobiles equipped with an idling stop function that temporarily stops the engine when the vehicle is stopped (hereinafter referred to as "ISS vehicle") are becoming widespread. Since the ISS vehicle can suppress fuel consumption due to idling when the vehicle is stopped at a traffic light or the like, fuel efficiency can be improved and the amount of exhaust gas can be reduced.

前記ISS車に搭載された鉛蓄電池は、早期寿命に至り易いことが知られている。この理由としては、ISS車では、信号待ち等でエンジンが停止した際、エアコン、ライト、ワイパー、カーナビ等の機器へ電力を供給するため、鉛蓄電池が深い放電深度まで使用されること、発進時にエンジンを再始動するための放電とオルタネーターや回生ブレーキによる充電とを繰り返すことなどにより、鉛蓄電池に大きな負荷がかかることが挙げられる。 It is known that the lead-acid battery mounted on the ISS vehicle tends to reach an early life. The reason for this is that in ISS vehicles, lead-acid batteries are used to a deep discharge depth to supply power to devices such as air conditioners, lights, wipers, and car navigation systems when the engine stops due to waiting for traffic lights, etc. It can be mentioned that a large load is applied to the lead-acid battery by repeating discharging for restarting the engine and charging by an alternator or a regenerative brake.

鉛蓄電池は、積層構造の極板群を電槽内に収納した後、当該電槽内に電解液である希硫酸を注液する工程を経て製造される。積層構造の極板群は、主として鉛又は鉛合金からなる格子体にペースト状の活物質が充填された正極板及び負極板とセパレータとが交互に積層されている。当該格子体は、例えば枠骨と当該枠骨に囲まれた内骨とを有する構造のものが知られている。枠骨は、上側に配置され集電耳が形成される第1の横枠骨と、下側に配置される第2の横枠骨と、第1,2の横枠骨の端部同士を接続する第1,2の縦枠骨とを有する。内骨は、複数本の横桟及び縦桟を有する。格子体は少なくとも、枠骨と内骨とによって囲まれる領域として規定される開口部に活物質が充填されている。 A lead-acid battery is manufactured by storing a group of plates having a laminated structure in an electric tank and then injecting dilute sulfuric acid, which is an electrolytic solution, into the electric tank. In the electrode plate group of the laminated structure, a positive electrode plate and a negative electrode plate in which a lattice body mainly made of lead or a lead alloy is filled with a paste-like active material, and a separator are alternately laminated. The lattice body is known to have a structure having, for example, a frame bone and an internal bone surrounded by the frame bone. The frame bones are the first horizontal frame bones arranged on the upper side and the collecting ears are formed, the second horizontal frame bones arranged on the lower side, and the ends of the first and second horizontal frame bones. It has first and second vertical frame bones to be connected. The internal bone has a plurality of horizontal and vertical crosspieces. The lattice body is filled with active material at least in the opening defined as the area surrounded by the frame bone and the internal bone.

このような鉛蓄電池の寿命要因の一つが、正極格子体の腐食と膨張に伴う正極格子体全体の膨張、変形である。このような正極格子体の変形は、グロースと呼ばれている。グロースが生じると、正極格子体の一部が湾曲して折損し、その折損端がセパレータを突き破り対向する負極板と接触する、又は上側へ膨張して負極ストラップ等の負極の一部に接触することにより内部短絡を起こし、鉛蓄電池が早期に寿命に至る虞がある。また、正極格子体のグロースは、正極活物質の剥離又は脱落を招き、早期の容量低下の原因になる。このような事情から、鉛蓄電池を設計する際には正極格子体のグロースへの対策を講じる必要がある。 One of the life factors of such a lead-acid battery is the expansion and deformation of the entire positive electrode grid due to the corrosion and expansion of the positive electrode grid. Such deformation of the positive electrode lattice is called growth. When growth occurs, a part of the positive electrode lattice is curved and broken, and the broken end breaks through the separator and comes into contact with the facing negative electrode plate, or expands upward and comes into contact with a part of the negative electrode such as the negative electrode strap. As a result, an internal short circuit may occur, and the lead-acid battery may reach the end of its life at an early stage. In addition, the growth of the positive electrode lattice causes exfoliation or shedding of the positive electrode active material, which causes an early decrease in capacity. Under these circumstances, when designing a lead-acid battery, it is necessary to take measures against the growth of the positive electrode grid.

グロースが生じる機構は、次のように考えられる。鉛蓄電池における腐食は、充放電により正極格子体を形成する鉛又は鉛合金が主に電解液や活物質中に含まれる硫酸イオンと反応して、PbO(x:1〜2)やPbSO等からなる多層構造の腐食反応生成物へと変化する酸化反応に起因する。当該腐食は充放電の繰り返しに伴って進行する。このとき、電解液と接触する正極格子体の表面近傍において、腐食反応生成物の層が成長する。当該腐食反応生成物の成長は、正極格子体の体積の増加を伴うため、腐食が進行すると正極格子体の表面近傍の腐食反応生成物と内部の正極格子体自体の膨張度合いの差により大きな応力が発生する。結果として、当該応力が正極格子体を延伸させる引張応力となり、正極格子体全体の膨張に伴うグロースを生じる。 The mechanism by which growth occurs is considered as follows. In lead-acid batteries, lead or lead alloys that form a positive electrode lattice by charging and discharging react mainly with sulfate ions contained in the electrolytic solution and active material, and PbO x (x: 1-2) and PbSO 4 This is due to the oxidation reaction that changes into a multi-layered corrosion reaction product consisting of the above. The corrosion progresses with repeated charging and discharging. At this time, a layer of the corrosion reaction product grows in the vicinity of the surface of the positive electrode lattice in contact with the electrolytic solution. Since the growth of the corrosion reaction product is accompanied by an increase in the volume of the positive electrode lattice, as the corrosion progresses, a large stress is caused by the difference in the degree of expansion between the corrosion reaction product near the surface of the positive electrode lattice and the internal positive electrode lattice itself. Occurs. As a result, the stress becomes a tensile stress that stretches the positive electrode lattice, and growth is generated due to the expansion of the entire positive electrode lattice.

鉛蓄電池の極板群は、ストラップから上側に延出するよう設けた極柱やセル間の接続部材によって、蓋あるいは電槽の上部に固定されているため、グロースが生じると正極板はまず固定されていない左右側と下側に対して伸びる。初期のグロースでは、正極板の左右側への伸び代と比較して下側への伸び代は小さくなる場合が多い。これは、当該極板群を支持するために、当該極板群の下端が、電槽底面や当該底面に設けた鞍部に当接していることによる。従って、グロースが生じると正極板の下側への伸びは上側への伸びに転じるため、正極板の上端が負極ストラップ等の負極の一部に接触して内部短絡を生じる虞がある。 Since the electrode plate group of the lead-acid battery is fixed to the lid or the upper part of the battery case by the electrode column provided so as to extend upward from the strap and the connecting member between the cells, the positive electrode plate is first fixed when growth occurs. It extends to the left and right sides and the bottom side that are not. In the initial growth, the downward growth allowance is often smaller than the lateral extension allowance of the positive electrode plate. This is because the lower end of the electrode plate group is in contact with the bottom surface of the battery case and the saddle provided on the bottom surface in order to support the electrode plate group. Therefore, when growth occurs, the downward extension of the positive electrode plate turns to the upward extension, so that the upper end of the positive electrode plate may come into contact with a part of the negative electrode such as the negative electrode strap to cause an internal short circuit.

正極格子体の上側へのグロースによる内部短絡を防止する手段として、出願人は特許文献1及び特許文献2において、極板群を保持する電槽の鞍部をスポンジや発泡性樹脂で形成した鉛蓄電池を提案している。電槽の鞍部をスポンジや発泡性樹脂で形成することによって、正極格子体にグロースが生じた際、鞍部が潰れて下側への伸びを吸収するため、正極格子体の上側への伸びを抑制して負極ストラップ等への接触、内部短絡を防止できる。 As a means for preventing an internal short circuit due to growth to the upper side of the positive electrode lattice, the applicant in Patent Document 1 and Patent Document 2 states that a lead-acid battery in which the saddle of the battery case that holds the electrode plate group is made of sponge or foamable resin. Is proposing. By forming the saddle part of the battery case with a sponge or foamable resin, when the positive electrode lattice grows, the saddle part collapses and absorbs the downward extension, so that the upward extension of the positive electrode lattice is suppressed. Therefore, contact with the negative electrode strap and the like and internal short circuit can be prevented.

これに対し、特許文献1,2の構成と異なる形態で正極格子体と負極格子体の内部短絡を抑制する発明が種々提案されている。特許文献3では、正極板を宙吊り状態とし、正極板の下側が電槽底部から離れた構造を有する鉛蓄電池が開示されている。この鉛蓄電池では、グロースが生じた際に正極板が下側へ優先的に伸びるため、上側への伸びとそれに伴う正極板と負極板との接触による内部短絡が抑制される。 On the other hand, various inventions for suppressing an internal short circuit between the positive electrode lattice and the negative electrode lattice have been proposed in a form different from the configurations of Patent Documents 1 and 2. Patent Document 3 discloses a lead-acid battery having a structure in which the positive electrode plate is suspended in the air and the lower side of the positive electrode plate is separated from the bottom of the battery case. In this lead-acid battery, since the positive electrode plate preferentially extends downward when growth occurs, an internal short circuit due to the upward extension and the accompanying contact between the positive electrode plate and the negative electrode plate is suppressed.

特許文献4及び特許文献5には、グロースによる正極板と負極板の接触を抑制する手法として、正極格子体の所定の部分に切り欠きやくびれ等の機械的強度の弱い箇所を設けた鉛蓄電池が開示されている。このように、正極格子体の一部に機械的強度の弱い箇所を形成することによって、グロースが生じた際に、機械的強度の低い箇所が優先的に折損又は変形し、正極格子体全体の膨張が抑制される。 In Patent Document 4 and Patent Document 5, as a method of suppressing contact between the positive electrode plate and the negative electrode plate due to growth, a lead-acid battery in which a portion having a weak mechanical strength such as a notch or a constriction is provided in a predetermined portion of the positive electrode lattice. Is disclosed. By forming a portion having a weak mechanical strength in a part of the positive electrode lattice in this way, when growth occurs, the portion having a low mechanical strength is preferentially broken or deformed, and the entire positive electrode lattice is formed. Expansion is suppressed.

また、腐食による正極格子体のグロースを抑制する技術の他に、充放電サイクル中の活物質の膨張、収縮による変形を防止し鉛蓄電池の寿命を向上することも検討されている。 In addition to the technology for suppressing the growth of the positive electrode lattice due to corrosion, it is also being studied to prevent deformation due to expansion and contraction of the active material during the charge / discharge cycle and improve the life of the lead storage battery.

特許文献6では、正極格子体において、内骨を構成する横桟及び縦桟の配列間隔を中心部から周辺部に向かって小さくした鉛蓄電池が開示されている。このように横桟及び縦桟の配列間隔を中心部から周辺部に向かって小さくすることによって、正極格子体の周辺部ほど横桟及び縦桟が密に配置されるため、正極格子体の機械的強度が向上する。そのため、正極活物質が充電によって面方向に膨張した際の正極格子体の特に横方向への変形が抑制され、鉛蓄電池のサイクル特性が向上する。 Patent Document 6 discloses a lead-acid battery in which the arrangement spacing of the horizontal rails and the vertical rails constituting the inner bone is reduced from the central portion to the peripheral portion in the positive electrode lattice body. By reducing the arrangement spacing of the horizontal rails and the vertical rails from the central portion to the peripheral portion in this way, the horizontal rails and the vertical rails are arranged closer to the peripheral portion of the positive electrode grid, so that the machine of the positive electrode grid Strength is improved. Therefore, when the positive electrode active material expands in the plane direction due to charging, the deformation of the positive electrode lattice body in the lateral direction is suppressed, and the cycle characteristics of the lead storage battery are improved.

特開2001−351671号公報Japanese Unexamined Patent Publication No. 2001-351671 実開平5−45901号公報Jikkenhei 5-45901 特開2012−079609号公報JP 2012-079609 特許第5103385号公報Japanese Patent No. 5103385 特開2013−16499号公報Japanese Unexamined Patent Publication No. 2013-16499 特開平2−281563号公報Japanese Unexamined Patent Publication No. 2-281563

しかしながら、特許文献1乃至3に記載の鉛蓄電池は、静置した状態で使用される据置電源用の鉛蓄電池を想定したものであり、激しい振動が想定される用途、例えば車載用の始動用電源としては耐久性に改良すべき点があった。特許文献1乃至3に記載の鉛蓄電池では、重量の大きい極板群がほぼ上側のストラップと接続した集電耳のみで支持・保持された状態となるため、激しい振動が加わると極板群が集電耳の部分で破断する虞がある。
一方、特許文献4及び特許文献5に記載の鉛蓄電池では、正極格子体の一部に切り欠きやくびれを設けるため、当該部分において電気抵抗が局所的に大きくなり、充放電時の電位分布が不均一化して集電効率が低下し、出力特性等の低下を招く虞がある。また切り欠きやくびれ部分を設けると、正極格子体の製造に使用される金型の形状が複雑化し、製造コストの増大や歩留まりの悪化等を招く虞がある。特に、鋳造による正極格子体の製造においては、金型における溶融した鉛又は鉛合金の湯回り不良による目切れ等の鋳造欠陥も危惧される。
However, the lead-acid batteries described in Patent Documents 1 to 3 assume a lead-acid battery for a stationary power source used in a stationary state, and are used for applications where violent vibration is expected, for example, a starting power source for an automobile. There was a point to improve the durability. In the lead-acid batteries described in Patent Documents 1 to 3, the heavy electrode plate group is supported and held only by the current collector ear connected to the strap on the upper side. Therefore, when violent vibration is applied, the electrode plate group is supported and held. There is a risk of breakage at the current collector ear.
On the other hand, in the lead-acid batteries described in Patent Documents 4 and 5, since a notch or a constriction is provided in a part of the positive electrode lattice, the electric resistance locally increases in the part and the potential distribution at the time of charging / discharging becomes large. There is a risk that non-uniformity will result in reduced current collection efficiency and lower output characteristics. Further, if the notch or the constricted portion is provided, the shape of the mold used for manufacturing the positive electrode lattice is complicated, which may lead to an increase in manufacturing cost and a deterioration in yield. In particular, in the production of a positive electrode lattice by casting, there is a concern about casting defects such as breakage due to poor running of molten lead or lead alloy in the mold.

特許文献6に記載の正極格子体のように、内骨を構成する横桟及び縦桟の配列間隔を、中心部から周辺部に向かって小さくすると、正極格子体の周辺部に位置する開口部は正極格子体の中心部に位置するものと比較して面積が小さくなり、正極格子体の中心部に位置する開口部の面積が大きくなる。一般的に、正極格子体における充放電時の電流密度は、上側の正極集電耳付近に位置するほど大きく、下側に位置するほど小さくなる。また正極活物質の膨張、収縮は充放電反応に伴って生じ、その充放電反応は電流密度に比例する。このため、正極格子体の上側では正極活物質の膨張、収縮が大きく、下側では小さくなる。その結果、特許文献6のように、開口部の面積の分布を正極格子体の中心部を基点として点対称的にすると、電流密度の分布を考慮した場合、必ずしも正極活物質の膨張、収縮を最も効率的に防ぐ方法とはいえず、改良の余地があった。また、特許文献6にも記載されるように、横桟及び縦桟の本数を増やすことは鉛蓄電池自体の重量の増加に繋がる。そのため、正極活物質の膨張、収縮の防止に対して寄与の小さい正極格子体の下側まで横桟及び縦桟の配列間隔を密にすることは、鉛蓄電池の軽量化が損なわれる。 When the arrangement spacing of the horizontal rails and the vertical rails constituting the inner bone is reduced from the central portion toward the peripheral portion as in the positive electrode lattice body described in Patent Document 6, the opening located in the peripheral portion of the positive electrode lattice body is formed. Has a smaller area than that located at the center of the positive electrode lattice, and has a larger area of the opening located at the center of the positive electrode lattice. In general, the current density at the time of charging / discharging in the positive electrode lattice is larger as it is located near the upper positive electrode current collecting ear and becomes smaller as it is located on the lower side. Further, expansion and contraction of the positive electrode active material occur with the charge / discharge reaction, and the charge / discharge reaction is proportional to the current density. Therefore, the expansion and contraction of the positive electrode active material is large on the upper side of the positive electrode lattice, and is small on the lower side. As a result, as in Patent Document 6, when the distribution of the area of the opening is point-symmetrical with the central portion of the positive electrode lattice as the base point, the expansion and contraction of the positive electrode active material do not necessarily occur when the distribution of the current density is taken into consideration. It was not the most efficient way to prevent it, and there was room for improvement. Further, as described in Patent Document 6, increasing the number of horizontal rails and vertical rails leads to an increase in the weight of the lead storage battery itself. Therefore, increasing the arrangement spacing of the horizontal rails and the vertical rails to the lower side of the positive electrode grid, which contributes less to the prevention of expansion and contraction of the positive electrode active material, impairs the weight reduction of the lead storage battery.

また、発明者等が見出した、グロースが助長されるメカニズムについて以下に述べる。グロースにより正極格子体が拡張するように変形すると、正極活物質が枠骨や内骨から剥離したり、開口部から脱落したり、隙間を生じたりする。当該隙間に電解液が侵入して正極格子体と接触すると、充放電に伴う正極格子体の腐食が促されるため、グロースが加速的に進行する。以下、このような正極格子体の縦枠骨に接した正極活物質の剥離又は脱落に伴うグロースの著しい進行を「加速的グロース」と表記する。一般的に、正極格子体の断面積が大きいほど、腐食時のグロース度合も大きくなることが知られている。従って、正極格子体の縦枠骨が外側に湾曲することにより正極活物質との剥離又は脱落を生じた場合、放電容量や出力特性のような電池性能の低下のみならず、上下方向への加速的グロースを招く。 In addition, the mechanism by which growth is promoted, which was found by the inventors, will be described below. When the positive electrode lattice is deformed by the growth so as to expand, the positive electrode active material is exfoliated from the frame bone and the inner bone, falls off from the opening, and a gap is formed. When the electrolytic solution invades the gap and comes into contact with the positive electrode lattice, corrosion of the positive electrode lattice due to charging and discharging is promoted, so that the growth accelerates. Hereinafter, the remarkable progress of growth accompanying the exfoliation or detachment of the positive electrode active material in contact with the vertical frame bone of the positive electrode lattice is referred to as “accelerated growth”. In general, it is known that the larger the cross-sectional area of the positive electrode lattice, the larger the degree of growth during corrosion. Therefore, when the vertical frame bone of the positive electrode lattice is curved outward and peels off or falls off from the positive electrode active material, not only the battery performance such as discharge capacity and output characteristics deteriorates, but also acceleration in the vertical direction occurs. Invite target growth.

加えて、正極活物質と正極格子体が密着した状態であれば、当該正極活物質と正極格子体表面との間に結合に必要な腐食層が形成される。正極活物質と正極格子体の間に腐食層が介在されると、正極活物質が正極格子体を引っ張る力が働くため、正極格子体のグロースを抑制する。しかしながら、剥離又は脱落が生じた状態では前記作用が働かず、加速的グロースが助長される。 In addition, when the positive electrode active material and the positive electrode lattice are in close contact with each other, a corrosive layer necessary for bonding is formed between the positive electrode active material and the surface of the positive electrode lattice. When a corrosive layer is interposed between the positive electrode active material and the positive electrode lattice, the positive electrode active material exerts a force to pull the positive electrode lattice, so that the growth of the positive electrode lattice is suppressed. However, in the state where peeling or dropping occurs, the above action does not work, and accelerated growth is promoted.

本発明は上記事情を鑑み、正極格子体のグロースに起因する内部短絡を防止でき、鉛蓄電池の寿命を向上し得る鉛蓄電池用正極格子体及び鉛蓄電池を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a positive electrode lattice for a lead storage battery and a lead storage battery which can prevent an internal short circuit due to the growth of the positive electrode lattice and can improve the life of the lead storage battery.

上記の課題を解決するために、一つの実施形態によると、横方向に延びる第1の横枠骨及び第2の横枠骨と、縦方向に延びる第1の縦枠骨と第2の縦枠骨とを備える矩形枠状の枠骨;枠骨内に配置され、枠骨と接続して格子状に設けられる複数本の横桟及び縦桟を備える内骨;枠骨と複数本の横桟及び縦桟とによって囲まれる領域、並びに複数本の横桟及び縦桟によって囲まれる領域として規定される複数の開口部;及び第1の横枠骨と接続する正極集電耳;を備え、第1の縦枠骨に隣接する複数の開口部及び第2の縦枠骨に隣接する複数の開口部を平面視した平均面積は、当該複数の開口部を除く残りの複数の開口部を平面視した平均面積と比較して小さく、複数の開口部は、第1の横枠骨と第2の横枠骨とを縦断する同一垂線上で比較した場合、第2の横枠骨側から第1の横枠骨側に向けて段階的に平面視した面積が小さくなることを特徴とする鉛蓄電池用正極格子体が提供される。 In order to solve the above problems, according to one embodiment, a first horizontal frame bone and a second horizontal frame bone extending in the lateral direction, and a first vertical frame bone and a second vertical frame extending in the vertical direction are used. Rectangular frame-shaped frame bone having a frame bone; internal bone having a plurality of horizontal bars and vertical bars arranged in the frame bone and connected to the frame bone in a grid pattern; frame bone and a plurality of lateral bars A region surrounded by a crosspiece and a vertical rail, and a plurality of openings defined as an area surrounded by a plurality of horizontal rails and a vertical rail; and a positive current collector ear connected to a first horizontal frame bone; The average area of the plurality of openings adjacent to the first vertical frame bone and the plurality of openings adjacent to the second vertical frame bone in plan view is the plane of the remaining plurality of openings excluding the plurality of openings. Smaller than the observed average area, the plurality of openings are the second from the second lateral frame bone side when compared on the same perpendicular line that traverses the first lateral frame bone and the second horizontal frame bone. Provided is a positive electrode lattice body for a lead storage battery, characterized in that the area in plan view is gradually reduced toward the lateral frame bone side of 1.

上記の課題を解決するために、別の実施形態によると、上述する鉛蓄電池用正極格子体を備えることを特徴とする鉛蓄電池が提供される。 In order to solve the above-mentioned problems, according to another embodiment, there is provided a lead-acid battery characterized by comprising the above-mentioned positive electrode lattice for a lead-acid battery.

本発明によれば、正極格子体のグロースに起因する内部短絡を防止でき、鉛蓄電池の寿命を向上し得る鉛蓄電池用の正極格子体及び鉛蓄電池を提供できる。 According to the present invention, it is possible to provide a positive electrode lattice and a lead storage battery for a lead storage battery, which can prevent an internal short circuit due to the growth of the positive electrode lattice and can improve the life of the lead storage battery.

図1は、第1の実施形態に係る正極格子体の平面図である。FIG. 1 is a plan view of the positive electrode grid body according to the first embodiment. 図2は、第2の実施形態に係る正極格子体の平面図である。FIG. 2 is a plan view of the positive electrode grid body according to the second embodiment. 図3は、第3の実施形態に係る正極格子体の備える開口部を拡大して示す平面図である。FIG. 3 is an enlarged plan view showing an opening provided in the positive electrode lattice body according to the third embodiment. 図4は、第4の実施形態に係る正極格子体の備える開口部を拡大して示す平面図である。FIG. 4 is an enlarged plan view showing an opening provided in the positive electrode lattice body according to the fourth embodiment. 図5は、第5の実施形態に係る正極格子体の一部を拡大して示す平面図である。FIG. 5 is an enlarged plan view showing a part of the positive electrode lattice body according to the fifth embodiment. 図6は、第6の実施形態に係る正極格子体の一部を拡大して示す平面図である。FIG. 6 is an enlarged plan view showing a part of the positive electrode lattice body according to the sixth embodiment. 図7は、第7の実施形態に係る正極格子体の一部を拡大して示す平面図である。FIG. 7 is an enlarged plan view showing a part of the positive electrode lattice body according to the seventh embodiment.

<第1の実施形態>
図1は、第1の実施形態に係る鉛蓄電池用の正極格子体1の平面図を示す。
<First Embodiment>
FIG. 1 shows a plan view of a positive electrode lattice body 1 for a lead storage battery according to the first embodiment.

正極格子体1は、枠骨と、当該枠骨内に配置される内骨と、正極集電耳11Aとを備えている。枠骨は、矩形枠状であって、横方向Xに延び当該横方向Xの中間からずれた位置に正極集電耳11Aが接続される第1の横枠骨13a、及び第2の横枠骨13bと、縦方向Yに延びる第1の縦枠骨14aと第2の縦枠骨14bとを備えている。なお本明細書中では、図1に示すように、第1の横枠骨13a及び第2の横枠骨13bが延びる方向を横方向X、第1の縦枠骨14a及び第2の縦枠骨14bが延びる方向を縦方向Yと定義する。また、第1の横枠骨13aが配置される部位を上側、第2の横枠骨13bが配置される部位を下側、第1の縦枠骨14aが配置される部位を左側、第2の縦枠骨14bが配置される部位を右側と定義する。 The positive electrode lattice body 1 includes a frame bone, an internal bone arranged in the frame bone, and a positive electrode current collector ear 11A. The frame bone has a rectangular frame shape, and the first horizontal frame bone 13a and the second horizontal frame, which extend in the lateral direction X and are connected to the positive electrode collecting ear 11A at a position deviated from the middle of the lateral direction X, and the second horizontal frame. It includes a bone 13b, a first vertical frame bone 14a extending in the vertical direction Y, and a second vertical frame bone 14b. In the present specification, as shown in FIG. 1, the direction in which the first horizontal frame bone 13a and the second horizontal frame bone 13b extend is the horizontal direction X, the first vertical frame bone 14a and the second vertical frame. The direction in which the bone 14b extends is defined as the longitudinal direction Y. Further, the part where the first horizontal frame bone 13a is arranged is on the upper side, the part where the second horizontal frame bone 13b is arranged is on the lower side, the part where the first vertical frame bone 14a is arranged is on the left side, and the second. The site where the vertical frame bone 14b is placed is defined as the right side.

枠骨内には、枠骨と接続して、格子状に配列される複数本の横桟15a及び縦桟15bを備える内骨が配置されている。複数本の横桟15aは、例えば、第1の縦枠骨14a及び第2の縦枠骨14bにそれぞれ接続して、横方向Xに延びている。また複数本の前記横桟15aは、例えば縦方向Yに互いに離間して平行に配列されている。複数本の縦桟15bは、第1の横枠骨13a及び第2の横枠骨13bにそれぞれ接続して縦方向Yに延びている。また複数本の前記縦桟15bは、例えば横方向Xに互いに離間して平行に配列されている。これら複数本の横桟15a及び複数本の縦桟15bは、例えば互いに直角に交差して配置されている。 In the frame bone, an internal bone having a plurality of horizontal bars 15a and vertical bars 15b arranged in a grid pattern connected to the frame bone is arranged. The plurality of cross rails 15a are connected to, for example, the first vertical frame bone 14a and the second vertical frame bone 14b, respectively, and extend in the lateral direction X. Further, the plurality of cross rails 15a are arranged in parallel so as to be separated from each other in the vertical direction Y, for example. The plurality of vertical bars 15b are connected to the first horizontal frame bone 13a and the second horizontal frame bone 13b, respectively, and extend in the vertical direction Y. Further, the plurality of vertical bars 15b are arranged in parallel, for example, separated from each other in the lateral direction X. The plurality of horizontal rails 15a and the plurality of vertical rails 15b are arranged so as to intersect each other at right angles, for example.

正極格子体1において、複数の開口部16は枠骨と複数本の横桟15a及び縦桟15bとによって囲まれる領域、並びに複数本の横桟15a及び縦桟15bによって囲まれる領域、で規定される。複数の開口部16は、例えばそれぞれ矩形状を有する。 In the positive electrode lattice body 1, the plurality of openings 16 are defined by a region surrounded by a frame bone and a plurality of cross rails 15a and a vertical rail 15b, and a region surrounded by a plurality of horizontal rails 15a and a vertical rail 15b. To. Each of the plurality of openings 16 has a rectangular shape, for example.

複数本の縦桟15bは、第1,2の縦枠骨14a,14bにそれぞれ隣接する縦桟15bと当該第1,2の縦枠骨14a,14bとの間隔と、他の複数本の縦桟15b同士の間隔とを比較した際、第1,2の縦枠骨14a,14bとそれらに隣接する縦桟15bとの間隔が他の複数本の縦桟15b同士の間隔よりも狭くなるように配列されている。従って、第1の縦枠骨14aに隣接している複数の開口部16及び第2の縦枠骨14bに隣接している複数の開口部16を平面視した平均面積は、それ以外の複数の開口部16を平面視した平均面積と比較して小さくなる。 The plurality of vertical bars 15b include the distance between the vertical bars 15b adjacent to the first and second vertical frame bones 14a and 14b and the first and second vertical frame bones 14a and 14b, respectively, and the other plurality of vertical bars. When comparing the distance between the crosspieces 15b, the distance between the first and second vertical frame bones 14a and 14b and the vertical rails 15b adjacent to them is narrower than the distance between the other plurality of vertical rails 15b. It is arranged in. Therefore, the average area of the plurality of openings 16 adjacent to the first vertical frame bone 14a and the plurality of openings 16 adjacent to the second vertical frame bone 14b in a plan view is a plurality of other openings. It is smaller than the average area of the opening 16 in a plan view.

また、複数本の横桟15aは、例えば、第2の横枠骨13b側(すなわち図1における下側)から第1の横枠骨13a側(すなわち図1における上側)に向けて、段階的に間隔が狭くなるように配列されている。従って、複数の開口部16は、第2の横枠骨13b側から第1の横枠骨13a側に向けて、段階的に平面視した面積が小さくなる。このとき、複数の開口部16を平面視した面積は、第2の横枠骨13b側から第1の横枠骨13a側に向けて、第2の横枠骨13b側の開口部16の面積に対して0.85倍以上、0.99倍を超えない範囲で段階的に小さくすることが好ましい。例えば、図1に示す例では上側から数えてy+1行目に位置する開口部16の面積に対して、同じ列のy行目に位置する1つの開口部16の面積比は、最小で0.85倍、最大で0.99倍である。 Further, the plurality of cross rails 15a are stepwise, for example, from the second horizontal frame bone 13b side (that is, the lower side in FIG. 1) to the first horizontal frame bone 13a side (that is, the upper side in FIG. 1). They are arranged so that the intervals are narrow. Therefore, the area of the plurality of openings 16 in a plan view is gradually reduced from the second horizontal frame bone 13b side toward the first horizontal frame bone 13a side. At this time, the area of the plurality of openings 16 in a plan view is the area of the openings 16 on the second horizontal frame bone 13b side from the second horizontal frame bone 13b side toward the first horizontal frame bone 13a side. It is preferable to gradually reduce the size within a range of 0.85 times or more and 0.99 times or more. For example, in the example shown in FIG. 1, the area ratio of one opening 16 located in the y-th row of the same column to the area of the opening 16 located in the y + 1th row counting from the upper side is 0. It is 85 times, and the maximum is 0.99 times.

第1の横枠骨13aには、正極格子体1を外部に接続するための正極集電耳11Aが接続されている。正極集電耳11Aは、例えば矩形板状であり、図1における第1の横枠骨13aの右側から上側に延びるように接続されている。後述するように正極板と負極板とを積層して極板群を構成すると、正極集電耳11Aと負極集電耳11Bとは、極板群の積層方向に向かって透視した時、第1の横枠骨13aの長さ方向に互いにずれて配置される。図1に示す例では、正極集電耳11Aと負極集電耳11Bとは、正極格子体1の横方向Xにおける中心線を基準にして互いに左右対称の位置に配置されている。 A positive electrode current collecting ear 11A for connecting the positive electrode lattice body 1 to the outside is connected to the first horizontal frame bone 13a. The positive electrode current collector ear 11A has, for example, a rectangular plate shape, and is connected so as to extend from the right side to the upper side of the first horizontal frame bone 13a in FIG. When the positive electrode plate and the negative electrode plate are laminated to form a electrode plate group as described later, the positive electrode current collecting ear 11A and the negative electrode current collecting ear 11B are the first when viewed in the direction of laminating the electrode plate group. The horizontal frame bones 13a of the above are arranged so as to be offset from each other in the length direction. In the example shown in FIG. 1, the positive electrode current collecting ears 11A and the negative electrode current collecting ears 11B are arranged symmetrically with respect to the center line in the lateral direction X of the positive electrode lattice body 1.

次に、第1の実施形態に係る正極格子体1の作用を説明する。 Next, the operation of the positive electrode lattice body 1 according to the first embodiment will be described.

第1の縦枠骨14aに隣接する複数の開口部16及び第2の縦枠骨14bに隣接する複数の開口部16を平面視した平均面積は、当該複数の開口部16を除く残りの複数の開口部16の平均面積よりも小さい。このように、少なくとも前記第1の縦枠骨14aに隣接する複数の開口部16及び第2の縦枠骨14bに隣接する複数の開口部16を平面視した平均面積を、当該複数の開口部16を除く残りの複数の開口部16の平均面積よりも小さくすることによって、当該複数の開口部16に充填された正極活物質は、正極格子体1の一定の面積当たりに接する割合が他の複数の開口部16に充填された正極活物質と比べて大きくなる。そのため、当該複数の開口部16に充填された正極活物質と正極格子体1との密着性が他の部分よりも向上し、当該正極活物質の剥離又は脱落を抑制できる。従って、当該複数の開口部16に充填された正極活物質の剥離又は脱落に伴う、放電容量や出力特性などの電池性能の低下を抑制できる。同時に、前記正極格子体1の第1の縦枠骨14a及び第2の縦枠骨14bの加速的グロースを防止することが可能となる。 The average area of the plurality of openings 16 adjacent to the first vertical frame bone 14a and the plurality of openings 16 adjacent to the second vertical frame bone 14b in a plan view is the remaining plurality of openings excluding the plurality of openings 16. It is smaller than the average area of the opening 16 of. As described above, the average area of at least the plurality of openings 16 adjacent to the first vertical frame bone 14a and the plurality of openings 16 adjacent to the second vertical frame bone 14b in a plan view is taken from the plurality of openings. By making the area smaller than the average area of the remaining plurality of openings 16 excluding 16, the positive electrode active material filled in the plurality of openings 16 is in contact with the positive electrode lattice 1 per fixed area. It is larger than the positive electrode active material filled in the plurality of openings 16. Therefore, the adhesion between the positive electrode active material filled in the plurality of openings 16 and the positive electrode lattice body 1 is improved as compared with other portions, and peeling or falling off of the positive electrode active material can be suppressed. Therefore, it is possible to suppress deterioration of battery performance such as discharge capacity and output characteristics due to peeling or falling off of the positive electrode active material filled in the plurality of openings 16. At the same time, it is possible to prevent the accelerated growth of the first vertical frame bone 14a and the second vertical frame bone 14b of the positive electrode lattice body 1.

なお、正極格子体1の開口部16を平面視した際の面積を小さくするには、例えば当該開口部16を形成する枠骨、横桟15a又は縦桟15bの幅を拡大したり、同一面積における横桟15a又は縦桟15bの本数を増やしたりするなどの方法が考えられる。しかしながら、いずれも正極格子体1の重量増加とトレードオフの関係にあるため、開口部を平面視した平均面積の縮小箇所を第1の縦枠骨14a及び第2の縦枠骨14bに隣接する部分に限定することが望ましい。 In order to reduce the area of the positive electrode lattice body 1 when the opening 16 is viewed in a plan view, for example, the width of the frame bone, the horizontal rail 15a or the vertical rail 15b forming the opening 16 can be increased, or the same area can be obtained. A method such as increasing the number of horizontal rails 15a or vertical rails 15b in the above can be considered. However, since both of them have a trade-off relationship with the weight increase of the positive electrode lattice body 1, the reduced portion of the average area in plan view of the opening is adjacent to the first vertical frame bone 14a and the second vertical frame bone 14b. It is desirable to limit it to a part.

複数の開口部16は、第1の横枠骨13aと第2の横枠骨13bとを縦断する同一垂線上で比較した場合に、第2の横枠骨13b側から第1の横枠骨13a側に向けて、平面視した面積を段階的に小さくする。このように正極格子体1の上側に位置する、面積が小さい開口部16では、正極格子体1の下側に位置する面積が大きい開口部16に比べて、正極格子体1の一定の面積当たりに接する正極活物質の割合が増加する。このため、当該開口部16に充填された正極活物質と正極格子体1との密着性が向上し、正極格子体1の加速的グロースを防止することが可能となる。ここで、上下に連続した複数の開口部16の面積比は、下側の開口部16に対して上側の開口部16の面積が0.85倍以上、0.99倍を超えない範囲、すなわち、(上側の開口部)/(下側の開口部)の面積比=0.85〜0.99倍、にすることが加速的グロースの防止においてより望ましい。面積比が0.99倍を超える場合は、正極格子体1の上側と下側とでの面積差が小さいため、前記正極格子体1の上側の補強を選択的に高める効果が小さくなる。また、面積比が0.85倍未満の場合は、正極格子体1の上側の開口部16を小さくしたことにより正極活物質の充填性が向上するものの、下側の開口部16の面積が相対的に大きくなって出力特性や正極活物質の保持性の低下を招く虞がある。 The plurality of openings 16 are compared from the side of the second horizontal frame bone 13b to the first horizontal frame bone when compared on the same vertical line traversing the first horizontal frame bone 13a and the second horizontal frame bone 13b. The area viewed in a plan view is gradually reduced toward the 13a side. In this way, the opening 16 having a small area located above the positive electrode lattice 1 has a fixed area per positive electrode lattice 1 as compared with the opening 16 having a large area located below the positive electrode lattice 1. The proportion of positive electrode active material in contact with is increased. Therefore, the adhesion between the positive electrode active material filled in the opening 16 and the positive electrode lattice body 1 is improved, and the accelerated growth of the positive electrode lattice body 1 can be prevented. Here, the area ratio of the plurality of vertically continuous openings 16 is within a range in which the area of the upper opening 16 is 0.85 times or more and does not exceed 0.99 times the lower opening 16. , (Upper opening) / (Lower opening) area ratio = 0.85-0.99 times, more desirable in preventing accelerated growth. When the area ratio exceeds 0.99 times, the area difference between the upper side and the lower side of the positive electrode lattice body 1 is small, so that the effect of selectively enhancing the reinforcement of the upper side of the positive electrode lattice body 1 becomes small. Further, when the area ratio is less than 0.85 times, the filling property of the positive electrode active material is improved by reducing the upper opening 16 of the positive electrode lattice body 1, but the area of the lower opening 16 is relative. There is a risk that the output characteristics and the retention of the positive electrode active material will deteriorate.

前述した複数の開口部16において、第1の横枠骨13aと第2の横枠骨13bとを縦断する同一垂線上で比較した場合に、第2の横枠骨13b側から第1の横枠骨13a側に向けて平面視した面積を段階的に小さくすることによって、正極活物質の膨張、収縮による正極格子体1のグロースが抑制される作用について説明する。 When the first horizontal frame bone 13a and the second horizontal frame bone 13b are compared on the same vertical line traversing the plurality of openings 16 described above, the first lateral frame bone 13b side to the second horizontal frame bone 13b side. The action of suppressing the growth of the positive electrode lattice body 1 due to the expansion and contraction of the positive electrode active material by gradually reducing the area viewed in plan toward the frame bone 13a side will be described.

充放電により正極活物質が膨張、収縮した際に、その膨張、収縮力は正極格子体1の中央部から外周部に向かって伝搬される。発明者等の研究により、当該伝搬の総和として特に第1,第2の縦枠骨14a,14bに大きな伸びが生じ、当該第1,第2の縦枠骨14a,14bに隣接する開口部において正極活物質の剥離又は脱離を生じやすくなることが判った。剥離又は脱落は、第1,第2の縦枠骨14a,14bに隣接する複数の開口部16を平面視した面積を小さくすることによって、ある程度まで抑制可能である。さらに、同一垂線上で上下に連続して並ぶ開口部16を平面視した面積差(正極格子体1の厚みが一定である場合は体積差)を小さくすることによって、前記上下に連続した開口部16同士の正極活物質の膨張力と収縮力の差により当該開口部16間に生じる界面応力を緩和し、正極活物質の剥離又は脱落をより顕著に抑制できることが判った。 When the positive electrode active material expands and contracts due to charging and discharging, the expansion and contraction force is propagated from the central portion to the outer peripheral portion of the positive electrode lattice body 1. According to the research by the inventors, a large elongation is generated especially in the first and second vertical frame bones 14a and 14b as the total sum of the propagations, and in the opening adjacent to the first and second vertical frame bones 14a and 14b. It was found that exfoliation or desorption of the positive electrode active material is likely to occur. Peeling or falling off can be suppressed to some extent by reducing the area of the plurality of openings 16 adjacent to the first and second vertical frame bones 14a and 14b in a plan view. Further, by reducing the area difference (volume difference when the thickness of the positive electrode lattice 1 is constant) in a plan view of the openings 16 which are continuously arranged vertically on the same vertical line, the vertically continuous openings 16 are further reduced. It was found that the difference between the expansion force and the contraction force of the positive electrode active materials 16 can alleviate the interfacial stress generated between the openings 16 and more remarkably suppress the peeling or falling off of the positive electrode active materials.

このようなことから、同一垂線上で下側の第2の横枠骨13b側から上側の第1の横枠骨13a側に近づくに従って、複数の開口部16を平面視した面積を小さくすることによって、加速的グロースが生じやすく、正極活物質の膨張、収縮が著しい正極格子体1の上側において、開口部16間での正極格子体1表面と正極活物質との間に生じる界面応力を緩和し、正極活物質の剥離又は脱落を防止できる。 For this reason, the area of the plurality of openings 16 in plan view is reduced as the lower second horizontal frame bone 13b side approaches the upper first horizontal frame bone 13a side on the same vertical line. Therefore, on the upper side of the positive electrode lattice body 1 where accelerated growth is likely to occur and the expansion and contraction of the positive electrode active material is remarkable, the interfacial stress generated between the surface of the positive electrode lattice body 1 and the positive electrode active material between the openings 16 is relaxed. However, it is possible to prevent the positive electrode active material from peeling off or falling off.

さらに、前記構成では正極格子体1の上側に位置するほど、正極格子体1に占める横桟15aと縦桟15bの本数が相対的に多くなるため、正極格子体1の上側の機械的強度が向上する。従って、上向きにグロースが生じても、正極格子体1の上側に位置する横桟15aほど、上側への湾曲が抑えられ、正極板の上部と負極板又は負極ストラップ等の負極の一部との接触による内部短絡を抑制できる。また、正極活物質の膨張、収縮の影響の少ない正極格子体1の下側において、正極格子体1に占める横桟15aと縦桟15bの本数が相対的に少なくなるため、鉛蓄電池の軽量化が損なわれない。 Further, in the above configuration, as the position is located above the positive electrode lattice body 1, the number of horizontal bars 15a and vertical bars 15b occupying the positive electrode lattice 1 is relatively large, so that the mechanical strength of the upper side of the positive electrode lattice 1 is increased. improves. Therefore, even if the growth occurs upward, the horizontal crosspiece 15a located on the upper side of the positive electrode lattice body 1 suppresses the upward curvature, and the upper part of the positive electrode plate and a part of the negative electrode such as the negative electrode plate or the negative electrode strap are connected. Internal short circuit due to contact can be suppressed. Further, since the number of horizontal bars 15a and vertical bars 15b occupying the positive electrode lattice 1 is relatively small on the lower side of the positive electrode lattice 1 which is less affected by the expansion and contraction of the positive electrode active material, the weight of the lead storage battery is reduced. Is not impaired.

なお、正極格子体1を構成する枠骨、複数本の横桟15a及び縦桟15bを備える内骨、及び正極集電耳11Aは、例えば鉛又は鉛合金からなり、鉛合金に添加する金属元素は限定されず、公知のものを使用できる。特に、Ca、Sn、Al又はAgを所定量添加した場合は、正極格子体1の機械的強度及び耐腐食性を向上できるため、グロースによる変形の抑制においてより好ましい。 The frame bone constituting the positive electrode lattice body 1, the inner bone provided with the plurality of horizontal bars 15a and the vertical bars 15b, and the positive electrode current collecting ear 11A are made of, for example, lead or a lead alloy, and are metal elements added to the lead alloy. Is not limited, and known ones can be used. In particular, when a predetermined amount of Ca, Sn, Al or Ag is added, the mechanical strength and corrosion resistance of the positive electrode lattice 1 can be improved, which is more preferable in suppressing deformation due to growth.

上述した正極格子体1は、例えばCaが0.02〜0.08質量%、Snが0.4〜2.5質量%、Alが0.005〜0.04質量%、Agが0.001〜0.0049質量%、及び残部がPbと不可避の不純物からなる鉛合金から形成されている。 In the above-mentioned positive electrode lattice body 1, for example, Ca is 0.02 to 0.08% by mass, Sn is 0.4 to 2.5% by mass, Al is 0.005 to 0.04% by mass, and Ag is 0.001. It is made of a lead alloy consisting of ~ 0.0049% by mass and the balance consisting of Pb and unavoidable impurities.

Ca、Sn、Al、Agの成分元素を特定の範囲で添加すると、得られる鉛合金の耐食性と機械的強度の双方を向上させることが可能になる。Caの添加は正極格子体1の機械的強度を向上させる。Caの配合量が0.02質量%未満ではその効果が少なく、0.08質量%を超えると耐食性が低下する虞がある。Snの添加は鉛合金の溶湯の湯流れ性を向上させるとともに、正極格子体1の機械的強度を向上させる。Snの配合量が0.4質量%未満ではその効果が少なく、2.5質量%を超えると耐食性が低下する虞がある。Alの添加は溶湯の酸化によるCaの損失を防止し、さらに正極格子体1の機械的強度を向上させる。Alの添加量が0.005質量%未満ではその効果が少なく、0.04質量%を超えるとAlがドロスとして析出し易くなる。Agの添加は機械的強度を向上し、特に高温での耐クリープ特性を高める。Agの添加量が0.001質量%未満ではその効果が少なく、0.0049質量%を超えると添加量の増加に伴う効果の増大を期待できない。 Addition of the component elements of Ca, Sn, Al, and Ag in a specific range makes it possible to improve both the corrosion resistance and the mechanical strength of the obtained lead alloy. The addition of Ca improves the mechanical strength of the positive electrode lattice body 1. If the amount of Ca blended is less than 0.02% by mass, the effect is small, and if it exceeds 0.08% by mass, the corrosion resistance may decrease. The addition of Sn improves the flowability of the molten metal of the lead alloy and also improves the mechanical strength of the positive electrode lattice body 1. If the blending amount of Sn is less than 0.4% by mass, the effect is small, and if it exceeds 2.5% by mass, the corrosion resistance may decrease. The addition of Al prevents the loss of Ca due to the oxidation of the molten metal, and further improves the mechanical strength of the positive electrode lattice body 1. If the amount of Al added is less than 0.005% by mass, the effect is small, and if it exceeds 0.04% by mass, Al is likely to precipitate as dross. The addition of Ag improves mechanical strength and especially creep resistance at high temperatures. If the amount of Ag added is less than 0.001% by mass, the effect is small, and if it exceeds 0.0049% by mass, the effect cannot be expected to increase with the increase in the amount added.

正極格子体1は、例えば、鉛又は鉛合金からなる圧延板の打ち抜き格子体やエキスパンド格子体、または圧延板を放電ワイヤーカット法等により切り抜いて作製できる。また、ブックモールド法等により鋳造格子体として作製してもよい。特に、正極格子体1のグロースは鉛又は鉛合金を含む結晶粒が配向した圧延板から成形される格子体で生じやすいため、グロースを抑制する効果は、打ち抜き格子体やエキスパンド格子体、または放電ワイヤーカット法等により圧延板から作製された格子体の場合、顕著に得られる。 The positive electrode lattice body 1 can be produced, for example, by cutting out a punched lattice body or an expanded lattice body of a rolled plate made of lead or a lead alloy, or a rolled plate by a discharge wire cutting method or the like. Further, it may be produced as a cast lattice by a book mold method or the like. In particular, since the growth of the positive electrode lattice 1 is likely to occur in a lattice formed from a rolled plate in which crystal grains containing lead or a lead alloy are oriented, the effect of suppressing the growth is a punched lattice, an expanded lattice, or an electric discharge. In the case of a lattice body made from a rolled plate by a wire cutting method or the like, it is remarkably obtained.

以下、他の実施形態に係る正極格子体1に関して、図面を参照しながら説明する。なお、第1の実施形態と同一の構成要素に関しては同一の符号を付して説明を省略する。 Hereinafter, the positive electrode lattice body 1 according to another embodiment will be described with reference to the drawings. The same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.

<第2の実施形態>
図2は、第2の実施形態に係る正極格子体1を示す平面図である。この正極格子体1は、第1の実施形態で説明した構成に加えて、内骨の中央側から第1の縦枠骨14a側に向けて、及び内骨の中央側から第2の縦枠骨14b側に向けて段階的に間隔が狭くなるように複数本の縦桟15bが配置されている。このため、複数の開口部16を平面視した面積は、内骨の中央側から第1の縦枠骨14a側に向けて、及び内骨の中央側から第2の縦枠骨14b側に向けて段階的に小さくなる。
<Second embodiment>
FIG. 2 is a plan view showing the positive electrode grid body 1 according to the second embodiment. In addition to the configuration described in the first embodiment, the positive electrode lattice body 1 is formed from the central side of the internal bone toward the first vertical frame bone 14a side and from the central side of the internal bone toward the second vertical frame. A plurality of vertical bars 15b are arranged so that the intervals are gradually narrowed toward the bone 14b side. Therefore, the area of the plurality of openings 16 in a plan view is directed from the central side of the internal bone toward the first vertical frame bone 14a side and from the central side of the internal bone toward the second vertical frame bone 14b side. And gradually become smaller.

第2の実施形態に係る正極格子体1では、第1の実施形態と同様の効果を奏する。正極格子体1における正極活物質の膨張、収縮によって発生する応力は、正極格子体1の内骨の中央側から枠骨側に向けて伝搬される。また、正極格子体1の横方向Xにおいて、内骨の中央側から枠骨側に向けて複数の開口部16を平面視した面積を段階的に小さくすることによって、正極格子体1の横方向Xにおける機械的強度を向上できる。その結果、第2の実施形態に係る正極格子体1によれば、正極格子体1の横方向Xへのグロース、及び正極活物質の剥離又は脱落をより効果的に防止できる。 The positive electrode lattice body 1 according to the second embodiment has the same effect as that of the first embodiment. The stress generated by the expansion and contraction of the positive electrode active material in the positive electrode lattice body 1 is propagated from the central side of the inner bone of the positive electrode lattice body 1 toward the frame bone side. Further, in the lateral direction X of the positive electrode lattice body 1, the area of the plurality of openings 16 in a plan view is gradually reduced from the central side of the inner bone toward the frame bone side, so that the lateral direction of the positive electrode lattice body 1 is gradually reduced. The mechanical strength at X can be improved. As a result, according to the positive electrode lattice body 1 according to the second embodiment, it is possible to more effectively prevent the growth of the positive electrode lattice body 1 in the lateral direction X and the peeling or falling off of the positive electrode active material.

<第3の実施形態>
図3(a),(b)は、第3の実施形態に係る正極格子体1の備える開口部16を拡大して示す平面図である。図3(a)に示すように、正極格子体1に形成された複数の開口部16を平面視した四隅は、丸みR1が形成されている。丸みR1の大小は、例えば、丸みR1の曲率半径で規定してよい。
<Third embodiment>
3A and 3B are plan views showing an enlarged opening 16 provided in the positive electrode lattice body 1 according to the third embodiment. As shown in FIG. 3A, rounded R1s are formed at the four corners of the plurality of openings 16 formed in the positive electrode lattice body 1 in a plan view. The magnitude of the roundness R1 may be defined by, for example, the radius of curvature of the roundness R1.

また、枠骨に隣接する複数の開口部16のうち、少なくとも枠骨の四隅に位置する開口部16を平面視した四隅には、枠骨の四隅以外に位置する開口部16と比較して大きな丸みRが少なくとも1つ以上設けられている。枠骨の四隅に位置する前記開口部16において、当該開口部16内の前記枠骨の角に最も近い隅の丸みRの大きさを最大にする。図3の(b)は、正極格子体1において、第1の横枠骨13a及び第1の縦枠骨14aで規定される左上側の隅に配置される開口部16を示している。枠骨の左上側の隅に配置される開口部16は、枠骨の角に最も近い左上の隅の丸みをR2、開口部16内のその他の3つの隅の丸みをR1として示している。丸みR1,R2の大小は、例えば、丸みRの曲率半径で規定され、丸みR2は丸みR1よりも大きくしている。 Further, among the plurality of openings 16 adjacent to the frame bone, at least the four corners of the openings 16 located at the four corners of the frame bone in a plan view are larger than the openings 16 located at least at the four corners of the frame bone. At least one roundness R is provided. In the openings 16 located at the four corners of the frame bone, the size of the roundness R of the corner closest to the corner of the frame bone in the opening 16 is maximized. FIG. 3B shows an opening 16 arranged in the upper left corner defined by the first horizontal frame bone 13a and the first vertical frame bone 14a in the positive electrode lattice body 1. The opening 16 arranged in the upper left corner of the frame bone indicates the roundness of the upper left corner closest to the corner of the frame bone as R2, and the roundness of the other three corners in the opening 16 as R1. The magnitude of the roundness R1 and R2 is defined by, for example, the radius of curvature of the roundness R, and the roundness R2 is larger than the roundness R1.

枠骨の他の3つの隅に配置される開口部16もまた、図3の(b)と同様に、枠骨の角に最も近い隅に大きな丸みR2を設けている。枠骨の4つの隅に配置される開口部16以外では、図3の(a)と同様に開口部16内の4つの隅に小さな丸みR1が設けられている。 The openings 16 arranged at the other three corners of the frame bone also have a large rounded R2 at the corner closest to the corner of the frame bone, as in FIG. 3B. Except for the openings 16 arranged at the four corners of the frame bone, small rounded R1s are provided at the four corners in the openings 16 as in FIG. 3A.

このように第3の実施形態に係る正極格子体1では、図3の(a)に示すように開口部16を平面視した四隅に丸みR1を形成することによって、当該開口部16への正極活物質の充填性が向上し、未充填領域が減少するため、正極格子体1と正極活物質との密着性を向上できる。また、当該開口部16内の四隅の機械的強度が向上するため、正極格子体1のグロースを防止でき、正極板と負極板又は負極ストラップ等の負極の一部との接触による内部短絡や、正極活物質の剥離又は脱落とそれに伴う加速的グロースを防止できる。 As described above, in the positive electrode lattice body 1 according to the third embodiment, as shown in FIG. 3A, rounded R1s are formed at the four corners of the opening 16 in a plan view, whereby the positive electrode to the opening 16 is formed. Since the filling property of the active material is improved and the unfilled region is reduced, the adhesion between the positive electrode lattice body 1 and the positive electrode active material can be improved. Further, since the mechanical strength of the four corners in the opening 16 is improved, the growth of the positive electrode lattice body 1 can be prevented, and an internal short circuit due to contact between the positive electrode plate and a part of the negative electrode such as the negative electrode plate or the negative electrode strap, or internal short circuit It is possible to prevent peeling or falling off of the positive electrode active material and the accompanying accelerated growth.

さらに、図3の(b)に示す正極格子体1では複数の開口部16のうち、正極活物質の剥離又は脱落しやすい枠骨の四隅に配置される開口部16内の四隅に選択的に大きな丸みR2を設けている。このため、正極格子体1の不必要な重量の増加を生じることなく、正極格子体1からの正極活物質の剥離又は脱落、及び正極格子体1のグロースをより効果的に防止できる。 Further, in the positive electrode lattice body 1 shown in FIG. 3B, among the plurality of openings 16, the four corners in the openings 16 arranged at the four corners of the frame bone where the positive electrode active material is easily peeled off or fall off are selectively selected. A large roundness R2 is provided. Therefore, it is possible to more effectively prevent the positive electrode active material from peeling off or falling off from the positive electrode lattice body 1 and the growth of the positive electrode lattice body 1 without causing an unnecessary increase in the weight of the positive electrode lattice body 1.

なお、複数の開口部16に設ける丸みR1は、図3の(a)に示す例に限定されず、その配置や大きさを正極活物質の剥離又は脱落のしやすさに応じて適宜選択してもよい。また、丸みR1の大小が曲率半径で規定し得ることを述べたが、丸みRは円弧であるものに限定されない。例えば、円弧に近い多角形としてもよい。丸みR1の大小は、例えば、開口部16が矩形状である場合と比較して、丸みR1による面積変化の割合で規定してもよい。 The roundness R1 provided in the plurality of openings 16 is not limited to the example shown in FIG. 3A, and the arrangement and size thereof are appropriately selected according to the ease of peeling or falling off of the positive electrode active material. You may. Further, although it has been stated that the magnitude of the roundness R1 can be defined by the radius of curvature, the roundness R is not limited to an arc. For example, it may be a polygon close to an arc. The magnitude of the roundness R1 may be defined by, for example, the rate of change in area due to the roundness R1 as compared with the case where the opening 16 has a rectangular shape.

複数の開口部16に設ける丸みR1,R2は、図3の(b)に示す例に限定されず、その配置や大きさを正極活物質の剥離又は脱落のしやすさに応じて適宜選択してもよい。また、開口部16内の四隅に2種類以上の丸みRを設けてもよい。例えば、開口部16内の四隅のうち、一隅と残りの三隅の丸みRを互いに異ならせる、開口部16内の四隅のうち、二隅と二隅の丸みRを互いに異ならせる、開口部16内の四隅のうち、全ての隅の丸みRを互いに異ならせる、開口部16内の四隅のうち、二隅又は三隅の丸みRを互いに異ならせ、残りの一隅又は二隅に丸みRを設けない等の形態にしてもよい。四隅全てが丸みRを有さない開口部16が内骨の一部に配置する形態にしてもよい。丸みR1又はR2の大小が曲率半径で規定し得ることを述べたが、丸みR1又はR2は円弧であるものに限定されない。例えば、円弧に近い多角形としてもよい。さらに、丸みR1又はR2の大小は、例えば、開口部16が矩形状であった場合と比較して、丸みR1又はR2によって面積がどの程度縮小するかという方法で規定してもよい。 The roundnesses R1 and R2 provided in the plurality of openings 16 are not limited to the example shown in FIG. 3B, and the arrangement and size thereof are appropriately selected according to the ease of peeling or falling off of the positive electrode active material. You may. Further, two or more types of roundness R may be provided at the four corners in the opening 16. For example, among the four corners in the opening 16, the roundness R of one corner and the remaining three corners are different from each other, and the roundness R of the two corners and the two corners of the four corners in the opening 16 are different from each other. Of the four corners, the roundness R of all corners is different from each other, the roundness R of two or three corners of the four corners in the opening 16 is different from each other, and the roundness R is not provided in the remaining one corner or two corners, etc. It may be in the form of. The opening 16 having no rounded R at all four corners may be arranged in a part of the inner bone. It has been stated that the magnitude of the roundness R1 or R2 can be defined by the radius of curvature, but the roundness R1 or R2 is not limited to an arc. For example, it may be a polygon close to an arc. Further, the size of the roundness R1 or R2 may be defined by, for example, how much the area is reduced by the roundness R1 or R2 as compared with the case where the opening 16 has a rectangular shape.

<第4の実施形態>
図4の(a),(b)は、第4の実施形態に係る正極格子体1の備える開口部16を拡大して示す平面図である。第4の実施形態に係る正極格子体1は、複数の開口部16のそれぞれの四隅に設ける丸みRの大きさを変更した以外、第3の実施形態と同様の構成を有する。
<Fourth Embodiment>
FIGS. 4A and 4B are plan views showing an enlarged opening 16 provided in the positive electrode lattice body 1 according to the fourth embodiment. The positive electrode lattice body 1 according to the fourth embodiment has the same configuration as that of the third embodiment except that the size of the roundness R provided at each of the four corners of the plurality of openings 16 is changed.

図4の(a)は、第1の横枠骨13aに隣接して配置される開口部16において、第1の横枠骨13aに隣接する2つの隅には丸みR3が設けられ、その他の2つの隅には丸みR1が設けられている。 In FIG. 4A, in the opening 16 arranged adjacent to the first horizontal frame bone 13a, rounded R3 is provided at two corners adjacent to the first horizontal frame bone 13a, and the other Rounded R1 is provided at the two corners.

図4の(b)は、正極格子体1において、第1の横枠骨13a及び第1の縦枠骨14aで規定される左上側の隅に配置される開口部16を示している。枠骨の左上側の隅に配置される開口部16には、枠骨の角に最も近い左上の隅に丸みR2を、丸みR2に対向する隅に丸みR1を、その他の2つの隅に丸みR3を、それぞれ設けている。丸みR1〜R3の大小は、例えば、丸みRの曲率半径で規定され、R1、R3、及びR2の順番で大きくなっている。 FIG. 4B shows an opening 16 arranged in the upper left corner defined by the first horizontal frame bone 13a and the first vertical frame bone 14a in the positive electrode lattice body 1. The opening 16 located in the upper left corner of the frame bone has a rounded R2 in the upper left corner closest to the corner of the frame bone, a rounded R1 in the corner facing the rounded R2, and a rounded R1 in the other two corners. R3 is provided respectively. The magnitude of the roundness R1 to R3 is defined by, for example, the radius of curvature of the roundness R, and increases in the order of R1, R3, and R2.

枠骨に隣接しない開口部16は、図4の(a)と同様の構成を有する。すなわち、枠骨と隣接しない4つの隅には丸みR1が設けられている。 The opening 16 not adjacent to the frame bone has the same structure as that shown in FIG. 4A. That is, rounded R1s are provided at the four corners not adjacent to the frame bone.

また、図示しないが、正極格子体1の他の3つの隅に配置される開口部16も、図4の(b)と同様の構成を有する。すなわち、正極格子体1の4つの隅に配置される4つの開口部は、枠骨の角に最も近い隅に丸みR2、丸みR2に対向する隅には丸みR1、その他の2つの隅には丸みR3が設けられている。 Further, although not shown, the openings 16 arranged at the other three corners of the positive electrode lattice body 1 also have the same configuration as that of FIG. 4B. That is, the four openings arranged at the four corners of the positive electrode lattice body 1 have rounded R2 at the corner closest to the corner of the frame bone, rounded R1 at the corner facing the rounded R2, and rounded R1 at the other two corners. Roundness R3 is provided.

第4の実施形態に係る正極格子体1では、第3の実施形態と同様の効果を得ることができる。正極格子体1は、枠骨に隣接して配置される複数の開口部16、特に枠骨の4つの隅に位置する開口部16、において正極活物質が剥離又は脱落しやすい。そのため、第4の実施形態に係る正極格子体1では、枠骨の4つの隅に位置する開口部16内において、枠骨の角と最も近接するに隅に最大の丸みR2を設け、さらに図4の(a),(b)に示すように開口部16の枠骨に隣接する隅においても、比較的大きな丸みR3を設ける構成にしている。このような構成によれば、第3の実施形態に比べて正極格子体1に対する正極活物質の密着性をさらに向上して正極格子体1からの正極活物質の剥離又は脱落、及び正極格子体1のグロースに伴う内部短絡をより一層効果的に防止できる。 In the positive electrode lattice body 1 according to the fourth embodiment, the same effect as that of the third embodiment can be obtained. In the positive electrode lattice body 1, the positive electrode active material is likely to peel off or fall off at a plurality of openings 16 arranged adjacent to the frame bone, particularly at the openings 16 located at the four corners of the frame bone. Therefore, in the positive electrode lattice body 1 according to the fourth embodiment, the maximum roundness R2 is provided in the corners closest to the corners of the frame bones in the openings 16 located at the four corners of the frame bones. As shown in (a) and (b) of No. 4, a relatively large roundness R3 is also provided at the corner of the opening 16 adjacent to the frame bone. According to such a configuration, the adhesion of the positive electrode active material to the positive electrode lattice body 1 is further improved as compared with the third embodiment, and the positive electrode active material is peeled off or dropped from the positive electrode lattice body 1, and the positive electrode lattice body is formed. It is possible to prevent the internal short circuit accompanying the growth of 1 more effectively.

<第5の実施形態>
図5は、第5の実施形態に係る正極格子体1の一部を拡大して示す平面図である。第5の実施形態に係る正極格子体1は、第1の横枠骨13aに隣接する複数の開口部16のうち、負極集電耳11Bの直下に対応する1つの開口部16、すなわち正極板と負極板とをセパレータを介して積層して極板群とし、当該極板群を積層方向に透視した際に、負極集電耳11Bの両端からそれぞれ正極格子体1上に垂下させた直線に囲まれる領域と少なくとも一部で重なる開口部16に、第1の縦枠骨14a及び第2の縦枠骨14bが延びる方向、すなわち縦方向Yに延びる、補助桟17を配置し、当該開口部16を2つに分割する以外、第1の実施形態と同様の構成を有する。補助桟17で分割された開口部16を平面視した面積は、隣接する他の開口部16の面積と比較して約1/2になっている。
<Fifth Embodiment>
FIG. 5 is an enlarged plan view showing a part of the positive electrode lattice body 1 according to the fifth embodiment. The positive electrode lattice body 1 according to the fifth embodiment has one opening 16 corresponding to directly below the negative electrode collecting ear 11B among the plurality of openings 16 adjacent to the first horizontal frame bone 13a, that is, the positive electrode plate. And the negative electrode plate are laminated via a separator to form an electrode plate group, and when the electrode plate group is viewed through in the stacking direction, they form a straight line hanging from both ends of the negative electrode collector ear 11B onto the positive electrode lattice body 1, respectively. An auxiliary crosspiece 17 extending in the direction in which the first vertical frame bone 14a and the second vertical frame bone 14b extends, that is, in the vertical direction Y is arranged in the opening 16 that overlaps at least a part of the enclosed area. It has the same configuration as that of the first embodiment except that 16 is divided into two parts. The area of the opening 16 divided by the auxiliary crosspiece 17 in a plan view is about half that of the area of the other adjacent openings 16.

第5の実施形態に係る正極格子体1では、第1の実施形態に係る正極格子体1と同様の効果を得ることができる。正極格子体1において、上側に向かうグロースが生じると、第1の横枠骨13aが正極格子体1と対向する負極格子体の上側に位置する負極集電耳11B又は負極ストラップ等の負極の一部に接触して内部短絡し、鉛蓄電池が早期に寿命となる虞がある。 The positive electrode lattice body 1 according to the fifth embodiment can obtain the same effect as the positive electrode lattice body 1 according to the first embodiment. When an upward growth occurs in the positive electrode lattice body 1, one of the negative electrodes such as the negative electrode collecting ear 11B or the negative electrode strap located above the negative electrode lattice body in which the first horizontal frame 13a faces the positive electrode lattice body 1. There is a risk that the lead-acid battery will reach the end of its life early due to internal short-circuiting due to contact with the electrode.

図5に示すように、第1の横枠骨13aに隣接する複数の開口部16のうち、負極集電耳11Bの直下に対応する開口部16に縦方向Yに延びる補助桟17を配置することによって、この領域における開口部16の面積が小さくなり、正極格子体1に占める内骨の本数が相対的に多くなるため、当該箇所の正極格子体1の機械的強度が増加する。その結果、補助桟17が配置された開口部16において、正極格子体1と正極活物質との間の密着性が向上して、正極活物質の剥離又は脱落による正極格子体1の加速的なグロースを抑制できる。また、補助桟17が配置された開口部16において、正極格子体1の機械的強度が増加するため、正極格子体1の上側に向かうグロースを抑制でき、正極と負極との接触による内部短絡を効果的に抑制できる。 As shown in FIG. 5, among a plurality of openings 16 adjacent to the first horizontal frame bone 13a, an auxiliary crosspiece 17 extending in the vertical direction Y is arranged in the opening 16 corresponding directly below the negative electrode current collecting ear 11B. As a result, the area of the opening 16 in this region becomes smaller, and the number of internal bones occupying the positive electrode lattice body 1 becomes relatively large, so that the mechanical strength of the positive electrode lattice body 1 at that portion increases. As a result, in the opening 16 in which the auxiliary crosspiece 17 is arranged, the adhesion between the positive electrode lattice body 1 and the positive electrode active material is improved, and the positive electrode lattice body 1 is accelerated by peeling or falling off of the positive electrode active material. Growth can be suppressed. Further, since the mechanical strength of the positive electrode lattice 1 is increased in the opening 16 in which the auxiliary crosspiece 17 is arranged, the growth toward the upper side of the positive electrode lattice 1 can be suppressed, and an internal short circuit due to contact between the positive electrode and the negative electrode can be suppressed. Can be effectively suppressed.

なお、補助桟17は、開口部16を縦方向に分割するものに限定されず、横方向、斜め方向、十字等に分割するものであっても同様の効果を得られる。また、補助桟17は、開口部16を分割しないものであってもよく、例えば当該箇所の枠骨又は内骨の断面積を部分的に大きくすることで、開口部16の面積を小さくするものであっても同様の効果を得られる。 The auxiliary rail 17 is not limited to the one that divides the opening 16 in the vertical direction, and the same effect can be obtained even if the opening 16 is divided in the horizontal direction, the diagonal direction, the cross, or the like. Further, the auxiliary crosspiece 17 may not divide the opening 16, and for example, the area of the opening 16 may be reduced by partially increasing the cross-sectional area of the frame bone or the inner bone of the portion. However, the same effect can be obtained.

<第6の実施形態>
図6は、第6の実施形態に係る正極格子体1の一部を拡大して示す平面図である。第6の実施形態に係る正極格子体1は、第1の横枠骨13aに隣接する複数の開口部16のうち、負極集電耳11Bの直下に対応する2つの開口部16に第1の縦枠骨14a及び第2の縦枠骨14bが延びる方向、すなわち縦方向Yに延びる、補助桟17をそれぞれ配置し、当該2つの開口部16をそれぞれ2つに分割する以外、第5の実施形態と同様の構成を有する。補助桟17は、図6に示すように負極集電耳11Bの直下に対応する第1の横枠骨13aに隣接して配置される開口部16に正極格子体1の補強の必要性に応じて複数配置してよい。補助桟17で分割された開口部16を平面視した面積は、隣接する他の開口部16の面積と比較してそれぞれ約1/2になっている。
<Sixth Embodiment>
FIG. 6 is an enlarged plan view showing a part of the positive electrode lattice body 1 according to the sixth embodiment. In the positive electrode lattice body 1 according to the sixth embodiment, among the plurality of openings 16 adjacent to the first horizontal frame bone 13a, the first opening 16 corresponds to the two openings 16 directly below the negative electrode collecting ear 11B. A fifth embodiment other than arranging auxiliary crosspieces 17 extending in the direction in which the vertical frame bone 14a and the second vertical frame bone 14b extend, that is, in the vertical direction Y, and dividing the two openings 16 into two. It has the same configuration as the form. As shown in FIG. 6, the auxiliary crosspiece 17 responds to the need for reinforcement of the positive electrode lattice body 1 in the opening 16 arranged adjacent to the first horizontal frame bone 13a corresponding directly below the negative electrode current collector ear 11B. You may arrange more than one. The area of the opening 16 divided by the auxiliary rail 17 in a plan view is about 1/2 of the area of the other adjacent openings 16.

第6の実施形態に係る正極格子体1においても、第5の実施形態と同様な効果を得ることができる。第6の実施形態のように、負極集電耳11Bの直下に対応する位置に適宜複数の補助桟17を配置することで、正極格子体1の上側に向かうグロースを抑制することができ、正極と負極との接触による内部短絡をより効果的に抑制できる。 The same effect as that of the fifth embodiment can be obtained in the positive electrode lattice body 1 according to the sixth embodiment. As in the sixth embodiment, by appropriately arranging a plurality of auxiliary bars 17 at positions corresponding directly under the negative electrode current collector ear 11B, it is possible to suppress the growth of the positive electrode lattice 1 toward the upper side, and the positive electrode can be suppressed. It is possible to more effectively suppress an internal short circuit due to contact between the negative electrode and the negative electrode.

<第7の実施形態>
図7は、第7の実施形態に係る正極格子体1の一部を拡大して示す平面図である。第7の実施形態に係る正極格子体1は、鉛蓄電池の負極板に設けられる負極集電耳11Bの直下に対応する開口部16だけではなく、当該負極集電耳11Bが接続された負極ストラップ12Bの直下に対応する開口部16、すなわち正極板と負極板とをセパレータを介して積層して極板群とし、当該極板群を積層方向に透視した際に、負極ストラップ12Bの両端からそれぞれ正極格子体1上に垂下させた直線に囲まれる領域と少なくとも一部で重なる開口部16に対して補助桟17を配置する以外、第5の実施形態と同様の構成を有している。補助桟17で分割されたこの開口部16の面積は、隣接する他の開口部16と比較して約1/2の面積になっている。
<7th Embodiment>
FIG. 7 is an enlarged plan view showing a part of the positive electrode lattice body 1 according to the seventh embodiment. The positive electrode lattice body 1 according to the seventh embodiment includes not only the opening 16 corresponding directly below the negative electrode collecting ear 11B provided on the negative electrode plate of the lead storage battery, but also the negative electrode strap to which the negative electrode collecting ear 11B is connected. The opening 16 corresponding directly under 12B, that is, the positive electrode plate and the negative electrode plate are laminated via a separator to form a electrode plate group, and when the electrode plate group is viewed through in the stacking direction, they are formed from both ends of the negative electrode strap 12B, respectively. It has the same configuration as that of the fifth embodiment except that the auxiliary crosspiece 17 is arranged for the opening 16 that overlaps at least a part of the region surrounded by the straight line hanging on the positive electrode lattice body 1. The area of the opening 16 divided by the auxiliary crosspiece 17 is about half the area of the other adjacent openings 16.

第7の実施形態に係る正極格子体1においても、第5の実施形態と同様な効果を得ることができる。第7の実施形態のように、負極ストラップ12Bの直下に対応する開口部16に複数の補助桟17を配置することによって、正極格子体1の上側に向かうグロースを抑制することができ、正極と負極との接触による内部短絡をより効果的に抑制できる。 The same effect as that of the fifth embodiment can be obtained in the positive electrode lattice body 1 according to the seventh embodiment. By arranging a plurality of auxiliary crosspieces 17 in the opening 16 directly below the negative electrode strap 12B as in the seventh embodiment, it is possible to suppress the growth of the positive electrode lattice 1 toward the upper side, and the positive electrode and the positive electrode Internal short circuit due to contact with the negative electrode can be suppressed more effectively.

<第8の実施形態>
以下、第8の実施形態に係る鉛蓄電池の構造を説明する。第8の実施形態に係る鉛蓄電池の構成は、少なくとも正極板に第1〜第7のいずれかの実施形態に係る正極格子板を用いる点を除き、特に限定されるものではない。
<8th Embodiment>
Hereinafter, the structure of the lead storage battery according to the eighth embodiment will be described. The configuration of the lead storage battery according to the eighth embodiment is not particularly limited except that the positive electrode lattice plate according to any one of the first to seventh embodiments is used for at least the positive electrode plate.

詳細には図示しないが、鉛蓄電池は有底角筒形状の樹脂からなる電槽内において、隔壁によって6つに区切られたセル室にそれぞれ極板群を収納したモノブロック構造である。極板群は、正極板と、袋状のセパレータに挿入された負極板とが、ガラス繊維製のリテーナマット等を介して交互に積層されている。一例としては、前記極板群は7枚の正極板と、8枚の負極板とを有する。 Although not shown in detail, the lead-acid battery has a monoblock structure in which a group of electrode plates is housed in cell chambers divided into six by a partition wall in an electric tank made of a bottomed square cylinder-shaped resin. In the electrode plate group, a positive electrode plate and a negative electrode plate inserted into a bag-shaped separator are alternately laminated via a retainer mat made of glass fiber or the like. As an example, the electrode plate group has seven positive electrode plates and eight negative electrode plates.

正極板は、上述する第1〜第7の実施形態のいずれかの正極格子体1に常法に従って調整した正極活物質を充填し、常法に従って熟成・乾燥して製造される。負極板は、負極格子体に常法に従って調整した負極活物質を充填し、常法に従って熟成・乾燥して製造される。負極格子体の構造は、例えば、負極集電耳11Bが上述する正極格子体と対称位置に配置されるラジアル形状を有する。当該極板群において、正極板の正極集電耳11Aと負極板の負極集電耳11Bとは、積層方向に向けて透視した時、互いに第1の横枠骨13aの長手方向における中心線を基準にして互いに左右対称の位置に配置されている。当該極板群は、正極集電耳11A及び負極集電耳11Bを上方に向けて電槽の6つのセル室内にそれぞれ配置される。前記複数の負極板の負極集電耳11Bは、極板群ごとに共通の負極ストラップ12Bによって電気的に接続され、固定されている。同様に前記複数の正極板の正極集電耳11Aは、極板群ごとに共通の正極ストラップによって電気的に接続され、固定されている。更に、前記正極ストラップ及び負極ストラップ12Bには、セル間の隔壁を貫通して設けられ極板群同士を直列に接続するセル間接続部材、または上方に延出する極柱が接続されている。 The positive electrode plate is produced by filling the positive electrode lattice body 1 of any one of the first to seventh embodiments described above with a positive electrode active material prepared according to a conventional method, and aging and drying according to a conventional method. The negative electrode plate is manufactured by filling a negative electrode lattice body with a negative electrode active material adjusted according to a conventional method, and aging and drying according to a conventional method. The structure of the negative electrode grid has, for example, a radial shape in which the negative electrode current collector ears 11B are arranged symmetrically with the positive electrode grid described above. In the electrode plate group, the positive electrode current collecting ears 11A of the positive electrode plate and the negative electrode current collecting ears 11B of the negative electrode plate have center lines in the longitudinal direction of the first horizontal frame bone 13a when viewed through in the stacking direction. They are arranged symmetrically with each other as a reference. The electrode plate group is arranged in each of the six cell chambers of the battery case with the positive electrode current collecting ear 11A and the negative electrode current collecting ear 11B facing upward. The negative electrode current collector ears 11B of the plurality of negative electrode plates are electrically connected and fixed by a common negative electrode strap 12B for each electrode plate group. Similarly, the positive electrode current collector ears 11A of the plurality of positive electrode plates are electrically connected and fixed by a common positive electrode strap for each electrode plate group. Further, the positive electrode strap and the negative electrode strap 12B are connected to an inter-cell connecting member provided through a partition wall between cells and connecting a group of electrode plates in series, or a pole column extending upward.

極板群が収容された電槽は、その開口部16に蓋が嵌合されている。前記蓋の所定の位置には、中空の正極端子及び負極端子が設けられている。正極ストラップ及び負極ストラップ12Bは、正極極柱及び負極極柱を介して正極端子及び負極端子に接続され、固定されている。比重1.240の硫酸水溶液(希硫酸)からなる電解液を、蓋に設けられた柱液口を通して電槽に注入し、電槽化成を行うことで、正極端子及び負極端子間から電圧を供給可能になる。 A lid is fitted in the opening 16 of the electric tank in which the electrode plates are housed. Hollow positive electrode terminals and negative electrode terminals are provided at predetermined positions of the lid. The positive electrode strap and the negative electrode strap 12B are connected to and fixed to the positive electrode terminal and the negative electrode terminal via the positive electrode pole pillar and the negative electrode pole pillar. An electrolytic solution consisting of an aqueous sulfuric acid solution (dilute sulfuric acid) having a specific gravity of 1.240 is injected into an electric tank through a pillar liquid port provided on the lid, and the electric tank is formed to supply a voltage between the positive electrode terminal and the negative electrode terminal. It will be possible.

以上説明するように、第1〜第7のいずれかの実施形態に係る正極格子体を用いた第8の実施形態に係る鉛蓄電池は、正極格子体のグロースに起因する内部短絡及び電池容量の低下が防止され、寿命が向上する。 As described above, the lead-acid battery according to the eighth embodiment using the positive electrode lattice according to any one of the first to seventh embodiments has an internal short circuit due to the growth of the positive electrode lattice and the battery capacity. Deterioration is prevented and life is improved.

また、第1〜第8の各実施形態では、正極格子体の横枠骨13a,13b及び複数本の横桟15aが平行に配置され、横枠骨13a,13b及び複数本の横桟15aが縦枠骨14a,14b及び複数本の縦桟15bに対して直角に配置された例を説明したが、これに限定されない。例えば、横枠骨13a,13b及び複数本の横桟15aは互いに平行に配置されなくてもよく、互いに所望の角度をなして配置されていてもよい。同様に、縦枠骨14a,14b及び複数本の縦桟15bは互いに平行に配置されなくてもよく、互いに所望の角度をなして配置されていてもよい。また、枠骨を構成する横枠骨13a,13b及び縦枠骨14a,14b、及び内骨を構成する複数本の横桟15a及び縦桟15bは、それぞれ直線状であるものを例に説明したが、これに限定されず曲線状や折れ線状でもよく、また分岐を有していてもよい。また、複数本の横桟15a及び複数本の縦桟15bは、同一の太さのものが一定間隔で配置されている例を説明したが、これに限定されずその太さ、配置される間隔は適宜変更されてよい。補助桟17についても同様である。 Further, in each of the first to eighth embodiments, the horizontal frame bones 13a and 13b of the positive electrode lattice body and the plurality of cross rails 15a are arranged in parallel, and the horizontal frame bones 13a and 13b and the plurality of cross rails 15a are arranged. An example in which the vertical frame bones 14a and 14b and a plurality of vertical crosspieces 15b are arranged at right angles has been described, but the present invention is not limited thereto. For example, the horizontal frame bones 13a and 13b and the plurality of horizontal rails 15a may not be arranged in parallel with each other, and may be arranged at a desired angle with each other. Similarly, the vertical frame bones 14a and 14b and the plurality of vertical crosspieces 15b do not have to be arranged in parallel with each other, and may be arranged at a desired angle with each other. Further, the horizontal frame bones 13a and 13b and the vertical frame bones 14a and 14b constituting the frame bones, and the plurality of horizontal rails 15a and the vertical rails 15b constituting the internal bones have been described as an example of being linear. However, the present invention is not limited to this, and it may be curved or polygonal, or may have a branch. In addition, although a plurality of horizontal rails 15a and a plurality of vertical rails 15b having the same thickness are arranged at regular intervals, the thickness and the intervals at which they are arranged are not limited to this. May be changed as appropriate. The same applies to the auxiliary rail 17.

なお、各実施形態では、複数の開口部16の形状が矩形状又は四隅に丸みRを備えた矩形状である例を示したが、これに限定されない。複数の開口部16の形状は、例えば他の多角形状、円形状であってもよい。 In each embodiment, the shape of the plurality of openings 16 is rectangular or rectangular with rounded corners R, but the present invention is not limited to this. The shape of the plurality of openings 16 may be, for example, another polygonal shape or a circular shape.

また、各実施形態では、正極格子体の開口部16の面積を小さくする方法として、当該開口部16を規定する枠骨及び内骨を構成する複数の横桟15a及び縦桟15bを配置する間隔を狭くしたものを説明したが、これに限定されない。開口部16の面積を小さくするには、例えば、矩形状の開口部16の四隅に丸みRを設けてもよい。当該丸みRの曲率半径を適宜変更させることで、当該開口部16の面積を調節できる。あるいは開口部16の面積を小さくするため、当該開口部16を規定する枠骨及び内骨を構成する複数本の横桟15a及び縦桟15bの太さをその部分のみ太くしてもよい。また、上述する開口部16の面積小さくする方法は、適宜組み合わせてもよい。 Further, in each embodiment, as a method of reducing the area of the opening 16 of the positive electrode lattice, the intervals at which a plurality of horizontal bars 15a and vertical bars 15b constituting the frame bone and the inner bone defining the opening 16 are arranged are arranged. I explained a narrowed version, but it is not limited to this. In order to reduce the area of the opening 16, for example, rounded R may be provided at the four corners of the rectangular opening 16. The area of the opening 16 can be adjusted by appropriately changing the radius of curvature of the roundness R. Alternatively, in order to reduce the area of the opening 16, the thickness of the plurality of horizontal bars 15a and vertical bars 15b constituting the frame bone and the internal bone defining the opening 16 may be increased only in that portion. Further, the above-mentioned methods for reducing the area of the opening 16 may be combined as appropriate.

更に、各実施形態では、正極集電耳11Aは矩形板状である例を説明したが、これに限定されない。正極集電耳11Aの形状は、集電性能及び強度を考慮して適宜変更されてよく、例えば、扇型、三角形、又は角が丸みRを帯びた矩形状であり得る。また、正極集電耳11Aの幅は適宜変更されてよい。負極集電耳11Bについても同様である。 Further, in each embodiment, an example in which the positive electrode current collector ear 11A has a rectangular plate shape has been described, but the present invention is not limited to this. The shape of the positive electrode current collector ear 11A may be appropriately changed in consideration of current collection performance and strength, and may be, for example, a fan shape, a triangle shape, or a rectangular shape having rounded corners R. Further, the width of the positive electrode current collector ear 11A may be changed as appropriate. The same applies to the negative electrode current collector ear 11B.

なお、第1〜第7の実施形態で説明した正極格子体1の構成は相互に組み合わせること
ができる。以上、本発明の各実施形態について具体的に説明したが、本発明はこれらの実
施の形態及び実施例に限定されるものではなく、本発明の技術的思想に基づく種々の変更
が可能である。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[1] 鉛蓄電池用正極格子体であって、
横方向に延びる第1の横枠骨及び第2の横枠骨と、縦方向に延びる第1の縦枠骨及び第2の縦枠骨とを備える矩形枠状の枠骨;
前記枠骨内に配置され、前記枠骨と接続して格子状に設けられる複数本の横桟及び縦桟を備える内骨;
前記枠骨と複数本の前記横桟及び前記縦桟とによって囲まれる領域、及び複数本の前記横桟及び前記縦桟によって囲まれる領域、で規定される複数の開口部;及び
前記第2の縦枠骨側に位置する前記第1の横枠骨と接続する正極集電耳;
を備え、
前記第1の縦枠骨及び前記第2の縦枠骨に隣接する複数の前記開口部を平面視した平均面積は、当該複数の開口部を除く残りの複数の開口部を平面視した平均面積と比較して小さく、かつ
複数の前記開口部を平面視した面積は、前記第1の横枠骨と前記第2の横枠骨とを縦断する同一垂線上で比較した場合、前記第2の横枠骨側から前記第1の横枠骨側に向けて段階的に小さくなることを特徴とする鉛蓄電池用正極格子体。
[2] 複数の前記開口部を平面視した面積は、前記内骨の中央側から前記第1の縦枠骨側に向けて段階的に小さくなり、前記内骨の中央側から前記第2の縦枠骨側に向けて段階的に小さくなることを特徴とする[1]に記載の鉛蓄電池用正極格子体。
[3] 前記第2の横枠骨側から前記第1の横枠骨側に向けて上下に連続した複数の開口部において、下側の前記開口部を平面視した面積に対する上側の前記開口部を平面視した面積の比は0.85倍以上、0.99倍を超えない範囲であることを特徴とする[1]又は[2]に記載の鉛蓄電池用正極格子体。
[4] 前記第1の横枠骨に隣接する複数の前記開口部のうち、鉛蓄電池の負極板に設けられる負極集電耳の直下、又は前記負極集電耳が接続された負極ストラップの直下に対応する前記開口部は、前記第1の縦枠骨及び前記第2の縦枠骨が延びる方向と同一方向に延びる補助桟によって分割されていることを特徴とする[1]〜[3]のいずれか1つに記載の鉛蓄電池用正極格子体。
[5] 複数の前記開口部を平面視した四隅は、丸みRを有することを特徴とする[1]〜[4]のいずれか1つに記載の鉛蓄電池用正極格子体。
[6] 前記枠骨に隣接する複数の前記開口部のうち、少なくとも当該枠骨の四隅に位置する前記開口部を平面視した四隅は、前記枠骨の四隅以外に位置する前記開口部と比較して大きな丸みRが少なくとも1つ以上設けられ、前記枠骨の四隅に位置する前記開口部において、当該開口部内の前記枠骨の角に最も近い隅の丸みRの大きさが最大になることを特徴とする[5]に記載の鉛蓄電池用正極格子体。
[7] 鉛又は鉛合金の圧延板の打ち抜き格子体であることを特徴とする[1]〜[6]のいずれか1つに記載の鉛蓄電池用正極格子体。
[8] 前記鉛合金は、Caが0.02〜0.08質量%、Snが0.4〜2.5質量%、Alが0.005〜0.04質量%、Agが0.001〜0.0049質量%、及び残部がPbと不可避の不純物からなる組成を有することを特徴とする[7]に記載の鉛蓄電池用正極格子体。
[9] [1]〜[8]のいずれか1つに記載の鉛蓄電池用正極格子体を備えることを特徴とする鉛蓄電池。
The configurations of the positive electrode lattice bodies 1 described in the first to seventh embodiments can be combined with each other. Although each embodiment of the present invention has been specifically described above, the present invention is not limited to these embodiments and examples, and various modifications can be made based on the technical idea of the present invention. ..
Hereinafter, the inventions described in the claims of the original application of the present application will be added.
[1] A positive electrode grid for lead-acid batteries.
A rectangular frame-shaped frame bone having a first horizontal frame bone and a second horizontal frame bone extending in the horizontal direction and a first vertical frame bone and a second vertical frame bone extending in the vertical direction;
An internal bone arranged in the frame bone and having a plurality of horizontal and vertical crosspieces connected to the frame bone and provided in a grid pattern;
A plurality of openings defined by the frame bone and the area surrounded by the horizontal rails and the vertical rails, and the area surrounded by the horizontal rails and the vertical rails;
Positive electrode current collector ear connected to the first horizontal frame bone located on the side of the second vertical frame bone;
With
The average area of the first vertical frame bone and the plurality of openings adjacent to the second vertical frame bone in a plan view is the average area of the remaining plurality of openings excluding the plurality of openings in a plan view. Smaller than
When the area of the plurality of openings in a plan view is compared on the same perpendicular line that vertically traverses the first horizontal frame bone and the second horizontal frame bone, the area from the second horizontal frame bone side to the second. A positive electrode lattice body for a lead storage battery, characterized in that it gradually decreases toward the horizontal frame bone side of 1.
[2] The area of the plurality of openings in a plan view gradually decreases from the central side of the internal bone toward the first vertical frame bone side, and from the central side of the internal bone to the second. The positive electrode lattice body for a lead storage battery according to [1], which is characterized in that the size gradually decreases toward the vertical frame bone side.
[3] In a plurality of openings vertically continuous from the second horizontal frame bone side toward the first horizontal frame bone side, the upper opening with respect to the area of the lower opening in a plan view. The positive electrode lattice body for a lead storage battery according to [1] or [2], wherein the ratio of the areas viewed in plan is 0.85 times or more and not exceeding 0.99 times.
[4] Of the plurality of openings adjacent to the first horizontal frame bone, directly below the negative electrode collecting ear provided on the negative electrode plate of the lead storage battery, or directly below the negative electrode strap to which the negative electrode collecting ear is connected. [1] to [3], the opening corresponding to the above is divided by an auxiliary crosspiece extending in the same direction as the first vertical frame bone and the second vertical frame bone extending. The positive electrode lattice body for a lead storage battery according to any one of the above.
[5] The positive electrode lattice for a lead storage battery according to any one of [1] to [4], wherein the four corners of the plurality of openings in a plan view have rounded R.
[6] Of the plurality of openings adjacent to the frame bone, the four corners of the openings located at least at the four corners of the frame bone in a plan view are compared with the openings located other than the four corners of the frame bone. At least one large roundness R is provided, and in the openings located at the four corners of the frame bone, the size of the roundness R of the corner closest to the corner of the frame bone in the opening is maximized. The positive lattice body for a lead storage battery according to [5].
[7] The positive electrode lattice for a lead storage battery according to any one of [1] to [6], which is a punched lattice of a rolled plate of lead or a lead alloy.
[8] In the lead alloy, Ca is 0.02 to 0.08% by mass, Sn is 0.4 to 2.5% by mass, Al is 0.005 to 0.04% by mass, and Ag is 0.001 to 0.001. The positive electrode lattice for a lead storage battery according to [7], which has a composition of 0.0049% by mass and the balance of Pb and unavoidable impurities.
[9] A lead-acid battery comprising the positive electrode lattice for a lead-acid battery according to any one of [1] to [8].

1…正極格子体、13a…第1の横枠骨、13b…第2の横枠骨、14a…第1の縦枠骨、14b…第2の縦枠骨、15a…横桟、15b…縦桟、16…開口部、R1,R2…丸みR、17…補助桟、11A…正極集電耳、11B…負極集電耳、12B…負極ストラップ 1 ... Positive electrode lattice, 13a ... 1st horizontal frame bone, 13b ... 2nd horizontal frame bone, 14a ... 1st vertical frame bone, 14b ... 2nd vertical frame bone, 15a ... horizontal crosspiece, 15b ... vertical Rail, 16 ... Opening, R1, R2 ... Rounded R, 17 ... Auxiliary rail, 11A ... Positive electrode collector ear, 11B ... Negative electrode collector ear, 12B ... Negative electrode strap

Claims (9)

鉛蓄電池用正極格子体であって、
前記正極格子体を平面視したとき、上端に位置する横方向に延びる第1の横枠骨及び下端に位置する横方向に延びる第2の横枠骨と、左端に位置する縦方向に延びる第1の縦枠骨及び右端に位置する縦方向に延びる第2の縦枠骨とを備える矩形枠状の枠骨;
前記枠骨内に配置され、前記枠骨と接続して格子状に設けられる複数本の横桟及び縦桟を備える内骨;
前記枠骨と複数本の前記横桟及び前記縦桟とによって囲まれる領域、及び複数本の前記横桟及び前記縦桟によって囲まれる領域、で規定される複数の開口部;及び
前記第2の縦枠骨側に位置する前記第1の横枠骨に接続する正極集電耳;
を備え、
前記第1の縦枠骨及び前記第2の縦枠骨に隣接する複数の前記開口部を平面視した平均面積は、当該複数の開口部を除く残りの複数の開口部を平面視した平均面積と比較して小さく、かつ
前記第1の縦枠骨に隣接する複数の前記開口部を平面視した面積は、前記第2の横枠骨側から前記第1の横枠骨側に向けて段階的に小さくなるとともに、前記第2の縦枠骨に隣接する複数の前記開口部を平面視した面積も、前記第2の横枠骨側から前記第1の横枠骨側に向けて段階的に小さくなることを特徴とする鉛蓄電池用正極格子体。
A positive electrode grid for lead-acid batteries
When the positive electrode lattice is viewed in a plan view, a first lateral frame bone located at the upper end and a second horizontal frame bone extending in the lateral direction located at the lower end, and a longitudinally extending bone located at the left end . A rectangular frame-shaped frame bone including one vertical frame bone and a second vertical frame bone located at the right end in the vertical direction ;
An internal bone arranged in the frame bone and having a plurality of horizontal and vertical crosspieces connected to the frame bone and provided in a grid pattern;
A plurality of openings defined by the frame bone and the area surrounded by the horizontal rails and the vertical rails, and the area surrounded by the horizontal rails and the vertical rails; and the second. Positive electrode current collector ear connected to the first horizontal frame bone located on the vertical frame bone side;
With
The average area of the first vertical frame bone and the plurality of openings adjacent to the second vertical frame bone in a plan view is the average area of the remaining plurality of openings excluding the plurality of openings in a plan view. Smaller than
The area of the plurality of openings adjacent to the first vertical frame bone in a plan view is gradually reduced from the second horizontal frame bone side toward the first horizontal frame bone side, and the area is described. area in plan view a plurality of said openings adjacent the second vertical frame bone also characterized by comprising reduced stepwise toward the first lateral frame bone side from the front Stories second lateral frame bone side Positive electrode lattice for lead-acid batteries.
複数の前記開口部を平面視した面積は、前記横方向に沿って、前記内骨の中央から前記第1の縦枠骨側に向けて段階的に小さくなり、前記内骨の中央から前記第2の縦枠骨側に向けて段階的に小さくなることを特徴とする請求項1に記載の鉛蓄電池用正極格子体。 Area in plan view is a plurality of said apertures, along said transverse direction, stepwise reduced toward the central or al the first vertical frame bone side within said bone, middle of said bone pressurized et the lead-acid battery positive grid of claim 1, characterized by comprising reduced stepwise toward the second vertical frame bone side. 前記第1の縦枠骨に隣接する複数の前記開口部及び前記第2の縦枠骨に隣接する複数の前記開口部では、前記第2の横枠骨側から前記第1の横枠骨側に向けて上下に連続した複数の前記開口部において、下側の前記開口部を平面視した面積に対する上側の前記開口部を平面視した面積の比は0.85倍以上、0.99倍を超えない範囲で前記第2の横枠骨側から前記第1の横枠骨側に向けて段階的に小さくなることを特徴とする請求項1又は2に記載の鉛蓄電池用正極格子体。 In the plurality of openings adjacent to the first vertical frame bone and the plurality of openings adjacent to the second vertical frame bone, the second horizontal frame bone side to the first horizontal frame bone side a plurality of said openings successively vertically toward the upper ratio of the area viewed the opening of 0.85 times or more to the area in plan view the opening in the lower, 0.99 times the The positive lattice body for a lead storage battery according to claim 1 or 2, wherein the size gradually decreases from the second horizontal frame bone side toward the first horizontal frame bone side within a range not exceeding the range. 複数の前記開口部を平面視した四隅は、丸みRを有することを特徴とする請求項1〜のいずれか1項に記載の鉛蓄電池用正極格子体。 The positive electrode lattice body for a lead storage battery according to any one of claims 1 to 3 , wherein the four corners of the plurality of openings in a plan view have rounded R. 前記枠骨に隣接する複数の前記開口部のうち、少なくとも当該枠骨の四隅に位置する前記開口部を平面視した四隅は、前記枠骨の四隅以外に位置する前記開口部と比較して大きな丸みRが少なくとも1つ以上設けられ、前記枠骨の四隅に位置する前記開口部において、当該開口部内の前記枠骨の角に最も近い隅の丸みRの大きさが最大になることを特徴とする請求項に記載の鉛蓄電池用正極格子体。 Of the plurality of openings adjacent to the frame bone, at least the four corners of the openings located at the four corners of the frame bone in a plan view are larger than the openings located at least at the four corners of the frame bone. At least one roundness R is provided, and in the openings located at the four corners of the frame bone, the size of the roundness R of the corner closest to the corner of the frame bone in the opening is maximized. The positive lattice body for a lead storage battery according to claim 4 . 前記鉛蓄電池用正極格子体は、Caが0.02〜0.08質量%、Snが0.4〜2.5質量%、Alが0.005〜0.04質量%、Agが0.001〜0.0049質量%、及び残部がPbと不可避の不純物からなる組成を有する鉛合金からなることを特徴とする請求項1〜5のいずれか1項に記載の鉛蓄電池用正極格子体。 The positive electrode lattice for lead- acid batteries has Ca of 0.02 to 0.08% by mass, Sn of 0.4 to 2.5% by mass, Al of 0.005 to 0.04% by mass, and Ag of 0.001. The positive electrode lattice for a lead storage battery according to any one of claims 1 to 5, wherein the lead alloy is composed of ~ 0.0049% by mass and the balance is composed of Pb and unavoidable impurities. 極板群を備える鉛蓄電池であって、
前記極板群は、請求項1〜のいずれか1項に記載の鉛蓄電池用正極格子体を備える正極板と、負極集電耳を有する負極格子体を備える負極板とをセパレータを介して積層して構成され、
前記正極集電耳及び前記負極集電耳は、当該極板群を積層方向に透視した際に、前記第1横枠骨側から上方に延び、前記横方向において互いにずれて配置されることを特徴とする鉛蓄電池。
A lead-acid battery equipped with a group of plates
In the electrode plate group, a positive electrode plate having a positive electrode lattice for a lead storage battery according to any one of claims 1 to 6 and a negative electrode plate having a negative electrode lattice having a negative electrode current collecting ear are separated by a separator. Constructed by stacking
The positive electrode current collecting ear and the negative electrode current collecting ear extend upward from the first horizontal frame bone side when the electrode plates are viewed through in the stacking direction, and are arranged so as to be offset from each other in the horizontal direction. A characteristic lead-acid battery.
前記正極集電耳及び前記負極集電耳は、当該極板群を積層方向に透視した際に、当該正極格子体の前記横方向における中心線を基準として、それぞれ互いに左右対称の位置に配置されることを特徴とする請求項7に記載の鉛蓄電池。 The positive electrode current collector ear and the negative electrode current collector ear are arranged symmetrically with respect to each other with reference to the center line in the lateral direction of the positive electrode lattice body when the electrode plate group is viewed through in the stacking direction. The lead storage battery according to claim 7, wherein the lead storage battery is characterized in that. 前記正極格子体において、前記第1の横枠骨に隣接する複数の前記開口部のうち、前記負極板に設けられる前記負極集電耳の直下対応する位置に配置される前記開口部は、前記第1の縦枠骨及び前記第2の縦枠骨が延びる方向と同一方向に延びる補助桟によって分割されていることを特徴とする請求項7又は8に記載の鉛蓄電池。In the positive electrode lattice, among the plurality of openings adjacent to the first horizontal frame bone, the openings arranged at positions immediately below the negative electrode collecting ears provided on the negative electrode plate are the openings. The lead-acid battery according to claim 7 or 8, wherein the first vertical frame bone and the second vertical frame bone are divided by an auxiliary crosspiece extending in the same direction as the extending direction.
JP2018035606A 2018-02-28 2018-02-28 Positive electrode grid for lead-acid batteries and lead-acid batteries Active JP6762974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018035606A JP6762974B2 (en) 2018-02-28 2018-02-28 Positive electrode grid for lead-acid batteries and lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018035606A JP6762974B2 (en) 2018-02-28 2018-02-28 Positive electrode grid for lead-acid batteries and lead-acid batteries

Publications (2)

Publication Number Publication Date
JP2019153384A JP2019153384A (en) 2019-09-12
JP6762974B2 true JP6762974B2 (en) 2020-09-30

Family

ID=67946707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018035606A Active JP6762974B2 (en) 2018-02-28 2018-02-28 Positive electrode grid for lead-acid batteries and lead-acid batteries

Country Status (1)

Country Link
JP (1) JP6762974B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011024B2 (en) * 2020-01-07 2022-01-26 古河電池株式会社 Liquid lead-acid battery
JP7026753B2 (en) * 2020-01-07 2022-02-28 古河電池株式会社 Liquid lead-acid battery
JP7011023B2 (en) * 2020-01-07 2022-01-26 古河電池株式会社 Liquid lead-acid battery
JP7011026B2 (en) * 2020-01-07 2022-01-26 古河電池株式会社 Liquid lead-acid battery
JP7011025B2 (en) * 2020-01-09 2022-01-26 古河電池株式会社 Liquid lead-acid battery

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016839A (en) * 1973-06-20 1975-02-21
DE2511073A1 (en) * 1974-10-11 1976-04-22 Gould Inc LEAD ALLOY
JPS51115526U (en) * 1975-03-17 1976-09-18
JPS5392445A (en) * 1977-01-26 1978-08-14 Hitachi Chemical Co Ltd Positive electrode plate for dry charged type lead battery
JPS5715365A (en) * 1980-06-30 1982-01-26 Shin Kobe Electric Mach Co Ltd Plate grid for lead-acid battery
JPS5792751A (en) * 1980-11-29 1982-06-09 Shin Kobe Electric Mach Co Ltd Grid for lead acid battery
JPS57113557A (en) * 1980-12-29 1982-07-15 Shin Kobe Electric Mach Co Ltd Grid for lead acid battery
JPH02281563A (en) * 1989-04-24 1990-11-19 Matsushita Electric Ind Co Ltd Lead-acid battery
JP2926877B2 (en) * 1990-04-27 1999-07-28 新神戸電機株式会社 Lead storage battery
JP3379870B2 (en) * 1996-02-26 2003-02-24 松下電器産業株式会社 Lead storage battery
US5989749A (en) * 1997-11-26 1999-11-23 Johnson Controls Technology Company Stamped battery grid
JP2002260716A (en) * 2001-03-01 2002-09-13 Japan Storage Battery Co Ltd Lead battery
JP4896392B2 (en) * 2004-11-12 2012-03-14 パナソニック株式会社 Lead acid battery
JP4868852B2 (en) * 2005-12-29 2012-02-01 古河電池株式会社 Control valve type lead acid battery
CN203312411U (en) * 2013-05-22 2013-11-27 双登集团股份有限公司 Positive grid of lead-acid storage battery

Also Published As

Publication number Publication date
JP2019153384A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP6762974B2 (en) Positive electrode grid for lead-acid batteries and lead-acid batteries
US11158861B2 (en) Positive electrode grid body for lead-acid battery, and lead-acid battery
US9356321B2 (en) Lead-acid battery
EP1737062B1 (en) Lead storage battery
JP6762976B2 (en) Positive electrode grid for lead-acid batteries and lead-acid batteries
JP7149046B2 (en) liquid lead acid battery
JP6762975B2 (en) Positive electrode grid for lead-acid batteries and lead-acid batteries
JP4374867B2 (en) Lead-acid battery positive grid and lead-acid battery using the same
JP7152441B2 (en) liquid lead acid battery
JP2001126735A (en) Lead accumulator
JP2013191351A (en) Lead acid battery
JP7169724B2 (en) liquid lead acid battery
JP4904686B2 (en) Lead acid battery
JP4590813B2 (en) Lead-acid battery separator and lead-acid battery using the same
JP7385766B1 (en) Current collector plate for lead-acid batteries, lead-acid batteries
JP2006114416A (en) Lead-acid battery
CN211320203U (en) Lead-acid battery
JP5504383B1 (en) Lead acid battery
JP5025317B2 (en) Lattice substrate for lead acid battery
JP4461697B2 (en) Cathode grid of lead-acid battery and lead-acid battery using the same
JP2004139870A (en) Grid substrate for lead-acid battery and lead-acid battery using the same
JPH11354128A (en) Sealed lead-acid battery
WO1982001277A1 (en) Battery plate grids
KR100281299B1 (en) Maintenance-free cells and alloys for cell grids and cells
JP2020068068A (en) Lead acid storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200909

R150 Certificate of patent or registration of utility model

Ref document number: 6762974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150