JP2004185980A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2004185980A
JP2004185980A JP2002351315A JP2002351315A JP2004185980A JP 2004185980 A JP2004185980 A JP 2004185980A JP 2002351315 A JP2002351315 A JP 2002351315A JP 2002351315 A JP2002351315 A JP 2002351315A JP 2004185980 A JP2004185980 A JP 2004185980A
Authority
JP
Japan
Prior art keywords
resin
mass
cells
lead
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351315A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ishiguro
博之 石黒
Hitoshi Watanabe
仁 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002351315A priority Critical patent/JP2004185980A/en
Publication of JP2004185980A publication Critical patent/JP2004185980A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid battery capable of restraining a welding defect of a connection part between cells caused by intrusion of a resin into a blow hole formed in the connection part between the cells of a mono-block type lead-acid battery with a plurality of the cells integrated, and of exerting an excellent corrosion-resisting effect of Ag in using a Pb-Sn-Ag-based alloy, and having stable life performance. <P>SOLUTION: This lead-acid battery is characterized by using the Pb-Sn-Ag-based alloy for the connection parts between the cells, and by using a denatured polyphenylene ether resin (PPE) or an acrylnitrile-butadiene-styrene resin (ABS) for a battery jar resin material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池、特にセル間接続部の溶接改善に関するものである。
【0002】
【従来の技術】
鉛蓄電池では、複数の単電池(セル、以降セルという)が一体になったモノブロックタイプの蓄電池が使用されていることが多い。これらの蓄電池は、発電要素である極板群(エレメント、以降エレメントという)を複数セルからなる樹脂製電槽に挿入した後、前記各エレメントが隔壁を介してセル間接続部により電気的に内部接続される。該接続にはいくつかの方法があるが、抵抗溶接法は、最も信頼性が高く、量産性が優れていることから広く採用されている。これは、電槽セル間隔壁に設けた孔を通して両セル間接続部を接触させ、水冷銅電極でセル間接続部を加圧し、この加圧による変形で形成される通電路に大電流を短時間通電し、発熱させ、セル間接続部同士を溶融・接合する方法である。
【0003】
周知のとおり、鉛蓄電池の劣化の主要因は正・負極格子の腐食であるが、前記セル間接続部も電位がかかっており、腐食は免れない。特に、前記セル間接続部の溶接が不十分で隙間が存在すると、その部分での腐食が進行し、蓄電池が短寿命になることがある。
【0004】
従来では、セル間接続部には、溶融性を重視し、Snを1.0〜5.0質量%含むPb−Sn系合金が一般的に用いられていた。
【0005】
該Pb−Sn系合金は、鉛リッチな初晶と、初晶相互間の粒界部分に析出したSnリッチな相とからなる結晶組織を有しており、腐食は、粒界に析出したSnリッチ相に沿って進行(粒界腐食)する。また、この腐食生成物は、元の物質より容積が大きいので、結晶粒界に亀裂が発生し、最悪の場合には、粒界に沿ってセル間接続部が破断することがある。
【0006】
特に、上記腐食は、セル間接続部が電解液上に露出する構造の制御弁式鉛蓄電池の負極側では致命的な問題となる。すなわち、該セル間接続部が電解液から露出した状態であると、(1)式で示すように、正極で発生した酸素ガスが負極側のセル間接続部で還元される反応が起こり易く、一旦PbSOになると、電解液が十分に存在する鉛蓄電池のようにPbに戻る充電反応が起こり難い。
【0007】
Pb+1/2O+HSO → PbSO+HO (1)
そのため、上記(1)式に示される腐食反応が非可逆的に進行し、PbSOが蓄積される。1モルのPbがPbSOへと変化するとき、その体積は2.6倍となる。したがって、セル間接続部の粒界に腐食生成物の体積膨張に伴う応力がかかり、その部分が破断することが他の鉛蓄電池より発生し易い問題点を抱えている。
【0008】
上記Pb−Sn系合金の耐食性を改善する方法として、特開昭62−64057および特許番号第1748824号に、Pb−Sn系合金にAgを適当量含有させることが提案されている。
【0009】
しかしながら、複数のセルが一体になったモノブロックタイプの蓄電池において、電槽材質が一般的に使用されているプロピレン系樹脂、具体的にはエチレンプロピレンコポリマー(以下EPPと略記する)からなる電槽隔壁を介してセル間接続部同士を接合する場合に、セル間接続部にPb−Sn−Ag合金を使用してもAgの耐食性が十分に発揮されているとは言えない状態であった。
【0010】
なぜなら、抵抗溶接法により接合されたセル間接続部の溶接部分を調査した結果、溶接時に接合部の溶融部(ナゲット)にブローホールが発生し、溶接時の高温で軟化した周囲の樹脂が該ブローホールに噛みこむために溶接の不十分なところが発生し、その部分が局部的な腐食を受け、Agを添加しても耐食性の効果が十分活用できていなかったからである。
【0011】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、溶接部での樹脂の噛みこみが抑制され、安定したセル間接続部の溶接が可能で、溶接不良による該セル間接続部の腐食が低減され、優れた寿命性能を有する鉛蓄電池を提供することにある。
【0012】
【課題を解決するための手段】
課題を解決するための手段として、請求項1によれば、銀(Ag)の含有量が0.05質量%以上0.5質量%以下、錫(Sn)の含有量が0.5質量%以上、5質量%以下のPb−Sn−Ag系合金からなるセル間接続部を有すると共に、電槽樹脂材質に変性ポリフェニレンエーテル樹脂あるいはアクリルニトリル−ブタジエン−スチレン樹脂を用いたことを特徴とするものである。
【0013】
セル間接続部にPb−Sn−Ag系合金を用い、電槽材質に一般的に広く使用されているEPP樹脂を用いた場合、該樹脂の軟化点の低いことに起因して発生する溶接部に形成されたブローホールへの樹脂の噛みこみ(溶接不良)によってPb−Sn−Ag系合金の耐食性の効果が十分に得られなかったのに対して、EPP樹脂に代わって、軟化点の高い変性ポリフェニレンエーテル樹脂(以下PPE樹脂と略記)あるいはアクリルニトリル−ブタジエン−スチレン樹脂(以下ABS樹脂と略記)を用いることで上記ブローホールへの樹脂の噛みこみが抑制される。その結果、セル間接続部での溶接不良が低減され、Pb−Sn−Ag系合金本来の耐食性を最大限に発揮することが可能になることが分かった。
【0014】
Pb−Sn―Ag系合金中のAgの含有量は、0.05質量%より少なくなるとAgの耐食性の効果が低下し、0.5質量%より多く添加しても耐食性がほとんど向上しないことから0.05質量%以上、0.5質量%以下が好ましい。一方、Snの含有量は、0.5質量%より少なくなると、合金自体の強度が低下し、セル間接続部が過度に変形し、溶接が困難になり実用性がなくなる。一方、5質量%を超えると、Sn自身の原因で耐食性が低下した。したがって、0.5質量%以上、5質量%以下が好ましいことがわかった。
【0015】
【実施例】
本発明の効果を実施例に基づき詳細に説明する。
(実施例1)
Pb−Sn―Ag合金において、Snの含有量を2質量%に固定し、Agの含有量を0〜0.7質量%の範囲で種々変化させた合金を調製し、セル間接続部の合金として準備した。
【0016】
鉛蓄電池の極板には、Pb−Ca−Sn系合金からなる正・負極格子に通常の正・負極活物質を塗布し、乾燥した正・負極板を微細ガラス繊維セパレータを介して交互に積層して公称電圧、12V、定格容量20Ah(20hR)の制御弁式鉛蓄電池用エレメントを作製した。
【0017】
電槽樹脂には、従来のEPP樹脂と本発明のPPE樹脂、およびABS樹脂の3種類を準備した。
【0018】
ストラップとセル間接続部とが一体になった形状を有する鋳型に溶融した鉛合金を満たして、エレメントを倒立して極板耳部を該鋳型に挿入し、ストラップ、セル間接続部および極板耳部とを一体に形成するキャスト・オン・ストラップ(Cast on Strap、略してCOS)法により7種類の合金種からなるストラップとセル間接続部を備えたエレメントを作製した。なお、ストラップの厚さは5mmとした。
【0019】
次に、該エレメントを隔壁厚1.4mmを有する電槽に挿入し、抵抗溶接法によりセル間接続部同士を接合し、制御弁式鉛蓄電池として組立てた。
【0020】
上記蓄電池に所定の比重の希硫酸を注入し、電槽内で化成を行った。
【0021】
上記各蓄電池のセル間接続部の耐食性の評価を行うために、これらをフロート充電試験に供した。試験条件を以下に示す。
【0022】
充電電圧:13.65V
最大充電電流:4A
試験温度:60℃
試験期間:10カ月
上記試験が終了した時点で各蓄電池を解体してセル間接続部を取り出し、その腐食状態を調査した。
【0023】
図1は、抵抗溶接法によりセル間接続部同士が電槽セル間の隔壁を介して接合された状態を示す要部斜視図で、1はセル間接続部、2はストラップ、3は電槽セル間の隔壁をそれぞれ示す。
【0024】
セル間接続部の耐食性を評価するために、セル間接続部を図1に示す両矢印の方向に引っ張って破断させ、破断面の腐食状態を観察した。図2は、その破断面を模式的に示した要部正面図で、4は電槽隔壁貫通部すなわち、初期溶接面積、5は腐食部、6は残存合金部をそれぞれ示す。腐食程度(腐食率)は初期溶着面積4に対する腐食部5の面積比率(%)で表した。その結果を図3に示す。
【0025】
図3に示すように、Agを含まないPb―Sn系合金で、従来の電槽樹脂EPPを用いた場合の腐食率が55%であったのに対して、EPP樹脂から本発明のPPE樹脂あるいはABS樹脂に変えることによって約40%まで低下した。また、本発明の樹脂電槽では、セル間接続部をPb−Sn−Ag系合金にすることによってさらに耐食性が向上し、含有量が多くなる程、耐食性は向上した。具体的には、Agの含有量0.05質量%の腐食率は、約25%、0.2質量%のそれは、約12%まで低下し、後者の場合、従来の電槽EPPでPb―Sn系合金を用いた蓄電池に比べて腐食率は1/4以下になった。しかし、Agの含有量が0.3質量%以上になると耐食性の向上は頭打ちになり、Agの価格が高いことも考えれば0.5質量%が限度と言える。
【0026】
一方、従来のEPP樹脂電槽では、Agを0.05質量%含有させることにより、Pb−Sn系合金の腐食率55%に比べて40%まで低下したが、それ以上Agの含有量を増加させても、腐食率は低減されなかた。このように従来のEPP樹脂では、セル間接続部の溶融部のブローホールに樹脂が噛みこみ、溶接状態が良好でないためにAgの耐食性の効果が発揮されないことが明らかになった。
【0027】
次に、上記の供試合金を用いて作製した直径13.5mmを有するセル間接続部同士を抵抗溶接法により接合し、その接合部にトルクレンチで回転力(せん断応力)を加えて、接合部がねじ切れする際の最大せん断応力を測定した。試験に供したセル間接続部合金中のAg量(質量%)と最大せん断応力(N・cm)との関係を求めた結果を図4に示す。
【0028】
図4に示すように、Agの含有量が0.1質量%の時の最大せん断応力は電槽樹脂材質が従来のEPPでは1352(N・cm)、本発明のABSでは1420(N・cm)、PPE樹脂では1519(N・cm)で、この測定結果からも電槽材質をEPPからABSあるいはPPEに変更することにより、上述した樹脂の噛みこみがなく溶接性が改善され、セル間接続部同士の溶接面の強度が増加したことが分かった。従来のEPP樹脂では、Agの含有量を増加させても最大せん断応力がほとんど増加せずAgの効果が認められなかったのに対して、PPEおよびABSでは、Agの含有量の増加に伴い最大せん断応力が増加する傾向にあった。これは、樹脂の軟化温度が高く、セル間接続部の溶融部に形成されるブローホールへの樹脂の噛みこみが抑制され、安定した溶接がなされたことと、Agの存在による合金の強度の増加との相乗効果により最大せん断応力が増加したといえる。
(実施例2)
Pb−Sn―Ag合金において、Agの含有量を0.1質量%に固定し、Snの含有量を0〜7質量%の範囲で種々変化させた合金を調製し、セル間接続部の合金として準備した。
【0029】
これらの供試合金を用いて、実施例1と同様、COS法によりストラップとセル間接続部を形成した後、抵抗溶接法によりセル間接続部同士を接合して、実施例1と同じ12V、20Ahの制御弁式鉛蓄電池を作製した。
【0030】
これら蓄電池を実施例1と同様のフロート充電試験を実施し、試験後、セル間接続部の腐食状態を実施例1と同じ方法で調査した。
【0031】
電槽樹脂には、従来のEPP樹脂、本発明のPPE樹脂およびABS樹脂の3種類を使用した。
【0032】
腐食率(%)とSnの含有量(質量%)との関係を求めた結果を図5に示す。
【0033】
図5に示すように、Snの含有量が、0.5質量%以上、5質量%以下では、本発明のPPEあるいはABS樹脂電槽とPb−Sn−Ag合金の相乗効果が得られ、耐食性が向上したが、Snの含有量が0.5%より少なくなると、合金自体の強度不足によって、抵抗溶接時にセル間接続部に圧力を加えると過度に変形し、溶接が困難となり、実用上の問題が発生した。一方、Snの含有量が5質量%より多くなると、Snに原因して合金自身の耐食性が低下した。これらの結果から、本発明の効果が得られるSnの含有量は、0.5質量%以上、5質量%以下であることがわかった。
【0034】
なお、上記実施例では、COSによりストラップ、セル間接続部および極板耳部とを一体に形成する方法について述べたが、あらかじめ鋳造により形成したセル間接続部と極板耳部とをバーナーで部分的に溶融しながらセル間接続部と同じ合金組成の足し鉛を供給してセル間接続部、極板耳部およびストラップを一体に形成したエレメントを用いて、抵抗溶接法によりセル間接続部同士を溶接した場合も同様の効果が得られるのはいうまでもない。
【0035】
【発明の効果】
複数のセルが一体になったモノブロックタイプの鉛蓄電池において、セル間を抵抗溶接法により接続する際のセル間接続部の合金に耐食性の優れたPb―Sn―Ag系合金を採用しても、溶接時に形成されるブローホールへの電槽樹脂の噛みこみにより溶接不良が発生し、Agの耐食性の向上効果が十分に得られなかったのに対して、本発明によれば、セル間接続部に銀(Ag)の含有量が0.05質量%以上、0.5質量%以下、錫(Sn)の含有量が0.5質量%以上、5質量%以下のPb―Sn―Ag合金を用いると共に、電槽材質に従来のEPP樹脂に代えて、PPEあるいはABS樹脂を使用することにより、溶接部での樹脂の噛みこみが抑制され、安定した溶接が可能で、Agの優れた耐食性を有効に活用でき、鉛蓄電池、特に制御弁式鉛蓄電池において優れた寿命性能が得られ、その工業的効果が極めて大である。
【図面の簡単な説明】
【図1】抵抗溶接法によりセル間接続部同士が溶接・接合された状態を示す要部斜視図。
【図2】セル間接続部の破断面を示す要部模式正面図。
【図3】本発明の実施例1における、Ag量(質量%)と腐食率(%)との関係を示す図。
【図4】本発明の実施例1における、Ag量(質量%)と最大せん断応力(N・cm)との関係を示す図。
【図5】本発明の実施例2における、Sn量(質量%)と腐食率(%)との関係を示す図。
【符号の説明】
1 セル間接続部
2 ストラップ
3 電槽のセル隔壁部
4 セルの隔壁貫通部(初期溶接面積)
5 腐食部
6 残存合金部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lead-acid battery, and more particularly to an improvement in welding at a connection between cells.
[0002]
[Prior art]
In the lead storage battery, a monoblock type storage battery in which a plurality of unit cells (hereinafter, referred to as cells) are integrated is often used. In these storage batteries, after an electrode plate group (element, hereinafter referred to as an element) as a power generation element is inserted into a resin container made up of a plurality of cells, each of the elements is electrically connected to each other by a cell-to-cell connection portion via a partition. Connected. There are several methods for the connection, but the resistance welding method is widely adopted because it has the highest reliability and is excellent in mass productivity. In this method, the connection between the cells is brought into contact with each other through a hole provided in the cell wall of the battery case, and the connection between the cells is pressurized with a water-cooled copper electrode. This is a method in which electricity is supplied for a period of time to generate heat, and the inter-cell connection portions are melted and joined.
[0003]
As is well known, the main cause of the deterioration of the lead-acid battery is corrosion of the positive and negative electrode grids. However, since the potential is applied to the connection between the cells, corrosion is inevitable. In particular, if the inter-cell connection portion is insufficiently welded and a gap is present, corrosion at that portion may proceed, and the storage battery may have a short life.
[0004]
Conventionally, a Pb-Sn alloy containing 1.0 to 5.0% by mass of Sn has been generally used for the inter-cell connection part with emphasis on meltability.
[0005]
The Pb-Sn-based alloy has a crystal structure composed of lead-rich primary crystals and Sn-rich phases precipitated at grain boundaries between primary crystals. Corrosion is caused by Sn precipitated at grain boundaries. Proceeds along the rich phase (intergranular corrosion). In addition, since the volume of the corrosion product is larger than that of the original material, cracks are generated in the crystal grain boundaries, and in the worst case, the intercell connection may be broken along the grain boundaries.
[0006]
In particular, the above-mentioned corrosion becomes a fatal problem on the negative electrode side of a control valve type lead-acid battery having a structure in which a connection portion between cells is exposed on an electrolytic solution. That is, when the inter-cell connection is exposed from the electrolyte, a reaction in which oxygen gas generated at the positive electrode is reduced at the negative-cell inter-cell connection tends to occur, as shown in equation (1). Once it becomes PbSO 4 , a charging reaction that returns to Pb is unlikely to occur as in a lead-acid battery in which the electrolyte is sufficiently present.
[0007]
Pb + 1 / 2O 2 + H 2 SO 4 → PbSO 4 + H 2 O (1)
Therefore, the corrosion reaction represented by the above formula (1) proceeds irreversibly, and PbSO 4 is accumulated. When 1 mole of Pb is changed to PbSO 4, the volume becomes 2.6 times. Therefore, a stress accompanying the volume expansion of the corrosion product is applied to the grain boundary of the inter-cell connection portion, and there is a problem that the breakage of the portion is more likely to occur than other lead-acid batteries.
[0008]
As a method for improving the corrosion resistance of the Pb-Sn-based alloy, Japanese Patent Application Laid-Open No. Sho 62-64057 and Patent No. 1748824 propose that a suitable amount of Ag is contained in the Pb-Sn-based alloy.
[0009]
However, in a monoblock type storage battery in which a plurality of cells are integrated, a battery case made of a propylene-based resin generally used, specifically, an ethylene propylene copolymer (hereinafter abbreviated as EPP) is used. In the case where the inter-cell connection portions were joined to each other via the partition walls, the corrosion resistance of Ag was not sufficiently exhibited even when a Pb-Sn-Ag alloy was used for the inter-cell connection portions.
[0010]
This is because, as a result of investigating the welded part of the cell-to-cell connection part joined by the resistance welding method, blowholes were generated in the welded part (nugget) of the joint part during welding, and the surrounding resin softened at a high temperature during welding was blown out. This is because insufficient welding occurs due to biting into the blowhole, and the portion is locally corroded, so that even if Ag is added, the corrosion resistance effect has not been fully utilized.
[0011]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that resin entrapment in the welded portion is suppressed, stable welding of the inter-cell connection portion is possible, corrosion of the inter-cell connection portion due to poor welding is reduced, and an excellent An object of the present invention is to provide a lead storage battery having a life performance.
[0012]
[Means for Solving the Problems]
As means for solving the problem, according to claim 1, the content of silver (Ag) is 0.05% by mass or more and 0.5% by mass or less, and the content of tin (Sn) is 0.5% by mass. As described above, it has a connection part between cells made of a Pb-Sn-Ag alloy of 5% by mass or less, and uses a modified polyphenylene ether resin or acrylonitrile-butadiene-styrene resin as a resin material for a battery case. It is.
[0013]
When a Pb-Sn-Ag alloy is used for a cell-to-cell connection part and an EPP resin that is generally widely used as a battery case material is used, a weld generated due to a low softening point of the resin. Although the effect of corrosion resistance of the Pb-Sn-Ag alloy was not sufficiently obtained due to biting of the resin into the blowholes formed at the time (poor welding), a high softening point was used instead of the EPP resin. By using a modified polyphenylene ether resin (hereinafter abbreviated as PPE resin) or an acrylonitrile-butadiene-styrene resin (hereinafter abbreviated as ABS resin), biting of the resin into the blowhole is suppressed. As a result, it was found that poor welding at the inter-cell connection portion was reduced, and the original corrosion resistance of the Pb-Sn-Ag alloy could be maximized.
[0014]
When the content of Ag in the Pb-Sn-Ag-based alloy is less than 0.05% by mass, the effect of the corrosion resistance of Ag is reduced, and the addition of more than 0.5% by mass hardly improves the corrosion resistance. The content is preferably 0.05% by mass or more and 0.5% by mass or less. On the other hand, if the content of Sn is less than 0.5% by mass, the strength of the alloy itself is reduced, the connection between cells is excessively deformed, welding becomes difficult, and practicality is lost. On the other hand, if it exceeds 5% by mass, the corrosion resistance is reduced due to Sn itself. Therefore, it turned out that 0.5 mass% or more and 5 mass% or less are preferable.
[0015]
【Example】
The effects of the present invention will be described in detail based on examples.
(Example 1)
In the Pb-Sn-Ag alloy, an alloy in which the content of Sn is fixed to 2% by mass and the content of Ag is variously changed in the range of 0 to 0.7% by mass is prepared, and the alloy at the connection part between cells is prepared. Prepared as
[0016]
The positive and negative electrode active materials are applied to positive and negative electrode grids made of a Pb-Ca-Sn-based alloy, and the dried positive and negative electrode plates are alternately laminated via a fine glass fiber separator. Thus, an element for a control valve type lead-acid battery having a nominal voltage of 12 V and a rated capacity of 20 Ah (20 hR) was produced.
[0017]
As the battery case resin, three types of the conventional EPP resin, the PPE resin of the present invention, and the ABS resin were prepared.
[0018]
A mold having a shape in which a strap and an inter-cell connection portion are integrated is filled with a molten lead alloy, the element is inverted, and an electrode plate ear is inserted into the mold, and a strap, an inter-cell connection portion, and an electrode plate are inserted. An element having a strap made of seven kinds of alloys and a cell-to-cell connection portion was produced by a cast-on-strap (COS) method for integrally forming the ear portion. The thickness of the strap was 5 mm.
[0019]
Next, the element was inserted into a battery case having a partition wall thickness of 1.4 mm, and the connection portions between cells were joined to each other by a resistance welding method to assemble a control valve type lead storage battery.
[0020]
Dilute sulfuric acid having a predetermined specific gravity was injected into the storage battery, and formed in a battery case.
[0021]
In order to evaluate the corrosion resistance of the inter-cell connection part of each of the storage batteries, they were subjected to a float charging test. The test conditions are shown below.
[0022]
Charging voltage: 13.65V
Maximum charging current: 4A
Test temperature: 60 ° C
Test period: 10 months When the above test was completed, each storage battery was disassembled, the inter-cell connection portion was taken out, and its corrosion state was investigated.
[0023]
FIG. 1 is a perspective view of an essential part showing a state in which inter-cell connecting portions are joined via a partition between inter-cells by a resistance welding method, wherein 1 is an inter-cell connecting portion, 2 is a strap, and 3 is a battery case. The partition between cells is shown respectively.
[0024]
In order to evaluate the corrosion resistance of the inter-cell connection, the inter-cell connection was pulled in the direction of the double arrow shown in FIG. 1 to break it, and the corrosion state of the fractured surface was observed. FIG. 2 is a front view of an essential part schematically showing a fractured surface thereof. Reference numeral 4 denotes a penetrating portion of the battery case, that is, an initial welding area, 5 denotes a corroded portion, and 6 denotes a remaining alloy portion. The degree of corrosion (corrosion rate) was represented by the area ratio (%) of the corroded portion 5 to the initial welding area 4. The result is shown in FIG.
[0025]
As shown in FIG. 3, the Pb-Sn based alloy containing no Ag and the corrosion rate when the conventional battery case resin EPP was used was 55%, whereas the PPE resin of the present invention was changed from the EPP resin. Alternatively, it was reduced to about 40% by changing to ABS resin. Further, in the resin battery case of the present invention, the corrosion resistance was further improved by using a Pb-Sn-Ag alloy for the inter-cell connection part, and the corrosion resistance was improved as the content was increased. Specifically, the corrosion rate of the Ag content of 0.05% by mass is about 25%, and that of 0.2% by mass is reduced to about 12%. In the latter case, the Pb- The corrosion rate was 1/4 or less as compared with the storage battery using the Sn-based alloy. However, when the Ag content is 0.3% by mass or more, the improvement in corrosion resistance reaches a plateau, and considering the high price of Ag, it can be said that the limit is 0.5% by mass.
[0026]
On the other hand, in the conventional EPP resin battery case, by containing 0.05 mass% of Ag, the corrosion rate of the Pb-Sn alloy was reduced to 40% as compared with 55%, but the Ag content was further increased. Even so, the corrosion rate was not reduced. As described above, it has been clarified that the conventional EPP resin does not exert the corrosion resistance effect of Ag because the resin bites into the blowhole at the fusion part of the inter-cell connection part and the welding state is not good.
[0027]
Next, the inter-cell connecting portions having a diameter of 13.5 mm produced using the above-mentioned match gold were joined to each other by a resistance welding method, and a rotational force (shear stress) was applied to the joined portion with a torque wrench to join the joints. The maximum shear stress when the part was threaded was measured. FIG. 4 shows the results obtained by determining the relationship between the amount of Ag (% by mass) in the alloy for connection between cells subjected to the test and the maximum shear stress (N · cm).
[0028]
As shown in FIG. 4, when the Ag content is 0.1% by mass, the maximum shear stress is 1352 (N · cm) when the battery case resin material is the conventional EPP, and is 1420 (N · cm) when the ABS of the present invention is used. ), 1519 (N · cm) for PPE resin. From this measurement result, by changing the battery case material from EPP to ABS or PPE, the above-mentioned resin was not caught and the weldability was improved, and the connection between cells was improved. It was found that the strength of the weld surface between the parts increased. In the conventional EPP resin, even when the Ag content was increased, the maximum shear stress hardly increased and the effect of Ag was not recognized. On the other hand, in the case of PPE and ABS, the maximum Shear stress tended to increase. This is because the softening temperature of the resin is high, the biting of the resin into the blowhole formed in the molten portion of the connection between the cells is suppressed, stable welding is performed, and the strength of the alloy due to the presence of Ag is increased. It can be said that the maximum shear stress increased due to a synergistic effect with the increase.
(Example 2)
In the Pb-Sn-Ag alloy, an alloy in which the Ag content is fixed to 0.1% by mass and the Sn content is variously changed in the range of 0 to 7% by mass is prepared, and the alloy at the connection portion between cells is prepared. Prepared as
[0029]
After forming the strap and the inter-cell connection portion by the COS method using these match moneys and joining the inter-cell connection portions by the resistance welding method as in the first embodiment, the same 12 V, as in the first embodiment, A control valve type lead-acid battery of 20 Ah was manufactured.
[0030]
These storage batteries were subjected to the same float charging test as in Example 1, and after the test, the corrosion state of the inter-cell connection was investigated by the same method as in Example 1.
[0031]
As the battery case resin, three types of conventional EPP resin, PPE resin of the present invention and ABS resin were used.
[0032]
FIG. 5 shows the result of determining the relationship between the corrosion rate (%) and the Sn content (% by mass).
[0033]
As shown in FIG. 5, when the Sn content is 0.5% by mass or more and 5% by mass or less, a synergistic effect between the PPE or ABS resin container of the present invention and the Pb-Sn-Ag alloy is obtained, and the corrosion resistance is improved. However, if the Sn content is less than 0.5%, the strength of the alloy itself is insufficient, so that when pressure is applied to the inter-cell connection part during resistance welding, it is excessively deformed, making welding difficult and difficult in practical use. Problem has occurred. On the other hand, when the Sn content was more than 5% by mass, the corrosion resistance of the alloy itself was reduced due to Sn. From these results, it was found that the Sn content for obtaining the effect of the present invention was 0.5% by mass or more and 5% by mass or less.
[0034]
In the above embodiment, the method of integrally forming the strap, the inter-cell connection portion, and the electrode plate ear by COS has been described. However, the inter-cell connection portion and the electrode plate ear formed in advance by casting are connected to each other by a burner. Using an element in which the inter-cell connection, electrode plate ears and straps are integrally formed by supplying additional lead of the same alloy composition as the inter-cell connection while partially melting, the inter-cell connection by resistance welding It goes without saying that the same effect can be obtained when welding them together.
[0035]
【The invention's effect】
In a lead storage battery of a monoblock type in which a plurality of cells are integrated, even when a Pb-Sn-Ag-based alloy having excellent corrosion resistance is used as an alloy of a connection portion between cells when cells are connected by a resistance welding method. According to the present invention, however, according to the present invention, the welding failure occurred due to the penetration of the battery case resin into the blowhole formed at the time of welding, and the effect of improving the corrosion resistance of Ag was not sufficiently obtained. Pb-Sn-Ag alloy having a silver (Ag) content of 0.05% by mass or more and 0.5% by mass or less and a tin (Sn) content of 0.5% by mass or more and 5% by mass or less By using PPE or ABS resin instead of the conventional EPP resin for the battery case material, biting of the resin at the welded portion is suppressed, stable welding is possible, and the excellent corrosion resistance of Ag Can be used effectively, and lead-acid batteries, especially Excellent life performance in Gobenshiki lead-acid battery is obtained, its industrial effect is very large.
[Brief description of the drawings]
FIG. 1 is a perspective view of an essential part showing a state where inter-cell connection portions are welded and joined by a resistance welding method.
FIG. 2 is a schematic front view of a main part showing a fractured surface of a connection part between cells.
FIG. 3 is a diagram showing a relationship between an Ag amount (% by mass) and a corrosion rate (%) in Example 1 of the present invention.
FIG. 4 is a diagram showing the relationship between the amount of Ag (% by mass) and the maximum shear stress (N · cm) in Example 1 of the present invention.
FIG. 5 is a diagram showing the relationship between the amount of Sn (% by mass) and the corrosion rate (%) in Example 2 of the present invention.
[Explanation of symbols]
1 Cell connection part 2 Strap 3 Cell partition part of battery case 4 Cell partition penetration part (initial welding area)
5 Corroded part 6 Residual alloy part

Claims (1)

銀(Ag)の含有量が0.05質量%以上、0.5質量%以下、錫(Sn)の含有量が0.5質量%以上、5質量%以下のPb−Sn−Ag系合金からなるセル間接続部を有すると共に、
電槽樹脂材質に変性ポリフェニレンエーテル樹脂あるいはアクリルニトリル−ブタジエン−スチレン樹脂を用いたことを特徴とする鉛蓄電池。
From a Pb-Sn-Ag alloy having a silver (Ag) content of 0.05% by mass or more and 0.5% by mass or less and a tin (Sn) content of 0.5% by mass or more and 5% by mass or less Between the cells,
A lead-acid battery using a modified polyphenylene ether resin or an acrylonitrile-butadiene-styrene resin as a resin material of a battery case.
JP2002351315A 2002-12-03 2002-12-03 Lead-acid battery Pending JP2004185980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351315A JP2004185980A (en) 2002-12-03 2002-12-03 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351315A JP2004185980A (en) 2002-12-03 2002-12-03 Lead-acid battery

Publications (1)

Publication Number Publication Date
JP2004185980A true JP2004185980A (en) 2004-07-02

Family

ID=32753262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351315A Pending JP2004185980A (en) 2002-12-03 2002-12-03 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP2004185980A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402419A (en) * 2018-08-28 2019-03-01 中国电力科学研究院有限公司 Slicker solder grid alloy and preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264057A (en) * 1985-09-13 1987-03-20 Matsushita Electric Ind Co Ltd Lead-acid battery
JPS63102157A (en) * 1986-10-16 1988-05-07 Yuasa Battery Co Ltd Storage battery
JPH09147899A (en) * 1995-11-21 1997-06-06 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264057A (en) * 1985-09-13 1987-03-20 Matsushita Electric Ind Co Ltd Lead-acid battery
JPS63102157A (en) * 1986-10-16 1988-05-07 Yuasa Battery Co Ltd Storage battery
JPH09147899A (en) * 1995-11-21 1997-06-06 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402419A (en) * 2018-08-28 2019-03-01 中国电力科学研究院有限公司 Slicker solder grid alloy and preparation method

Similar Documents

Publication Publication Date Title
CN104662697B (en) There is the pocket type secondary cell of the sealing surplus for improving durability
JP5061451B2 (en) Anode current collector for lead acid battery
JP2008123768A (en) Battery pack and its welding method
JP2008016202A (en) Battery module of laminate-armored flat battery
EP1589598A1 (en) High tin containing alloy for battery components
JP2006210210A (en) Lead-acid battery
JP5359193B2 (en) Lead acid battery
JP2004185980A (en) Lead-acid battery
JPH11250894A (en) Lead-acid battery, and manufacture thereof
JP2008218258A (en) Lead acid battery
JP3158433B2 (en) Sealed lead-acid battery
JPH1145697A (en) Lead acid battery
JP2002093457A (en) Lead-acid battery
JP2003323881A (en) Control valve lead-acid battery
JP2011159551A (en) Lead-acid storage battery
JP3163509B2 (en) Manufacturing method of hybrid bipolar plate
JPH06267529A (en) Monoblock storage battery
JP2005166326A (en) Lead storage battery
JP4599914B2 (en) Method for producing lead-acid battery
JP2011100661A (en) Battery pack
JPH0513065A (en) Manufacture of lead-acid battery
JP2005347183A (en) Manufacturing method of lead-acid storage battery
JP2004152731A (en) Manufacturing method of alkaline battery
JP2001185129A (en) Lead-acid battery
JPH08339794A (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109