JPH04137357A - Welding method of electrode plate group for lead storage battery - Google Patents

Welding method of electrode plate group for lead storage battery

Info

Publication number
JPH04137357A
JPH04137357A JP2259932A JP25993290A JPH04137357A JP H04137357 A JPH04137357 A JP H04137357A JP 2259932 A JP2259932 A JP 2259932A JP 25993290 A JP25993290 A JP 25993290A JP H04137357 A JPH04137357 A JP H04137357A
Authority
JP
Japan
Prior art keywords
lead
strap
alloy
electrode plate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2259932A
Other languages
Japanese (ja)
Inventor
Takao Omae
孝夫 大前
Mikio Iwata
岩田 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2259932A priority Critical patent/JPH04137357A/en
Publication of JPH04137357A publication Critical patent/JPH04137357A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a strap of an excellent anticorrosion property and a high reliability by forming a covering layer of a lead-bismuth system alloy on the surface of the lug of each electrode plate, soaking and solidifying the lugs in a molten lead, and forming a weld between a starp and an electrode plate, an electrode pole, a strap, and the like. CONSTITUTION:In an electrode plate group welding method of a lead storage battery in a cast-on-strap method, covering layers 13 of a lead-bismuth alloy are formed on the surfaces of Jugs of electrode plates. And the lugs of the electrode plates are soaked and solidified in a molten lead. The lead-bismuth system alloy has a lower melting temperature lower than the lead alloy used for straps, electrode plate lugs, and the like, and the corrosion amount is less when it is placed at the positive electrode potential in a lead storage battery. Consequently, a corrosion along the covering layers 13 of the straps is eliminated, and straps of an excellent anticorrosion property and a high reliability can be manufactured.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鉛蓄電池の製造方法に関するもので、いわゆる
キャスト・オン・ストラップ法といわれる極板群溶接方
法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing lead-acid batteries, and relates to an improvement in a method of welding electrode groups called the so-called cast-on-strap method.

従来の技術とその課題 一般的に鉛蓄電池は第2図に示すように、正極板1、セ
パレータ2、負極板3を交互に重ねて形成した極板群、
正極板耳4および負極板耳4′をそれぞれ接続するため
のストラップ5.5′並びに電流を取り出すための極柱
6,6′よりなっている。同じ極性の耳同士を接続しス
トラップを形成する方法として現在、バーナー溶接によ
るもの、キャスト・オン・ストラップによるものの2種
類が主に採用されている。
Conventional technology and its problems Generally, as shown in Fig. 2, a lead-acid battery consists of an electrode plate group formed by alternately stacking a positive electrode plate 1, a separator 2, and a negative electrode plate 3.
It consists of straps 5, 5' for connecting the positive electrode plate lug 4 and negative electrode plate lug 4', respectively, and pole posts 6, 6' for taking out the current. Currently, there are two main methods of connecting ears of the same polarity to form a strap: burner welding and cast-on strapping.

バーナー溶接の一例としては手溶接による方法がある。An example of burner welding is a manual welding method.

これは作業員が手作業によりストラップを形成するため
に、確実ではあるが大量生産には適しておらず、主とし
て比較的生産量の少ない電動車用や据置用などの大型鉛
蓄電池や密閉式鉛蓄電池の製造工程で用いられている。
This method is reliable but not suitable for mass production because the straps are formed manually by workers, and is mainly used for large lead-acid batteries and sealed lead-acid batteries for electric vehicles and stationary vehicles, which are produced in relatively small quantities. Used in the manufacturing process of storage batteries.

  。  .

一方、キャスト・オン・ストラップ法は機械による自動
化が可能になるストラップ形成方法で、ストラップと極
板耳相互の溶接およびストラップ、極柱の形成を同時に
行うものである。キャスト・オン・ストラップの手順の
一例を次に示す。
On the other hand, the cast-on-strap method is a strap forming method that can be automated using a machine, and involves welding the strap and the pole plate lugs to each other and forming the strap and the pole pole at the same time. An example of a cast-on-strap procedure is shown below.

■ブラッシング(極板表面の汚れの除去)■還元性溶液
(フラックス)による洗浄(極板耳表面の酸化物の除去
) ■ブレヒート(フラックスの除去および極板耳の予熱) ■鋳型(7)彫込部への溶融鉛の注入 ■倒立させた極板耳部を溶融鉛中に浸漬、凝固また、手
順中■の浸漬前の模式図を第3図に示した。
■Brushing (removal of dirt on the electrode plate surface) ■Cleaning with reducing solution (flux) (removal of oxides on the electrode plate lug surface) ■Breheating (removal of flux and preheating of the electrode plate lug) ■Mold (7) carving Injection of molten lead into the molten lead (2) The inverted electrode plate ear is immersed in molten lead to solidify, and a schematic diagram of the step (2) before immersion is shown in Figure 3.

キャスト・オン・ストラップ法は、溶融鉛の熱により耳
部を溶融させるという方法をとっているために、大型の
極板耳を溶融させるには熱容量が不足になりがちなため
比較的小さな電池、例えば自動車用鉛蓄電池などにしか
用いられていなかった。一方、密閉式鉛蓄電池では電池
性能上、格子やストラップに鈴−アンチモン合金を使え
ないために鉛−カルシウム系合金やスズ含有量の低い鉛
−スズ系合金を用いている。これらの合金は溶融温度が
高く、キャスト・オン・ストラップ法では熱容量が不足
し、溶接が困難であった。
Since the cast-on-strap method uses the heat of molten lead to melt the ears, the heat capacity tends to be insufficient to melt the large plates, so it is difficult to use for relatively small batteries. For example, it was only used in lead-acid batteries for automobiles. On the other hand, in sealed lead-acid batteries, because it is not possible to use a bell-antimony alloy for the grid or strap due to battery performance, a lead-calcium alloy or a lead-tin alloy with a low tin content is used. These alloys had high melting temperatures, and cast-on-strap methods lacked heat capacity and were difficult to weld.

近年になって無公害化、省エネルギー化の要求の高まり
と共に電動車の需要が増大し、大型の鉛蓄電池を大量生
産する必要が生じてきている。また、非常用電源、家庭
用電気機器等での電池の無保守化への要求も高く、密閉
式鉛蓄電池の需要も急増している。従来の手溶接法では
大量生産という要求に応えられないために大型鉛蓄電池
用や密閉式鉛蓄電池用のキャスト・オン・ストラップ法
の開発が不可欠になっていた。
In recent years, as demands for pollution-free and energy-saving technologies have increased, demand for electric vehicles has increased, and it has become necessary to mass-produce large lead-acid batteries. In addition, there is a strong demand for maintenance-free batteries for emergency power sources, household electrical equipment, etc., and demand for sealed lead-acid batteries is rapidly increasing. Since conventional manual welding methods cannot meet the demands of mass production, it has become essential to develop a cast-on-strap method for large lead-acid batteries and sealed lead-acid batteries.

前述したようにキャスト・オン・ストラップ法は、溶融
鉛の熱のみで極板耳を溶融させるために極板耳が大形化
するほど、また極板耳の溶融温度が高くなるほど溶接が
困難になってくる。第4図に従来のキャスト・オン・ス
トラップ法による電動車用!9蓄電池のストラップ断面
図を示すが、ブローホール8や負のメニスカス9が形成
されている。ブローホールの形成原因は、極板浸漬時に
巻き込んだ空気や、極板耳を洗浄する際に用いた還元性
溶液(フラックス)の分解により発生した気体などが除
去されないうちに溶融鉛が凝固してしまうためであると
考えられる。一方、負のメニスカスは溶融船中に浸漬さ
れた極板耳が溶融鉛と充分融合しないうちに凝固したこ
とが原因である。
As mentioned above, in the cast-on-strap method, the plate lugs are melted using only the heat of molten lead, so the larger the plate lugs become, and the higher the melting temperature of the plate lugs, the more difficult welding becomes. It's coming. Figure 4 shows the conventional cast-on-strap method for electric vehicles! 9 is a cross-sectional view of the strap of a storage battery, in which a blowhole 8 and a negative meniscus 9 are formed. Blowholes are formed when molten lead solidifies before the air that is drawn in when the plate is immersed, or the gas generated by the decomposition of the reducing solution (flux) used to clean the plate edges, is not removed. It is thought that this is to store it away. On the other hand, the negative meniscus is caused by the electrode plate lugs immersed in the molten ship solidifying before fully fusing with the molten lead.

こういうストラップは、電池運用中に電解液である硫酸
かブローホールや耳−ストラップ接合部に侵入し易くな
るために、腐食か発生しストラップが破損してしまうこ
とがある。
During battery operation, such straps tend to allow sulfuric acid, which is an electrolyte, to enter the blowhole or the ear-strap joint, which can lead to corrosion and damage to the strap.

溶接状態を改善するために、耳を溶融鉛に浸漬する前に
極板耳表面に予め低融点合金の被覆層を施す方法が稈案
されている。これは接合部分を極板耳と被覆層、被覆層
とストラップ、という2つの部分に分けて考えるもので
、それぞれの部分を確実に接合させることで極板耳とス
トラップとを接続するものである。
In order to improve the welding condition, a method has been proposed in which a coating layer of a low melting point alloy is applied to the surface of the plate lug before the lug is immersed in molten lead. This involves dividing the joint into two parts: the plate lug and the covering layer, and the covering layer and the strap.The plate lug and the strap are connected by firmly joining each part. .

低融点合金として例えばSn −40%円合金では極板
耳との接合性が非常に良く、また溶融する温度が約18
0℃と溶!!!鉛に比べ非常に低い(Pb−4%9合金
の溶融する温度は約300℃)ために溶融鉛が凝固し、
ストラップが形成される際にもシー丙合金被覆層を施し
た極板耳表面付近は最後まで溶融状態にある。こうして
気体の除去や、極板耳を溶融させたりするのに充分な時
間だけ溶融状態におかれるため、出来上がったストラッ
プ中には第5図に示すように極板耳とストラップとの接
合状態が非常に良好になり、さらにブローホールがなく
なり、正のメニスカス10が見られるようになる。
As a low melting point alloy, for example, a Sn-40% circular alloy has very good bonding properties with the electrode plate lugs, and its melting temperature is about 18%.
Melts at 0℃! ! ! Molten lead solidifies because it is much lower than lead (the melting temperature of Pb-4%9 alloy is approximately 300°C).
Even when the strap is being formed, the area near the surface of the electrode plate edge coated with the CHI alloy coating remains in a molten state until the end. In this way, the plate lugs are kept in a molten state for a sufficient period of time to remove gas and melt the plate lugs, so that the bonded state of the plate lugs and straps is maintained in the finished strap, as shown in Figure 5. It becomes very good, there are no blowholes, and a positive meniscus 10 can be seen.

しかし、新たな問題としてり一円合金の耐食性について
の問題が生じてきた。第6図は、5n−40%)合金を
極板耳の被覆層に用い、キャスト・オン・ストラップ法
により作製した電池の過充電試験終了後のストラップの
断面図である。5n−Pb合金は硫酸中で次の反応が進
行するものと考えられている。
However, a new problem has arisen regarding the corrosion resistance of the one-yen alloy. FIG. 6 is a cross-sectional view of a strap after an overcharge test of a battery manufactured by the cast-on-strap method using a 5n-40% alloy for the coating layer of the electrode tab. It is believed that the following reaction proceeds in 5n-Pb alloy in sulfuric acid.

5n(S) −5n2++2e  −0,141V(v
s、H2)  (1)Sn+H,O→ SnO+2H” +28 −0.104V  (2)S
r+ 24’ + 2 H20→ SnO2+4H” +2e  −0,094V  (3
)PbSO,+2H20→ Pb0t +4H” +SO4”−+2e  1.69
0V  (4)pbo2が生成する電位((4)式)に
比べSn”、 SnO、Sn O2生成電位は(1) 
、T2) 、(3)式に示すように非常に卑なため、5
n−Pb合金が鉛電池の正i#l電位であるPb O2
生成電位に置かれた場合(1)、(2) 、 +3)の
反応が進行し易くいわゆる腐食となる。第6図ではSn
 −Pb合金層11に沿って腐食12か進行しており、
極板耳かストラップからはすれているものもみられ、鉛
蓄電池が早期に寿命になる原因となる。
5n(S) -5n2++2e -0,141V(v
s, H2) (1) Sn+H,O→ SnO+2H" +28 -0.104V (2) S
r+ 24' + 2 H20→ SnO2+4H" +2e -0,094V (3
)PbSO, +2H20→ Pb0t +4H"+SO4"-+2e 1.69
0V (4) Compared to the potential generated by pbo2 (formula (4)), the potential for Sn", SnO, and SnO2 generation is (1)
, T2), as shown in equation (3), it is very base, so 5
Pb O2 where n-Pb alloy is positive i#l potential of lead battery
When placed at a generation potential, reactions (1), (2), +3) tend to proceed, resulting in so-called corrosion. In Figure 6, Sn
- Corrosion 12 is progressing along the Pb alloy layer 11,
Some of the plates are seen coming loose from the ears or straps, which can cause lead-acid batteries to reach premature end of their lifespans.

課組を解決するための手段 本発明は上述した問題点を解決し、耐食性の優れた高信
頼性のストラップを提供するものである。
Means for Solving Problems The present invention solves the above-mentioned problems and provides a highly reliable strap with excellent corrosion resistance.

その要旨は、キャスト・オン・ストラップ法による鉛蓄
電池の極板群溶接方法において、各極板の耳部表面に鉛
−ビスマス系合金の被覆層を形成し、該被覆層を形成し
た各極板の耳部を溶融船中に浸漬、凝固させることでス
トラップと極板相互の溶接および極柱、ストラップ等の
形成を行うことである。
The gist is that in the cast-on-strap method for welding a group of electrode plates for a lead-acid battery, a coating layer of a lead-bismuth alloy is formed on the ear surface of each electrode plate, and each electrode plate on which the coating layer is formed is The method involves welding the strap and the electrode plate together and forming pole columns, straps, etc. by immersing the ear part in a molten vessel and solidifying it.

実施例 以下本発明溶接方法を実施例に基づいて説明する。Example The welding method of the present invention will be explained below based on examples.

実施例1 前述した理由から、あらかじめ極板耳に施す被覆層につ
いては次の条件を満たすことか要求される。
Example 1 For the reasons mentioned above, it is required that the coating layer applied to the electrode plate lugs in advance satisfy the following conditions.

条f+1ニストラップ、極板耳等に用いられる鉛合金よ
りも溶融する温度が低いこと。
The melting temperature is lower than that of the lead alloy used for strip f+1 Nislap, electrode plate lugs, etc.

条件2:鉛蓄電池内で正[!電位に置かれた場合、腐食
量か小さいこと。
Condition 2: Positive [! When placed at a potential, the amount of corrosion should be small.

そこでこれら2つの条件を満たす合金を種々検討した結
果、鉛−ビスマス系合金が有効であることがわかった。
As a result of examining various alloys that meet these two conditions, it was found that lead-bismuth alloys are effective.

鉛−ビスマス系合金では、ビスマス量か約55重量%以
下ではビスマス量が多くなるほど溶融する温度は低くな
る。例えば鉛−32%とスマス合金では、pb−so%
シ合金と同じ約180℃の溶融温度となる。
In lead-bismuth alloys, when the amount of bismuth is less than about 55% by weight, the melting temperature decreases as the amount of bismuth increases. For example, in lead-32% and sumas alloy, pb-so%
It has a melting temperature of about 180°C, which is the same as the steel alloy.

そこでPb −30%B1、Pb−50%BiおよびP
b−70%Biの合金A、BおよびCを選び、これらの
合金の耐食性を調査するため次の試験を行った。各合金
を75℃、比重1.28の硫酸中で連続通電(70mA
 /ctg2×10日rSfl>  および充放電の繰
り返し[1000〜15001′1V(VS、)19/
 H92So、 ) X800 %:]を行い試験後の
腐食量を調査した。比較用としてシー40%)台金Eお
よび格子用Pb−4%9合金りも同時に試験しな。5n
−40%門合金の腐食量を100として各合金を比較し
た結果を第1表に示す。
Therefore, Pb-30%B1, Pb-50%Bi and P
b-Alloys A, B and C of 70% Bi were selected and the following tests were conducted to investigate the corrosion resistance of these alloys. Each alloy was continuously energized (70 mA) in sulfuric acid with a specific gravity of 1.28 at 75°C.
/ctg2×10 days rSfl> and repeated charging and discharging [1000-15001'1V (VS,)19/
H92So, )X800%:] was conducted to investigate the amount of corrosion after the test. For comparison, base metal E (40%) and Pb-4%9 alloy for grid were also tested at the same time. 5n
Table 1 shows the results of comparing each alloy, with the amount of corrosion of the -40% metal alloy set as 100.

第1表 合金Aの腐食量は、5n−40%ゐ合金Eと比べ連続通
電後で55%、充放電の繰り返し後で28%とかなり少
なかった。B1量を50%とした合金Bでは腐食量はや
や増加したものの合金層に比べかなり少なかった。合金
CはBi量を70%とした合金であるが、腐食量は連続
通電後で75%、充放電繰り返し後で40%と合金A、
Bに比べ腐食量はやや多くなった。したがってBi量が
多くなるほど腐食量は多くなるものと思われるために、
B1含有量は溶融温度が最低となる55%以下とするの
が望ましい。
The amount of corrosion of Alloy A in Table 1 was 55% after continuous energization and 28% after repeated charging and discharging, which was considerably lower than that of 5n-40% Alloy E. In alloy B in which the amount of B1 was 50%, the amount of corrosion slightly increased, but it was considerably less than that of the alloy layer. Alloy C is an alloy with a Bi content of 70%, but the amount of corrosion is 75% after continuous energization and 40% after repeated charging and discharging, compared to alloy A.
The amount of corrosion was slightly larger than B. Therefore, it seems that the amount of corrosion increases as the amount of Bi increases.
The B1 content is desirably 55% or less at which the melting temperature is the lowest.

本発明品であるA、Bの合金では格子合金Eに比べ腐食
量に大差は見られない。
In alloys A and B, which are products of the present invention, there is no significant difference in the amount of corrosion compared to lattice alloy E.

溶融する温度および耐食性のまとめを第2表に示す。耐
食性については○印が良好なもの、Δ印やや悪いもの、
X印が悪いものである。
A summary of melting temperatures and corrosion resistance is shown in Table 2. Regarding corrosion resistance, ○ indicates good, Δ indicates slightly poor,
The X marks are bad.

第2表 tlQ、1.2の本発明品である鉛−ビスマス系合金は
、溶融する温度は5n−Pb合金と同様かそれ以下であ
り、格子合金の溶融する温度に比べかなり低く、条件1
を満たしている。また、耐食性も9−門合金より優れて
おり、格子合金とほぼ同等の耐食性を有していることか
わかった。よって条件2も満足する。
The lead-bismuth alloy, which is the product of the present invention shown in Table 2 tlQ, 1.2, has a melting temperature similar to or lower than that of the 5n-Pb alloy, which is considerably lower than the melting temperature of the lattice alloy.
is met. It was also found that the corrosion resistance was superior to that of the 9-gate alloy, and that it had almost the same corrosion resistance as that of the lattice alloy. Therefore, condition 2 is also satisfied.

実施例2 次に実施例1で試験した合金A、B、Eを用い実際にフ
ォークリフト用電池(VCF−3、約200Ah )を
作製してストラップの評価を行った。極板耳およびスト
ラップ溶融鉛にはpb−4%汝合金を用いた。ストラッ
プ腐食を加速させるために、高温で過充電試験を行った
(75℃、 40A X 1ケ月)、第1図に合金Cを
用いた電池の試験終了後のストラップ断面図を示す。前
述の第6図はく一40%門合金を極板耳に被覆し、同一
条件で組立て、試験した電池のストラップ断面図である
。第6図のストラップでは、5n−Pb合金層に沿って
腐食が進行し、完全にはずれている極板耳もみられるが
、第1図に禿した本発明品のストラップでは極板耳被覆
層13に沿っな腐食は見られず非常に良好な状態であっ
た。また、合金Bを用いた電池についてもN011と同
様にストラップの状態は良好であった。
Example 2 Next, a forklift battery (VCF-3, approximately 200 Ah) was actually produced using alloys A, B, and E tested in Example 1, and the strap was evaluated. PB-4% alloy was used for the electrode plate ears and strap molten lead. In order to accelerate strap corrosion, an overcharging test was conducted at high temperature (75°C, 40A x 1 month). Figure 1 shows a cross-sectional view of the strap after the test of a battery using Alloy C. FIG. 6 is a sectional view of a strap of a battery whose electrode plate lugs were coated with 40% metal alloy and which were assembled and tested under the same conditions. In the strap shown in Fig. 6, corrosion progresses along the 5n-Pb alloy layer, and some electrode plate lugs are completely detached, but in the strap of the present invention, which has a bald area in Fig. 1, the plate lug coating layer 13 It was in very good condition with no corrosion observed along the edges. In addition, the strap condition of the battery using Alloy B was also good as in the case of N011.

実施例3 合金Aを用いた密閉式鉛蓄電池(12V、40^h)を
作製してストラップの評価を行った。極板耳には鉛−カ
ルシウム系合金、ストラップ溶融鉛には鈴−1%スズ合
金を用いた。そして高温過充電試111(75°C,1
0Ax1ケ月)を行った。その結果、実施例2の場合と
同じようにストラップの腐食はほとんど見られず非常に
良好な状態であった。
Example 3 A sealed lead-acid battery (12V, 40^h) using Alloy A was produced and the strap was evaluated. A lead-calcium alloy was used for the electrode plate lug, and a tin-1% tin alloy was used for the molten lead strap. And high temperature overcharge test 111 (75°C, 1
0Ax1 month). As a result, as in the case of Example 2, the strap was in very good condition with almost no corrosion observed.

発明の効果 上述の実施例からも明らかなように本発明によると耐食
性の優れた高信頼性のストラップか作製可能となり、そ
の工業的価値は非常に大きい。
Effects of the Invention As is clear from the above embodiments, according to the present invention, a highly reliable strap with excellent corrosion resistance can be produced, and its industrial value is extremely large.

【図面の簡単な説明】 第1図は本発明品の過充電試験後のストラップ部の断面
図、第2図は一般的な鉛蓄電池の断面図、第3図はキャ
スト・オン・ストラップ法説明のための模式図、第4図
は従来のキャスト・オン・ストラップ法によるブローホ
ールや負のメニスカスの見られる悪い状態のストラップ
断面図、第5図は5n−Pb合金の被覆層を極板耳に施
して作製したストラップの断面図、第6図は5n−Pb
合金の被覆層を極板耳に施して作製したストラップの過
充電試験後の断面図である 1・・・正極板、2・・・セパレータ、3・・・負極板
、4・・・正極板耳、4′・・・負極板耳、5・・・正
極ストラップ、5′・・・負極ストラップ、6・・・正
極柱、6′川負極柱、7・・・鋳型、8・・・ブローホ
ール、9・・・負のメニスカス、10・・・正のメニス
カス、11・・・5n−Pb合金4.12・・・腐食し
た部分、13・・・極板耳被覆層ヤ 匣 第 ア ケ ヲ 回 ヤ 凹 尤 ぢ 図 λ 乙 図
[Brief explanation of the drawings] Fig. 1 is a cross-sectional view of the strap part of the product of the present invention after an overcharge test, Fig. 2 is a cross-sectional view of a general lead-acid battery, and Fig. 3 is an explanation of the cast-on-strap method. Fig. 4 is a cross-sectional view of the strap in a bad condition with blowholes and negative meniscus due to the conventional cast-on-strap method, and Fig. 5 shows the 5n-Pb alloy coating layer on the electrode plate edge. Figure 6 is a cross-sectional view of the strap made by applying 5n-Pb.
It is a cross-sectional view after an overcharge test of a strap made by applying an alloy coating layer to the electrode plate lugs. 1...Positive electrode plate, 2... Separator, 3... Negative electrode plate, 4... Positive electrode plate Ear, 4'... Negative electrode plate lug, 5... Positive electrode strap, 5'... Negative electrode strap, 6... Positive electrode column, 6' River negative electrode column, 7... Mold, 8... Blow Hole, 9... Negative meniscus, 10... Positive meniscus, 11... 5n-Pb alloy 4.12... Corroded part, 13... Electrode plate edge coating layer 1st turn Ya concave diagram λ Otsu diagram

Claims (1)

【特許請求の範囲】[Claims] 1、キャスト・オン・ストラップ法による鉛蓄電池の極
板群溶接方法において、各極板の耳部表面に、鉛−ビス
マス系合金の被覆層を形成し、該被覆層を形成した各極
板の耳部を溶融鉛中に浸漬、凝固させることでストラッ
プと極板相互の溶接および極柱、ストラップ等の形成を
行うことを特徴とする鉛蓄電池用極板群の溶接方法。
1. In the cast-on-strap welding method for lead-acid battery plates, a coating layer of a lead-bismuth alloy is formed on the surface of the tab of each plate, and each plate on which the coating layer is formed is A method for welding a group of electrode plates for a lead-acid battery, characterized in that the strap and the electrode plates are welded together and the electrode poles, straps, etc. are formed by immersing and solidifying the ears in molten lead.
JP2259932A 1990-09-27 1990-09-27 Welding method of electrode plate group for lead storage battery Pending JPH04137357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2259932A JPH04137357A (en) 1990-09-27 1990-09-27 Welding method of electrode plate group for lead storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2259932A JPH04137357A (en) 1990-09-27 1990-09-27 Welding method of electrode plate group for lead storage battery

Publications (1)

Publication Number Publication Date
JPH04137357A true JPH04137357A (en) 1992-05-12

Family

ID=17340932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2259932A Pending JPH04137357A (en) 1990-09-27 1990-09-27 Welding method of electrode plate group for lead storage battery

Country Status (1)

Country Link
JP (1) JPH04137357A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028901A (en) * 2012-12-18 2015-02-12 パナソニックIpマネジメント株式会社 Lead battery
CN108352579A (en) * 2015-11-17 2018-07-31 株式会社杰士汤浅国际 Lead accumulator and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028901A (en) * 2012-12-18 2015-02-12 パナソニックIpマネジメント株式会社 Lead battery
CN108352579A (en) * 2015-11-17 2018-07-31 株式会社杰士汤浅国际 Lead accumulator and its manufacturing method
EP3355402A4 (en) * 2015-11-17 2019-04-17 GS Yuasa International Ltd. Lead storage battery and method for producing same
CN108352579B (en) * 2015-11-17 2021-06-08 株式会社杰士汤浅国际 Lead storage battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5223354A (en) Lead-acid battery plate and its manufacturing method
US5093970A (en) Lead-acid battery plate and its manufacturing method
JPH04137357A (en) Welding method of electrode plate group for lead storage battery
JPH11250894A (en) Lead-acid battery, and manufacture thereof
JPH0492363A (en) Welding method of electrode plate group for lead storage battery
Prengaman Current-collectors for lead–acid batteries
JP3413930B2 (en) Manufacturing method of lead storage battery electrode group
JPH1145697A (en) Lead acid battery
JP4794315B2 (en) Method for producing electrode plate group for lead acid battery and lead acid battery using said electrode plate group
TWI328895B (en) Method of producing grid for lead -acid battery and lead -acid battery
JPS635863B2 (en)
JP2011159551A (en) Lead-acid storage battery
JPH05335009A (en) Manufacture of bunch of electrode plates for lead-acid battery
JP3052566B2 (en) Lead storage battery and method of manufacturing the same
JP2003331814A (en) Method of manufacturing control valve lead battery
JPS58198860A (en) Lead storage battery
JP2722555B2 (en) Manufacturing method of electrode plate for lead-acid battery
JPH06310120A (en) Manufacture of lead-acid battery
JPH06267529A (en) Monoblock storage battery
JPS62243246A (en) Strap connecting method for plate group of lead-acid battery
JPH04215244A (en) Lead-acid battery and manufacture thereof
JPH09192820A (en) Production of hybrid lead battery
JPH04121951A (en) Manufacture of lead storage battery
JPS63299052A (en) Plate connecting method for lead-acid battery
JPH0256853A (en) Group welding method for lead-acid battery