JPH11250894A - Lead-acid battery, and manufacture thereof - Google Patents

Lead-acid battery, and manufacture thereof

Info

Publication number
JPH11250894A
JPH11250894A JP10045295A JP4529598A JPH11250894A JP H11250894 A JPH11250894 A JP H11250894A JP 10045295 A JP10045295 A JP 10045295A JP 4529598 A JP4529598 A JP 4529598A JP H11250894 A JPH11250894 A JP H11250894A
Authority
JP
Japan
Prior art keywords
alloy
strap
lead
lattice
lug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10045295A
Other languages
Japanese (ja)
Inventor
Akira Kojima
亮 小島
Kazuya Sasaki
一哉 佐々木
Tsunemi Aiba
恒美 相羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP10045295A priority Critical patent/JPH11250894A/en
Publication of JPH11250894A publication Critical patent/JPH11250894A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve corrosion resistance of a lead-acid battery group weld part comprising grid edge parts and a strap of different alloy compositions in which both are welded with each other by preliminarily avoiding interganular corrosion generated because of a granular structure. SOLUTION: A grid lug part 2 close to a junction boundary of the grid lug part 2 with a strap 3 is formed to have a fibrous structure 1 in a perpendicular direction in a thickness direction of it and in a length direction of the lug part 2. For this purpose, a process of obtaining a multi-layer structure part comprising the fibrous structure 1 coated with low fusing point alloy 4, a process of bringing a molten pool of alloy to be the strap 3 in contact with the multi-layer structure lug part, and fusing low fusing point alloy 4 while restricting fusing and recrystallization of the part of the fibrous structure 1 to weld and integrate the strap 3 and the multi-layer structure lug part with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉛蓄電池及びその製
造法に関するものである。
The present invention relates to a lead storage battery and a method for manufacturing the same.

【0002】[0002]

【従来の技術】自動車用の鉛蓄電池は、正極にPb−S
b系合金の格子体を用い、負極にPb−Ca系合金の格
子体を用いるハイブリッドタイプと呼ばれるものか、両
極にPb−Ca系合金の格子体を使用するカルシウム電
池と呼ばれるものが主流となっている。これら電池の極
板群における同極性極板の格子体耳部を束ねるストラッ
プには現在主にPb−Sb系合金あるいはPb−Sn系
合金が用いられている。上記電池の極板群における同極
性極板の格子体耳部を束ねる際の溶接(以下、群溶接と
略記する。また、格子体耳部とストラップとの接合界面
付近を群溶接部と略記する)には、格子体耳部を上記の
ような組成のストラップ合金溶湯に浸漬して鋳ぐるみを
行うキャストオンストラップ法と呼ばれる方法か、格子
体耳部付近に置き鉛をしてバーナーで溶かして溶接する
バーナー溶接法とが主として採用されている。鉛蓄電池
ではこの群溶接部が一旦電解液に接触し、その後電解液
から露出すると、その部分での硫酸濃度が上がり、さら
に格子体耳部とストラップとの間で局部電池が形成さ
れ、電気化学反応によって粒界腐食が進行しやすくな
る。これは格子体耳部とストラップとが通常異なる合金
組成であることに起因する。そのために該耳部が切損し
たり、その不良な接合状態のために電気火花が生じて電
槽中のガスと反応して爆発事故を起こしたり、起動不良
を起こすなどの問題がある。
2. Description of the Related Art Lead-acid batteries for automobiles have a Pb-S
The mainstream is a hybrid type using a lattice of a b-based alloy and a lattice of a Pb-Ca-based alloy for the negative electrode, or a calcium battery using a lattice of a Pb-Ca-based alloy for both electrodes. ing. Currently, Pb-Sb-based alloys or Pb-Sn-based alloys are mainly used for straps for bundling the lugs of the same polarity electrode plates in the battery electrode group. Welding (hereinafter abbreviated as “group welding” when bundling the grid body ears of the same polarity electrode plates in the battery electrode group). Also, the vicinity of the joint interface between the grid body ears and the strap is abbreviated as “group welded part”. ), A method called the cast-on-strap method in which the grid body ears are immersed in a molten strap alloy having the composition described above and cast in place, or placed near the grid body ears and lead is melted with a burner. The burner welding method for welding is mainly used. In a lead-acid battery, when this group weld once comes into contact with the electrolyte and then is exposed from the electrolyte, the sulfuric acid concentration at that part increases, and a local battery is formed between the grid body ears and the strap, which leads to electrochemical formation. Reaction promotes intergranular corrosion. This is due to the fact that the lattice member ears and the straps usually have different alloy compositions. For this reason, there are problems such as the ear part being cut off, an electric spark being generated due to the poor joint state, reacting with the gas in the battery case, causing an explosion accident, and starting failure.

【0003】格子体がエキスパンド方式の格子体である
場合、格子体材料に圧延したシートを用いるのが一般的
であるためにその金属組織は繊維状組織である。それを
上記した方法で群溶接する場合、格子体耳部とストラッ
プとの間に金属学的に良い接合状態を得られるような溶
接を行うためにはある程度以上の熱量を与えなければな
らない。従来ではこの熱量によって格子体耳部が溶融・
再結晶化し、前記繊維状組織が失われて図2に示すよう
な粒状組織になってしまう。この粒状組織はその粒子の
粒界に沿って腐食が進行する、いわゆる粒界腐食が進行
しやすく、繊維状組織に比較して耐食性に劣る。従来、
このような問題の原因となる格子体耳部の耐食性向上の
手段として、図3に示す如く群溶接部分をPb−Sn合
金で被覆する手段(特開平8−236101号公報)が
提案されている。
When the grid is an expanded grid, it is common to use a rolled sheet as the grid material, and the metal structure is a fibrous structure. When performing group welding by the above-described method, a certain amount of heat must be applied in order to perform welding so as to obtain a good metallurgical connection between the lattice member ears and the strap. Conventionally, this calorific value melts the ears of the lattice body.
Recrystallization causes the fibrous structure to be lost, resulting in a granular structure as shown in FIG. In this granular structure, the corrosion proceeds along the grain boundaries of the particles, that is, so-called intergranular corrosion is likely to progress, and the corrosion resistance is inferior to that of the fibrous structure. Conventionally,
As means for improving the corrosion resistance of the lattice member ears which causes such a problem, means for coating a group welded portion with a Pb-Sn alloy as shown in FIG. 3 (Japanese Patent Application Laid-Open No. 8-236101) has been proposed. .

【0004】[0004]

【発明が解決しようとする課題】上記のような耐食性向
上の手段では、群溶接部分におけるPb−Sn系合金の
被覆が不十分な場合がある。従って格子体耳部が粒状組
織であると、一旦粒界に電解液が浸入すると、粒界腐食
が進行してしまう。本発明が解決しようとする課題は、
粒状組織であるが故に生じる粒界腐食を未然に回避し、
群溶接部の耐食性を向上しようとするものである。
In the above-described means for improving the corrosion resistance, the Pb-Sn-based alloy may not be sufficiently coated on the group-welded portion in some cases. Therefore, if the ears of the lattice have a granular structure, once the electrolyte enters the grain boundaries, grain boundary corrosion proceeds. The problem to be solved by the present invention is
Prevent intergranular corrosion caused by the granular structure,
The purpose is to improve the corrosion resistance of the group welds.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明の格子体耳部2とストラップ3とが異なる合
金組成であり、両者が溶接されてなる鉛蓄電池は、格子
体耳部2とストラップ3との接合界面付近の該格子体耳
部分が、耳部長さ方向に沿った繊維状組織1を有するこ
とを特徴とする。繊維状組織1とは例えば圧延した金属
にみられる、図1に示すような金属組織であり、圧延組
織と呼ばれる場合がある。上記した格子体耳部2とスト
ラップ3とが異なる合金組成であると、群溶接部に電解
液が接触したときにそこで局部電池が形成され、そこで
の腐食が進行する。格子体耳部2とストラップ3との電
位差が小さい場合には腐食の進行速度も小さく、さほど
問題視されないが、前記電位差が大きい場合に問題視さ
れる。前記問題視されない程度の合金組成の違いとは、
例えばPb−0.1Ca−0.5Sn合金と、Pb−
0.8Ca−0.5Sn合金との違い、あるいはPb−
1.65Sb−0.02Se合金とPb−2.7Sb−
0.02Se合金との違いなどである。また前記問題視
される程度の合金組成の違いとは、例えばPb−0.1
Ca−0.5Sn合金と、Pb−2.7Sb−0.02
Se合金との違いなどである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a lead-acid battery according to the present invention, in which the lattice member ears 2 and the strap 3 have different alloy compositions and are welded to each other, is provided. The lattice body ear portion near the joint interface between the strap 2 and the strap 3 has a fibrous structure 1 along the ear length direction. The fibrous structure 1 is, for example, a metal structure shown in FIG. 1 which is found in a rolled metal, and may be called a rolled structure. If the lattice member ears 2 and the straps 3 have different alloy compositions, when the electrolytic solution comes into contact with the group welds, a local battery is formed there, and corrosion proceeds there. When the potential difference between the lattice member ears 2 and the strap 3 is small, the rate of progress of corrosion is also low, and is not so much a problem. However, when the potential difference is large, it is a problem. The difference in the alloy composition of the extent that the problem is not considered,
For example, a Pb-0.1Ca-0.5Sn alloy and a Pb-
Difference from 0.8Ca-0.5Sn alloy, or Pb-
1.65Sb-0.02Se alloy and Pb-2.7Sb-
This is the difference from the 0.02Se alloy. Further, the difference in the alloy composition that is regarded as a problem is, for example, Pb-0.1
Ca-0.5Sn alloy and Pb-2.7Sb-0.02
This is the difference from the Se alloy.

【0006】上記構成を実現する本発明の鉛蓄電池の製
造法は、格子体耳部2が耳部長さ方向に沿った繊維状組
織1を持ち、その表面を格子体耳部2よりも融点の低い
鉛合金(以下、低融点合金4と略記する)で被覆した多
層構造耳部を得る工程と、前記ストラップ3となる合金
溶湯と多層構造耳部を接触させ、前記繊維状組織1部分
の溶融・再結晶を抑制しながら前記低融点の鉛合金を溶
融し、ストラップ3と多層構造耳部を溶接一体化する工
程を有することを特徴とする。上記多層構造は、2以上
の層からなる構造を言う。上記低融点合金4の具体例
は、Snを20〜30wt%(融点255〜280℃)
又は75〜80wt%(融点205〜210℃)含む鉛
合金である。ストラップ合金には一般に重量%で3wt
%程度のSbを含むPb−Sb合金が用いられる。この
合金の融点は325℃程度であるので、群溶接の際の溶
湯供給温度はそれ以上にする必要がある。このとき耳部
表面に配置する低融点合金4の融点が低すぎると表面の
低融点合金4の層が群溶接時すぐに全て溶融、流動しや
すくなるし、反対に高すぎては耳部表面とストラップ合
金の金属学的接合を得る役目を果たすことが困難であ
る。従って該耳部表面に配置する低融点合金4の組成
は、上記のPb−Sn合金におけるSnの含有比率で2
0〜30wt%あるいは75〜80wt%程度のものが
好ましい。
In the method for manufacturing a lead-acid battery according to the present invention which realizes the above-described structure, the lattice body ears 2 have a fibrous structure 1 extending along the length of the ears, and the surface thereof has a melting point higher than that of the lattice body ears 2. A step of obtaining a multi-layered lug covered with a low lead alloy (hereinafter abbreviated as low-melting alloy 4); and bringing the molten alloy serving as the strap 3 into contact with the multi-layered lug to melt the fibrous structure 1 A step of melting the lead alloy having a low melting point while suppressing recrystallization, and welding and integrating the strap 3 and the multi-layer structure ear portion; The multilayer structure refers to a structure including two or more layers. A specific example of the low melting point alloy 4 is as follows: Sn is 20 to 30 wt% (melting point: 255 to 280 ° C.)
Or, it is a lead alloy containing 75 to 80 wt% (melting point: 205 to 210 ° C.). Generally 3wt% by weight for strap alloy
% Pb-Sb alloy containing about Sb is used. Since the melting point of this alloy is about 325 ° C., the molten metal supply temperature during group welding needs to be higher. At this time, if the melting point of the low melting point alloy 4 disposed on the surface of the ear portion is too low, the layer of the low melting point alloy 4 on the surface is easily melted and flow easily at the time of group welding. It is difficult to fulfill the role of obtaining a metallurgical bond between the alloy and the strap alloy. Therefore, the composition of the low melting point alloy 4 disposed on the surface of the ear portion is 2% by the Sn content ratio in the above Pb-Sn alloy.
It is preferably about 0 to 30 wt% or about 75 to 80 wt%.

【0007】群溶接後に格子体耳部2の繊維状組織1を
保つためには、群溶接の際に格子体耳部2に与える熱量
を該部分が溶融・再結晶を起こさないだけの熱量に抑え
る必要がある。そこで格子体耳部2上に低温で群溶接を
行っても充分な金属学的接合が得られるような低融点合
金4を耳部表面に配置することで、内部の繊維状組織を
保つことができ、結果として耐食性に優れた群溶接部が
得られる。群溶接後も群溶接部が繊維状組織を維持する
ことにより上記した、問題視される合金組成の違いがあ
っても、電解液が群溶接部内部まで入り込みにくいため
耐食性が向上し、さほど問題視されなくなる。つまり問
題視されない格子体とストラップの合金の組み合わせの
許容範囲が広がる。このような理由から、本発明の構成
を適用することにより、図2に示すような粒状組織であ
るが故に生じる粒界腐食を未然に回避し、群溶接部の耐
食性を向上させることができる。
In order to maintain the fibrous structure 1 of the lattice member ears 2 after group welding, the amount of heat given to the lattice member ears 2 during group welding should be such that the portion does not melt and recrystallize. It needs to be suppressed. Therefore, by arranging a low melting point alloy 4 on the lug surface 2 such that sufficient metallurgical bonding can be obtained even when group welding is performed at a low temperature on the lug surface 2, the internal fibrous structure can be maintained. As a result, a group weld having excellent corrosion resistance can be obtained. Even if there is a difference in the alloy composition which is regarded as a problem by maintaining the fibrous structure in the group weld even after the group weld, the corrosion resistance is improved because the electrolyte does not easily enter the inside of the group weld, even if there is a problem with the alloy composition. You will not be seen. That is, the allowable range of the combination of the lattice body and the alloy of the strap that is not regarded as a problem is widened. For this reason, by applying the configuration of the present invention, intergranular corrosion caused by the granular structure as shown in FIG. 2 can be avoided beforehand, and the corrosion resistance of the group weld can be improved.

【0008】[0008]

【発明の実施の形態】厚さ8mmのPb−0.1Ca−
0.5Sn合金(融点約325℃)のスラブを厚さ2m
mのPb−20Sn合金(融点約280℃)のスラブで
両面から挟み込み、ローラーによる冷間圧延で0.8m
mの厚さまで圧延し、約100μmのPb−20Sn箔
を表面にもつ圧延シートを得た。該シートを格子体耳部
2の形にプレス打ち抜きをし、該耳部をDサイズのPb
−0.8Ca−0.5Snのエキスパンド格子の負極板
にアーク溶接で溶接した。該負極板の群溶接はオーバー
フロー式のキャストオンマシンでキャストオン方式(鋳
ぐるみ)によって行った。ストラップ本体の合金組成は
Pb−2.7Sb−0.02Se(融点約325℃)、
溶湯供給温度は340℃、鋳型温度は140℃とし、こ
れを負極板と群溶接して負極板格子体耳部の繊維状組織
の保たれている、図1に示すような断面の群溶接部を得
た。該負極板とDサイズのPb−1.65Sb−0.0
2Seの鋳造格子(耳部も同組成)を用いた公知の正極
板を用い、Pb−2.75Sb−0.02Se合金のス
トラップとの組み合わせで、正極板4枚、負極板5枚の
極板群を構成し、これをポリプロピレン製の電槽に入れ
た。尚、セパレータはポリエチレン製の袋状セパレータ
とし、これに負極板を収容し、該セパレータと正極板と
の間にはガラス繊維の板状緩衝剤を挿入した。前記電槽
中に比重1.225の希硫酸溶液を注入し、40℃、1
8Aで18h通電して化成した後に比重調整を行って最
終比重を1.280に調整した。更に電解液面をストラ
ップ下面より2〜3mmに調整し、群溶接部が電解液か
ら露出している状態にした。その後蓋により電槽開口部
を密閉し、本発明の電池を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS 8 mm thick Pb-0.1Ca-
Slab of 0.5Sn alloy (melting point approx.
m of Pb-20Sn alloy (melting point about 280 ° C) from both sides, and 0.8m by cold rolling with a roller
m to obtain a rolled sheet having a Pb-20Sn foil of about 100 μm on the surface. The sheet is press-punched in the shape of a lattice-shaped ear part 2, and the ear part is formed of D-size Pb.
It welded to the negative electrode plate of the expanded lattice of -0.8Ca-0.5Sn by arc welding. The group welding of the negative electrode plates was performed by an overflow type cast-on machine by a cast-on method (cast-in). The alloy composition of the strap body is Pb-2.7Sb-0.02Se (melting point about 325 ° C),
The molten metal supply temperature is 340 ° C., the mold temperature is 140 ° C., and the group is welded to the negative electrode plate to maintain the fibrous structure of the lug of the negative electrode plate. I got The negative electrode plate and D-sized Pb-1.65Sb-0.0
A known positive electrode plate using a cast lattice of 2Se (the same composition is also used for the lugs), and in combination with a strap of Pb-2.75Sb-0.02Se alloy, four positive electrode plates and five negative electrode plates A group was formed, and this was placed in a battery case made of polypropylene. The separator was a bag-shaped separator made of polyethylene, in which a negative electrode plate was housed, and a glass fiber plate-like buffer was inserted between the separator and the positive electrode plate. A dilute sulfuric acid solution having a specific gravity of 1.225 was injected into the battery container, and the solution was heated at 40 ° C., 1
After carrying out formation by supplying electricity for 8 hours at 8A, the specific gravity was adjusted to adjust the final specific gravity to 1.280. Further, the electrolyte surface was adjusted to 2 to 3 mm from the lower surface of the strap, and the group weld was exposed from the electrolyte. Thereafter, the opening of the battery case was sealed with a lid to obtain the battery of the present invention.

【0009】本例では負極のみに本発明に係る群溶接部
の構成を適用したが、正極のみ、または正極と負極の双
方にも適用可能である。また本例では格子体耳部2を、
耳部表面に低融点合金を配した二層構造としたが、低融
点合金の部分を異なる組成の二層以上の構造としてもよ
い。
In this embodiment, the configuration of the group welded portion according to the present invention is applied to only the negative electrode, but the present invention can be applied to only the positive electrode or both the positive electrode and the negative electrode. In the present example, the lattice body ear 2 is
Although the low-melting-point alloy has a two-layer structure on the surface of the ear, the low-melting-point alloy may have a structure of two or more layers having different compositions.

【0010】[0010]

【実施例】上記発明の実施の形態に記載した製法を適用
した鉛蓄電池(電池A)と、特開平8−236101号
公報の実施例に記載されている製法を適用した鉛蓄電池
(電池B)とを比較検討した。この時電池A、電池Bの
電解液面は、ストラップ下面より2〜3mmの位置を保
つようにした。前述した電槽内への電解液注入時に群溶
接部は電解液に一旦接触しており、その後群溶接部は電
解液から露出した状態にある。電池Bは、その格子体耳
部が粒状組織からなり、それとストラップとの溶接部全
体をPb−50Sn(融点約220℃)で被覆するよう
にバーナーの火力を調節することにより形成した。この
群溶接条件以外は電池Aと同条件で電池を作製した。図
3は電池Bの群溶接部の概略図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A lead storage battery (battery A) to which the manufacturing method described in the embodiment of the present invention is applied, and a lead storage battery (battery B) to which the manufacturing method described in an example of JP-A-8-236101 is applied. And were compared. At this time, the electrolyte surfaces of the batteries A and B were kept at a position of 2 to 3 mm from the lower surface of the strap. When the electrolytic solution is injected into the battery case described above, the group weld portion is once in contact with the electrolytic solution, and thereafter, the group weld portion is exposed from the electrolytic solution. Battery B was formed by adjusting the heat of the burner such that the lattice-shaped ear portion had a granular structure and the entire welded portion between the lattice and the strap was covered with Pb-50Sn (melting point: about 220 ° C.). A battery was fabricated under the same conditions as Battery A except for the group welding conditions. FIG. 3 is a schematic view of a group welded portion of the battery B.

【0011】電池A、電池Bを80℃の水槽中で2.3
Vの定電圧過充電110hを施した後に200Aで2秒
間放電を行うのを1サイクルとする耐食性試験に供した
(n=12)。本試験を12サイクル行ったところで、
電池Bは極板の劣化により12個中9個の電池が群溶接
部に腐食による切損が見られ、放電が不可能となった。
しかし本発明による電池Aは、群溶接部に腐食による切
損は見られず、12サイクル経過しても全ての電池が放
電可能だった。
Batteries A and B were placed in an 80 ° C. water bath at 2.3
It was subjected to a corrosion resistance test in which one cycle of discharging at 200 A for 2 seconds after applying a constant voltage overcharge of 110 h at V was one cycle (n = 12). After 12 cycles of this test,
In battery B, nine out of twelve batteries were cut due to corrosion in the group weld due to deterioration of the electrode plate, and discharge was impossible.
However, in the battery A according to the present invention, no breakage due to corrosion was observed in the group weld, and all the batteries could be discharged even after 12 cycles.

【0012】[0012]

【発明の効果】本発明により、粒状組織であるが故に生
じる粒界腐食を未然に回避し、群溶接部の耐食性を向上
させることができた。
According to the present invention, intergranular corrosion caused by a granular structure can be avoided beforehand, and the corrosion resistance of the group weld can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る群溶接部を示す図である。FIG. 1 is a view showing a group welded portion according to the present invention.

【図2】従来の群溶接部を示す図である。FIG. 2 is a diagram showing a conventional group weld.

【図3】従来の群溶接部を示す図である。FIG. 3 is a diagram showing a conventional group weld.

【符号の説明】[Explanation of symbols]

1.繊維状組織 2.格子体耳部 3.ストラップ 4.低融点合金 1. 1. Fibrous tissue Lattice body ears 3. Strap 4. Low melting point alloy

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】格子体耳部とストラップとが異なる合金組
成であり、両者が溶接されてなる鉛蓄電池において、 前記格子体耳部とストラップとの接合界面付近の該格子
体耳部分が、耳部長さ方向に沿った繊維状組織を有する
ことを特徴とする鉛蓄電池。
1. A lead-acid battery in which a lattice body ear part and a strap have different alloy compositions and are welded to each other, wherein the lattice body ear part near a joint interface between the lattice body ear part and the strap is an ear. A lead-acid battery having a fibrous structure along a length direction.
【請求項2】格子体耳部とストラップとが異なる合金組
成であり、両者を溶接する工程を有する鉛蓄電池の製造
法において、 前記格子体耳部が耳部長さ方向に沿った繊維状組織を持
ち、その表面を該格子体耳部よりも融点の低い鉛合金で
被覆した多層構造耳部を得る工程と、 前記ストラップとなる合金溶湯と多層構造耳部を接触さ
せ、前記繊維状組織部分の溶融・再結晶を抑制しながら
前記低融点の鉛合金を溶融し、ストラップと多層構造耳
部を溶接一体化する工程を有することを特徴とする鉛蓄
電池の製造法。
2. A method for manufacturing a lead-acid battery, wherein a lattice body ear part and a strap have different alloy compositions and have a step of welding them, wherein the lattice body ear part removes a fibrous structure along a length direction of the ear part. A step of obtaining a multi-layered lug whose surface is covered with a lead alloy having a lower melting point than the latticed lug; and bringing the multi-layered lug into contact with the molten alloy to be the strap, A method for producing a lead storage battery, comprising a step of melting the low-melting-point lead alloy while suppressing melting and recrystallization, and welding and integrating the strap and the multilayer structure ear.
【請求項3】格子体耳部よりも融点の低い鉛合金が、S
nを20〜30wt%又は75〜80wt%含む鉛合金
であることを特徴とする請求項2記載の鉛蓄電池の製造
法。
3. A lead alloy having a lower melting point than the lattice member ears,
3. The method according to claim 2, wherein the lead alloy is a lead alloy containing 20 to 30 wt% or 75 to 80 wt% of n.
JP10045295A 1998-02-26 1998-02-26 Lead-acid battery, and manufacture thereof Pending JPH11250894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10045295A JPH11250894A (en) 1998-02-26 1998-02-26 Lead-acid battery, and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10045295A JPH11250894A (en) 1998-02-26 1998-02-26 Lead-acid battery, and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11250894A true JPH11250894A (en) 1999-09-17

Family

ID=12715334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10045295A Pending JPH11250894A (en) 1998-02-26 1998-02-26 Lead-acid battery, and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11250894A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064720A (en) * 2007-09-07 2009-03-26 Gs Yuasa Corporation:Kk Lead acid battery
WO2010032782A1 (en) * 2008-09-22 2010-03-25 株式会社ジーエス・ユアサコーポレーション Lead acid storage battery
JP2011181321A (en) * 2010-03-01 2011-09-15 Panasonic Corp Lead-acid battery
JP2018060615A (en) * 2016-10-03 2018-04-12 株式会社Gsユアサ Lead-acid battery and method of manufacturing the same
WO2020080423A1 (en) * 2018-10-16 2020-04-23 株式会社Gsユアサ Lead storage battery
JP2020167095A (en) * 2019-03-29 2020-10-08 古河電池株式会社 Lead-acid battery
WO2022215329A1 (en) * 2021-04-08 2022-10-13 古河電池株式会社 Bipolar storage battery, method for manufacturing bipolar storage battery, and bipolar lead storage battery
JP2022175783A (en) * 2021-05-14 2022-11-25 古河電池株式会社 bipolar lead acid battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064720A (en) * 2007-09-07 2009-03-26 Gs Yuasa Corporation:Kk Lead acid battery
WO2010032782A1 (en) * 2008-09-22 2010-03-25 株式会社ジーエス・ユアサコーポレーション Lead acid storage battery
JPWO2010032782A1 (en) * 2008-09-22 2012-02-09 株式会社Gsユアサ Lead acid battery
JP5522444B2 (en) * 2008-09-22 2014-06-18 株式会社Gsユアサ Lead acid battery
JP2011181321A (en) * 2010-03-01 2011-09-15 Panasonic Corp Lead-acid battery
JP2018060615A (en) * 2016-10-03 2018-04-12 株式会社Gsユアサ Lead-acid battery and method of manufacturing the same
WO2020080423A1 (en) * 2018-10-16 2020-04-23 株式会社Gsユアサ Lead storage battery
JPWO2020080423A1 (en) * 2018-10-16 2021-09-02 株式会社Gsユアサ Lead-acid battery
JP2020167095A (en) * 2019-03-29 2020-10-08 古河電池株式会社 Lead-acid battery
WO2022215329A1 (en) * 2021-04-08 2022-10-13 古河電池株式会社 Bipolar storage battery, method for manufacturing bipolar storage battery, and bipolar lead storage battery
JP2022175783A (en) * 2021-05-14 2022-11-25 古河電池株式会社 bipolar lead acid battery

Similar Documents

Publication Publication Date Title
JP2006156371A (en) Negative electrode collector for lead-acid battery
JPH11250894A (en) Lead-acid battery, and manufacture thereof
JP2002175798A (en) Sealed lead-acid battery
JPH1145697A (en) Lead acid battery
JP2006210210A (en) Lead-acid battery
Prengaman Current-collectors for lead–acid batteries
JP3413930B2 (en) Manufacturing method of lead storage battery electrode group
JPS635863B2 (en)
JPH11111329A (en) Lead-acid battery and manufacture thereof
JP5182464B2 (en) Negative electrode current collector for lead acid battery and method for producing lead acid battery using the current collector
JP3417976B2 (en) Lead storage battery
JP3222988B2 (en) Manufacturing method of lead storage battery
JPH09192820A (en) Production of hybrid lead battery
JP2696975B2 (en) Lead-acid battery group welding method
JPH11329399A (en) Lead-acid battery
JP2003323881A (en) Control valve lead-acid battery
JPH07118321B2 (en) Lead acid battery
JPH07169454A (en) Lead-acid battery
JP2004185980A (en) Lead-acid battery
JP2002008624A (en) Strap for lead-acid battery
JP4599914B2 (en) Method for producing lead-acid battery
JP2003331814A (en) Method of manufacturing control valve lead battery
JPH04137357A (en) Welding method of electrode plate group for lead storage battery
JPS58198860A (en) Lead storage battery
JPS58115757A (en) Manufacture of electrode plate group for lead storage battery