JP2011181321A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2011181321A
JP2011181321A JP2010043926A JP2010043926A JP2011181321A JP 2011181321 A JP2011181321 A JP 2011181321A JP 2010043926 A JP2010043926 A JP 2010043926A JP 2010043926 A JP2010043926 A JP 2010043926A JP 2011181321 A JP2011181321 A JP 2011181321A
Authority
JP
Japan
Prior art keywords
positive electrode
region
electrode current
ear
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010043926A
Other languages
Japanese (ja)
Other versions
JP5556240B2 (en
Inventor
Hiroshi Okamoto
浩 岡本
Mikito Hasegawa
幹人 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010043926A priority Critical patent/JP5556240B2/en
Publication of JP2011181321A publication Critical patent/JP2011181321A/en
Application granted granted Critical
Publication of JP5556240B2 publication Critical patent/JP5556240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the disconnection of a joint part between a positive electrode current collecting lug and a positive electrode strap due to vibration in particular. <P>SOLUTION: In the crystalline structure of a joint between the positive electrode current collecting lug and the positive electrode strap, a first region is formed which has a crystalline structure oriented in the longitudinal direction of the positive electrode current collecting ear. At the front end of the positive electrode current collecting lug, where the sizes of crystal grains in the thickness direction of the positive electrode current collecting lug are crystal grain sizes, a second region is formed which is a region ranging from the first region, which has an average crystal grain size larger than the average crystal grain size of the first region, and which has a crystalline structure aligned in the longitudinal direction of the positive electrode current collecting lug. Ranging from the second region, a third region is arranged which has a crystalline structure not oriented in a specific direction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

自動車用の鉛蓄電池においては、それぞれ複数の正極板と負極板とをセパレータを介して組み合わせ、正極板と負極板のそれぞれに設けられた集電耳は、同極性の集電耳の周囲に溶融鉛を供給し、この溶融鉛を冷却凝固させることによりストラップを形成する。このストラップは、集電耳の先端を包含することにより、集電耳間が電気的に接続される。   In lead-acid batteries for automobiles, a plurality of positive and negative electrode plates are combined via a separator, and current collecting ears provided on each of the positive and negative electrode plates melt around current collecting ears of the same polarity. A strap is formed by supplying lead and cooling and solidifying the molten lead. The strap includes the tip of the current collecting ear to electrically connect the current collecting ears.

特許文献1には、圧延シートを加工することによって得た集電耳を溶接して一体化する際に、集電耳の結晶状態が変化すること、特に正極においては、極板の伸びによって、集電耳の再結晶が形成した部位に折れ曲がりが発生することが示されている。また、このような正極の集電耳の折れ曲がりの抑制を目的として、集電耳部の表面とストラップの表面とが接する付け根部から集電耳の表面における再結晶組織と圧延組織との境界までの長さXを、前記耳部の厚みY以下とすることが示されている。   In Patent Document 1, when the current collector ear obtained by processing the rolled sheet is integrated by welding, the crystal state of the current collector ear changes, particularly in the positive electrode, due to the elongation of the electrode plate, It is shown that bending occurs at the site where the recrystallization of the current collecting ear is formed. For the purpose of suppressing such bending of the current collecting ear of the positive electrode, from the root where the surface of the current collecting ear and the surface of the strap are in contact to the boundary between the recrystallized structure and the rolled structure on the surface of the current collecting ear It is shown that the length X is equal to or less than the thickness Y of the ear portion.

特開2009−064720号公報JP 2009-064720 A

一方、自動車用の鉛蓄電池は、小型軽量化や高出力化が求められており、これらの要求から格子体をより薄型化することが行なわれており、格子体に一体に設けた集電耳の厚みもより薄型化され、強度が低下する傾向にある。   On the other hand, lead-acid batteries for automobiles are required to be smaller and lighter and have higher output, and due to these demands, the grid has been made thinner, and current collecting ears provided integrally with the grid There is a tendency that the thickness is further reduced and the strength is lowered.

さらに、自動車用の鉛蓄電池においては、特許文献1で示されたような格子体の伸びによる正極集電耳の折れ曲がりとともに、振動が加わるため、溶接によって形成された再結晶組織と、圧延組織の境界部で集電耳が断線するという課題があった。このような正極集電耳の断線は、電池容量の急激な低下をもたらす。   Furthermore, in a lead-acid battery for automobiles, vibration is applied along with the bending of the positive electrode current collector ear due to the elongation of the lattice as shown in Patent Document 1, and therefore, the recrystallized structure formed by welding, and the rolled structure There was a problem that the current collecting ear was disconnected at the boundary. Such disconnection of the positive electrode current collecting ear causes a rapid decrease in battery capacity.

本発明は、このような正極ストラップと正極集電耳との接合部における、正極集電耳の断線を抑制し、より信頼性に優れた鉛蓄電池を提供するものである。   The present invention provides a lead-acid battery that suppresses disconnection of the positive electrode current collector ear at the junction between the positive electrode strap and the positive electrode current collector ear and is more reliable.

前記した課題を解決するために、本発明の請求項1に係る発明は、鉛合金からなり、正極集電耳を備えた正極格子と、前記正極格子に充填された正極活物質とからなる正極板の複数を備え、前記正極集電耳の複数を正極ストラップで接続した鉛蓄電池であって、前記正極集電耳の厚み方向および長手方向に平行な断面において、前記正極集電耳は、前記正極集電耳の長手方向に配向した結晶組織からなる第1の領域と、結晶粒の前記正極集電耳の厚み方向の寸法を結晶粒径とした際に、この第1の領域に連続した領域であり、かつ、前記第1の領域の平均結晶粒径よりも大きな平均結晶粒径を有し、かつ、前記した長手方向に配列した結晶組織からなる第2の領域と、前記第2の領域に連続し、特定の方向に配向しない結晶組織からなる第3の領域とを有することを特徴とする鉛蓄電池を示すものである。   In order to solve the above-described problem, an invention according to claim 1 of the present invention is a positive electrode comprising a positive electrode grid made of a lead alloy and provided with a positive electrode current collecting ear, and a positive electrode active material filled in the positive electrode grid. A lead storage battery comprising a plurality of plates, wherein a plurality of the positive electrode current collector ears are connected by a positive electrode strap, wherein the positive electrode current collector ear is a cross section parallel to the thickness direction and the longitudinal direction of the positive electrode current collector ear, A first region composed of a crystal structure oriented in the longitudinal direction of the positive electrode current collector ear and a dimension of the crystal grain in the thickness direction of the positive electrode current collector ear are taken as the crystal grain size. A second region having an average crystal grain size larger than the average crystal grain size of the first region and having a crystal structure arranged in the longitudinal direction, and the second region A third structure composed of a crystal structure that is continuous with a region and is not oriented in a specific direction It shows a lead-acid battery and having a region.

また、本発明の請求項2に係る発明は、請求項1の構成を有する鉛蓄電池において、前記正極集電耳の、前記正極ストラップから露出する基部における厚み方向において、前記正極集電耳の一方の表面から他方の表面に向けて連続する第3の領域を含まず、前記基部の厚み方向において、前記第3の領域は存在しない、もしくは前記第3の領域が前記第2の領域によって不連続となっている部位を有することを特徴とする。   Further, the invention according to claim 2 of the present invention is the lead storage battery having the configuration of claim 1, wherein one of the positive electrode current collector ears is arranged in the thickness direction of the base portion exposed from the positive electrode strap of the positive electrode current collector ear. The third region does not exist in the thickness direction of the base, or the third region is discontinuous by the second region. It has the site | part which becomes.

本発明の請求項1の構成によれば、結晶の方向性がない第3の領域と、集電耳の厚み方向よりも長手方向に優先して配向した第1の領域の間に、第1の領域の結晶よりも粒径が大であり、かつ集電耳の厚み方向よりも長手方向に優先して配向した結晶組織を有する第2の領域を配置することにより、従来、第1の領域と第3の領域が直接的に接していた部位で生じていた正極集電耳の断線を抑制することができる。   According to the configuration of the first aspect of the present invention, the first region between the third region having no crystal directionality and the first region oriented with priority in the longitudinal direction over the thickness direction of the current collecting ears. By disposing a second region having a grain size larger than that of the crystal in the region and having a crystal structure oriented in the longitudinal direction in preference to the thickness direction of the current collecting ear, And the disconnection of the positive electrode current collection ear which occurred in the part which the 3rd field contacted directly can be controlled.

また、請求項2の構成によれば、第3の領域が、集電耳の正極ストラップから露出した部位において、厚み方向に連続しないため、第3の領域の結晶粒界が集電耳厚み方向に連続せず、その結果として、第3の領域の結晶粒界で腐食が生じたとしても、正極集電耳の断線が抑制でき、さらに好ましい。   Further, according to the configuration of claim 2, since the third region is not continuous in the thickness direction at the portion exposed from the positive electrode strap of the current collecting ear, the crystal grain boundary of the third region is in the current collecting ear thickness direction. As a result, even if corrosion occurs at the crystal grain boundary in the third region, disconnection of the positive electrode current collector ear can be suppressed, which is more preferable.

本発明の第1の実施形態の鉛蓄電池の正極ストラップと正極集電耳を示す図The figure which shows the positive electrode strap and positive electrode current collection ear | edge of the lead acid battery of the 1st Embodiment of this invention. 本発明の第1の実施形態の鉛蓄電池の正極集電耳の結晶状態を示す模式図The schematic diagram which shows the crystal state of the positive electrode current collection ear | edge of the lead acid battery of the 1st Embodiment of this invention. (a)第2の領域の結晶形態を示す模式図(b)第1の領域の結晶状態を示す模式図(A) Schematic diagram showing the crystal form of the second region (b) Schematic diagram showing the crystal state of the first region 本発明の第2の実施形態の鉛蓄電池の正極集電耳の結晶状態を示す模式図The schematic diagram which shows the crystal state of the positive electrode current collection ear | edge of the lead acid battery of the 2nd Embodiment of this invention. 比較例の鉛蓄電池の正極集電耳の結晶状態を示す模式図Schematic diagram showing the crystal state of the positive electrode current collector ear of the lead storage battery of the comparative example

(第1の実施形態)
本発明の第1の実施形態による鉛蓄電池は、図1に示したように、正極集電耳1aを備えた正極板1の複数を有し、正極集電耳1aが正極ストラップ2で接続されている。なお、具体的に図示しないが、正極板1は、公知のように、正極集電耳1aを備えた正極格子体に正極活物質が充填されたものである。
(First embodiment)
As shown in FIG. 1, the lead storage battery according to the first embodiment of the present invention has a plurality of positive electrode plates 1 each having a positive electrode current collector ear 1 a, and the positive electrode current collector ear 1 a is connected by a positive electrode strap 2. ing. In addition, although not specifically illustrated, the positive electrode plate 1 is a plate in which a positive electrode active material is filled in a positive electrode lattice body including a positive electrode current collecting ear 1a as is well known.

正極格子体および正極集電耳1aは鉛合金からなり、例として0.03質量%〜0.09質量%程度のカルシウムを含み、さらに0.5質量%〜1.80質量%のスズを含む、公知の正極用鉛合金を用いることができる。   The positive electrode grid body and the positive electrode current collecting ear 1a are made of a lead alloy, and include, for example, about 0.03% by mass to about 0.09% by mass of calcium, and further include 0.5% by mass to 1.80% by mass of tin. A well-known lead alloy for positive electrodes can be used.

本発明では、正極格子体、およびこれに一体に設けられた正極集電耳1aは、圧延シートをパンチング穴あき加工、あるいはエキスパンド加工等の機械的加工を施したものを用いることができる。また、ドラム式等の、連続鋳造鋳型に溶融鉛合金を供給した得た連続鋳造による正極格子体に圧延加工を施したものであってよい。   In the present invention, the positive electrode grid body and the positive electrode current collector ear 1a provided integrally therewith can be obtained by subjecting a rolled sheet to mechanical processing such as punching perforation processing or expansion processing. Moreover, the positive electrode grid body by continuous casting obtained by supplying a molten lead alloy to a continuous casting mold, such as a drum type, may be rolled.

上記のようにして得られた正極格子体および正極集電耳1aは、圧延によって、鉛合金結晶が圧下され、ほぼ正極格子体の厚み方向に垂直な平面に沿った、層状の結晶形態を呈する。   The positive electrode grid body and the positive electrode current collector ear 1a obtained as described above exhibit a layered crystal form along the plane perpendicular to the thickness direction of the positive electrode grid body, by rolling the lead alloy crystal by rolling. .

本発明では、正極集電耳1aの、正極ストラップ2で集合溶接した後の結晶状態を図2および図3に示した状態とする。図2は、本発明の鉛蓄電池の正極ストラップ2を、正極集電耳1aの厚み方向(図2における方向X)と長手方向(図2における方向Y)にそれぞれ平行な面、すなわち、方向Xと方向Yの2つのベクトルで形成される面で切断した際の断面を示す図である。   In the present invention, the crystal state after the collective welding of the positive electrode current collecting ear 1a with the positive electrode strap 2 is the state shown in FIGS. FIG. 2 shows a positive electrode strap 2 of the lead-acid battery of the present invention in a plane parallel to the thickness direction (direction X in FIG. 2) and the longitudinal direction (direction Y in FIG. 2) of the positive electrode current collecting ear 1a, that is, the direction X It is a figure which shows the cross section at the time of cut | disconnecting by the surface formed by two vectors of and Y direction.

正極集電耳1aの、正極ストラップ2から離間した部位は、正極ストラップ2を形成する前の段階より存在していた厚み方向に圧下されることにより、正極集電耳1aの長手方向に配向した結晶粒4cからなる結晶組織を有した第1の領域Cが存在する。第1の領域Cを構成する結晶粒4cは、図3(b)に示したような形態を有する。   The portion of the positive electrode current collecting ear 1a that is separated from the positive electrode strap 2 is oriented in the longitudinal direction of the positive electrode current collection ear 1a by being pressed down in the thickness direction that existed from the stage before the formation of the positive electrode strap 2. There is a first region C having a crystal structure consisting of crystal grains 4c. The crystal grains 4c constituting the first region C have a form as shown in FIG.

一方、正極集電耳1aの、正極ストラップ2に包含された部位には、正極ストラップ2の形成時の熱による再結晶化によって、特定の配向性を有さない結晶組織に変化している。この特定の配向性を有さない、ブロック状の結晶粒4aで構成された結晶組織が存在する。この領域を第3の領域Aとする。   On the other hand, the portion of the positive electrode current collecting ear 1 a included in the positive electrode strap 2 is changed to a crystal structure having no specific orientation due to recrystallization due to heat at the time of forming the positive electrode strap 2. There is a crystal structure composed of block-like crystal grains 4a having no specific orientation. This region is referred to as a third region A.

本発明では、前記した第1の領域Cと第3の領域Aの間に、さらに第2の領域Bを有する。第2の領域Bを構成する結晶粒4bは、図3(a)に示したように、前記した方向(X)と方向(Y)で規定する平面で切断した際の断面において、方向(Y)にその結晶粒4bの長手方向が配向している。   In the present invention, the second region B is further provided between the first region C and the third region A described above. As shown in FIG. 3A, the crystal grain 4b constituting the second region B has a direction (Y) in a cross section when cut along a plane defined by the direction (X) and the direction (Y). ) In the longitudinal direction of the crystal grains 4b.

但し、結晶粒4bおよび第1の領域Cの結晶粒4cの、正極集電耳1aの厚み方向の寸法を結晶粒径とした際に、結晶粒4bの平均的な結晶粒径は、結晶粒4cの平均的な結晶粒径よりも大である。   However, when the crystal grains 4b and the crystal grains 4c in the first region C are taken as the crystal grain size in the thickness direction of the positive electrode current collector ear 1a, the average crystal grain size of the crystal grains 4b is It is larger than the average crystal grain size of 4c.

本発明では、溶接時の熱によって不定方向に再結晶化された第3の領域Aと、正極集電耳1aの初期の結晶組織を有する第1の領域Cとの間に、中間的な結晶組織を有した第2の領域Bを配置する。このような構成によれば、第1の領域Cと第3の領域Aとの境界部で発生していた正極集電耳1aの断線を抑制できる。   In the present invention, an intermediate crystal is formed between the third region A recrystallized in an indefinite direction by heat during welding and the first region C having the initial crystal structure of the positive electrode current collector ear 1a. A second region B having a tissue is arranged. According to such a configuration, it is possible to suppress disconnection of the positive electrode current collecting ear 1a that has occurred at the boundary between the first region C and the third region A.

第2の領域Bを形成するために、冷却凝固して正極ストラップ2となる鉛合金溶湯の温度(あるいは熱量)と、溶接直前の正極集電耳1aの温度(あるいは熱容量)の関係、および正極ストラップ2を形成する鋳型の冷却条件を調整する。溶湯の熱量に対して正極集電耳1aの熱容量が小であり、かつ正極集電耳1aの冷却速度が大である場合、第1の領域Cと第3の領域Aとの境界が生じるため好ましくない。第3の領域Aの形成が過大に進行しない程度に溶湯の温度を制限し、かつ、正極集電耳1aが徐冷されることによって第1の領域Cと第3の領域Aとの間に第2の領域Bを形成することができる。   In order to form the second region B, the relationship between the temperature (or heat amount) of the molten lead alloy that is cooled and solidified to become the positive electrode strap 2 and the temperature (or heat capacity) of the positive electrode current collecting ear 1a immediately before welding, and the positive electrode The cooling conditions of the mold for forming the strap 2 are adjusted. When the heat capacity of the positive electrode current collector ear 1a is small with respect to the amount of heat of the molten metal and the cooling rate of the positive electrode current collector ear 1a is large, a boundary between the first region C and the third region A occurs. It is not preferable. The temperature of the molten metal is limited to such an extent that the formation of the third region A does not proceed excessively, and the positive electrode current collecting ear 1a is gradually cooled so that the space between the first region C and the third region A is reduced. The second region B can be formed.

第2の領域Bを形成するための条件は、正極集電耳1aの寸法形状、正極ストラップ2の寸法形状あるいは正極ストラップ2を形成する工法によって異なるため、これらの寸法形状および工法に応じて適宜設定する。   The conditions for forming the second region B differ depending on the size and shape of the positive electrode current collecting ear 1a, the size and shape of the positive electrode strap 2, or the method of forming the positive electrode strap 2, and accordingly, depending on the size and shape and method of construction. Set.

(第2の実施形態)
本発明の第2の実施形態は、前記した第1の実施形態の構成とともに、さらに以下の構成を有する。すなわち、図4に示したように、正極集電耳1aの、正極ストラップ2から露出する基部1bにおける厚み方向(X)において、正極集電耳1aの一方の表面から他方の表面に向けて連続する第3の領域Aを有さない。すなわち、基部1bの厚み方向において、第3の領域Aは存在しない(図4の状態)であるか、もしくは第3の領域Aが第2の領域Bによって不連続となっている部位を有する。本実施形態によれば、正極集電耳1aの断線をより抑制でき、より好ましい。
(Second Embodiment)
The second embodiment of the present invention has the following configuration in addition to the configuration of the first embodiment described above. That is, as shown in FIG. 4, in the thickness direction (X) of the base 1b exposed from the positive strap 2 of the positive current collecting ear 1a, the positive current collecting ear 1a continues from one surface to the other surface. It does not have the 3rd field A to do. That is, in the thickness direction of the base 1b, the third region A does not exist (the state shown in FIG. 4), or the third region A has a portion discontinuous by the second region B. According to the present embodiment, disconnection of the positive electrode current collecting ear 1a can be further suppressed, which is more preferable.

前記した実施形態1および実施形態2による、本発明の鉛蓄電池と比較例の鉛蓄電池(いずれもJIS D5301における80D26形始動用鉛蓄電池、以下、電池という)を製作し、JIS D5301に定める軽負荷寿命試験を行なった。軽負荷寿命試験は、通常の電池を静置状態とした試験のほか、電池に振動を加えながらの試験も行なった。   Light load as defined in JIS D5301 by manufacturing the lead storage battery of the present invention and the lead storage battery of the comparative example (both are 80D26 type lead storage batteries in JIS D5301, hereinafter referred to as batteries) according to the first and second embodiments described above. A life test was conducted. In the light load life test, in addition to a test in which a normal battery was left stationary, a test was also performed while applying vibration to the battery.

(本発明例の電池A1)
本発明例の電池A1は、鉛−0.07質量%カルシウム−1.60質量%スズ合金からなる、厚み0.80mmの圧延シートをエキスパンド加工して得られた正極格子体を有する。この正極格子体に、正極格子に鉛粉と水と硫酸からなる活物質ペーストを充填し、常法により熟成・乾燥して正極板1とした。正極集電耳1aの厚みは0.80mmである。
(Battery A1 of the present invention example)
Battery A1 of the example of the present invention has a positive electrode lattice body obtained by expanding a 0.80 mm thick rolled sheet made of lead-0.07 mass% calcium-1.60 mass% tin alloy. This positive electrode lattice body was filled with an active material paste made of lead powder, water and sulfuric acid in the positive electrode lattice, and aged and dried by a conventional method to obtain a positive electrode plate 1. The thickness of the positive electrode current collector ear 1a is 0.80 mm.

負極格子体は、鉛−カルシウム0.07wt%−錫0.25wt%合金からなる圧延シートをエキスパンド加工して得られたものとし、この負極格子体に鉛粉と水と硫酸および所定量のリグニン,カーボン、硫酸バリウムからなる活物質ペーストを充填し、常法により熟成・乾燥して負極板とした。   The negative electrode grid is obtained by expanding a rolled sheet made of a lead-calcium 0.07 wt% -tin 0.25 wt% alloy, and the negative electrode grid is formed of lead powder, water, sulfuric acid, and a predetermined amount of lignin. , Filled with an active material paste composed of carbon and barium sulfate, and aged and dried by a conventional method to obtain a negative electrode plate.

電池A1は、負極板を、ポリエチレン樹脂にシリカ、鉱物油を添加した微多孔膜からなる袋状セパレータに収納し、正極板1と組み合わせた後、キャストン法により、正極ストラップ2と負極ストラップとを形成した。   In the battery A1, the negative electrode plate is housed in a bag-shaped separator made of a microporous film in which silica and mineral oil are added to polyethylene resin, and after combining with the positive electrode plate 1, the positive electrode strap 2 and the negative electrode strap are Formed.

本実施例においては、正極ストラップ2、負極ストラップともに、キャストオン用の鋳型に直方体形状の足し鉛合金を積載し、この足し鉛合金を高周波誘導加熱によって昇温させ、溶融する手法を採用した。正極ストラップ2においては、温度管理された正極集電耳1aを溶湯に挿入した後、溶融を冷却凝固させるが、誘導コイルへの供給電力によって溶湯への供給熱量を制御した。正極集電耳1aの、溶湯に挿入する直前の表面温度を70℃とした。足し鉛は、高周波誘導加熱によって溶融させ、溶湯の表面温度を460℃に保持した状態で、溶湯中に正極集電耳1aを挿入する。なお、溶湯の温度を制御するため、溶湯の表面温度を計測し、この計測値が、制御範囲を下回る際には、誘導コイルへの通電電力を増大させ、制御範囲を上回る際には、誘導コイルへの通電電力を増大させる制御を行なう。本発明例の電池A1では、正極集電耳1aを溶湯に挿入した時点より、1秒間の間、溶湯の温度を460℃に制御した後、誘導コイルへの通電を停止して溶湯を冷却凝固させた。   In the present embodiment, a method was adopted in which both the positive strap 2 and the negative strap were loaded with a cuboidal lead alloy on a cast-on mold, and the lead alloy was heated by high frequency induction heating and melted. In the positive electrode strap 2, the temperature-controlled positive electrode current collecting ear 1a was inserted into the molten metal, and then the melting was cooled and solidified. However, the amount of heat supplied to the molten metal was controlled by the electric power supplied to the induction coil. The surface temperature of the positive electrode current collector ear 1a immediately before insertion into the molten metal was set to 70 ° C. The additional lead is melted by high-frequency induction heating, and the positive electrode current collecting ear 1a is inserted into the molten metal while maintaining the surface temperature of the molten metal at 460 ° C. In addition, in order to control the temperature of the molten metal, the surface temperature of the molten metal is measured, and when this measured value falls below the control range, the electric power supplied to the induction coil is increased. Control is performed to increase the energization power to the coil. In the battery A1 of the present invention, the temperature of the molten metal was controlled at 460 ° C. for 1 second from the time when the positive electrode current collecting ear 1a was inserted into the molten metal, and then the energization to the induction coil was stopped to cool and solidify the molten metal. I let you.

本発明例の電池A1の正極ストラップ2と正極集電耳1aの断面は、図2に示した実施形態1の結晶組織を有している。   The cross section of the positive electrode strap 2 and the positive electrode current collector ear 1a of the battery A1 of the present invention example has the crystal structure of the first embodiment shown in FIG.

(本発明例の電池A2)
本発明例の電池A2は、前記した本発明例の電池A1において、誘導コイルへの供給電力を減らすことによって、足し鉛に加える熱量をより小とすることにより、図4に示した実施形態2の結晶組織を有している。本発明例の電池A1および電池A2は、いずれも、正極集電耳1aの先端を鋳型内に挿入する以前の段階で、誘導コイルから生じる磁界によって正極集電耳1aの先端も加熱される構成とした。本発明例の電池A2において、正極集電耳1aの温度を70℃に保持した。また、溶湯の温度は450℃とし、正極集電耳1aを溶湯に挿入して後、0.5秒間、溶湯の温度を450℃に保持した後、誘導コイルへの通電を停止し、溶湯を冷却凝固させた。
(Battery A2 of the present invention example)
The battery A2 of the present invention is the same as the battery A1 of the present invention described above, by reducing the power supplied to the induction coil by reducing the power supplied to the induction coil, thereby reducing the amount of heat applied to the lead, as shown in FIG. It has a crystal structure of Both the battery A1 and the battery A2 of the example of the present invention have a configuration in which the tip of the positive current collector ear 1a is also heated by the magnetic field generated from the induction coil before the tip of the positive current collector ear 1a is inserted into the mold. It was. In the battery A2 of the present invention example, the temperature of the positive electrode current collecting ear 1a was kept at 70 ° C. Also, the temperature of the molten metal was set to 450 ° C., and after inserting the positive electrode current collecting ear 1a into the molten metal, the molten metal temperature was maintained at 450 ° C. for 0.5 seconds, and then the current supply to the induction coil was stopped. Cool and solidify.

(比較例の電池B1および電池B2)
比較例の電池B1は、前記した電池A1および電池A2と同様の正極板1、負極板および袋状セパレータと、同様のストラップ形成法による。但し、正極でのストラップ形成における足し鉛への供給熱量をより増大させ、かつストラップ形成前の正極集電耳3aが誘導加熱されないよう、正極集電耳3aの待機位置を、鋳型から、より離間した位置としたものである。その結果、図5に示したように、正極ストラップ2と正極集電耳3aの断面において、第3の領域Aと第1の領域Cとが直接的に接合した構造となっている。また、特に比較例の電池B1では、第3の領域Aと第1の領域Cとの境界は、基部3bよりもストラップ2に対して外側の位置に配置されている。比較例の電池B1のストラップの形成条件は、正極集電耳3aの表面温度を20℃に保持した後、480℃の表面温度を有する溶湯中に、正極集電耳3aを挿入し、溶湯の温度を480℃に2.5秒間保持し、その後、冷却した。
(Batteries B1 and B2 of comparative examples)
The battery B1 of the comparative example is based on the same positive electrode plate 1, negative electrode plate, and bag-like separator as the above-described batteries A1 and A2, and the same strap formation method. However, the standby position of the positive electrode current collector ear 3a is further away from the mold so that the amount of heat supplied to the lead added in the strap formation at the positive electrode is further increased and the positive electrode current collector ear 3a before the strap formation is not induction heated. It is what was made the position. As a result, as shown in FIG. 5, the third region A and the first region C are directly joined in the cross section of the positive strap 2 and the positive current collecting ear 3a. In particular, in the battery B1 of the comparative example, the boundary between the third region A and the first region C is arranged at a position outside the strap 2 with respect to the base 3b. The strap B of the battery B1 of the comparative example was formed by inserting the positive electrode current collector ear 3a into the molten metal having a surface temperature of 480 ° C. after maintaining the surface temperature of the positive electrode current collector ear 3a at 20 ° C. The temperature was held at 480 ° C. for 2.5 seconds and then cooled.

また、比較例の電池B2は、比較例の電池B1において、第1の領域Cと第3の領域Aの境界部が、基部3bよりも0.2mm、正極ストラップ2の内側に位置した構成を有する。比較例の電池B2のストラップの形成条件は、正極集電耳3aの表面温度を20℃に保持した後、480℃の溶湯に1.5秒間保持し、その後、冷却した。   Further, the battery B2 of the comparative example has a configuration in which the boundary between the first region C and the third region A is 0.2 mm from the base 3b and is located inside the positive strap 2 in the battery B1 of the comparative example. Have. The conditions for forming the strap of the battery B2 of Comparative Example were that the surface temperature of the positive electrode current collecting ear 3a was kept at 20 ° C., then held in a molten metal at 480 ° C. for 1.5 seconds, and then cooled.

これらの各電池について、正極ストラップ2と正極集電耳1a,3aをサンプリングして各領域の正極集電耳1a,3a方向の厚み方向の結晶粒径を計測した。各領域の結晶粒径の範囲は、各電池ともに、第1の領域Cにおいて5μm〜40μm、第2の領域Bにおいて15μm〜200μm、および第3の領域Aにおいて10〜250μmの範囲であって、平均結晶粒径は第1の領域Cにおいて8〜15μm、第2の領域Bにおいて20〜40μm、および第3の領域Aにおいて50μm〜150μmであった。   For each of these batteries, the positive electrode strap 2 and the positive electrode current collector ears 1a and 3a were sampled, and the crystal grain size in the thickness direction of each region in the positive electrode current collector ears 1a and 3a direction was measured. The range of the crystal grain size of each region is 5 μm to 40 μm in the first region C, 15 μm to 200 μm in the second region B, and 10 to 250 μm in the third region A for each battery, The average crystal grain size was 8 to 15 μm in the first region C, 20 to 40 μm in the second region B, and 50 to 150 μm in the third region A.

これらの電池A1、A2、B1およびB2について、軽負荷寿命試験を75℃気相雰囲気で行なった。この寿命試験は、前記したように、通常の電池を静置状態とした試験と加えて、電池に、1Gの加速度で30Hzの上下振動を加えた状態での寿命試験を行なった。なお、この振動方向は、正極集電耳1a,3aの長手方向(図2〜図5に示す方向(Y))に一致する。   About these batteries A1, A2, B1, and B2, the light load life test was done in 75 degreeC gaseous-phase atmosphere. As described above, this life test was performed in a state in which a vertical vibration of 30 Hz was applied to the battery at an acceleration of 1 G in addition to the test in which a normal battery was left stationary. This vibration direction coincides with the longitudinal direction of the positive electrode current collecting ears 1a, 3a (direction (Y) shown in FIGS. 2 to 5).

軽負荷寿命試験は、電池を25Aの電流4分間放電し、引き続き充電電圧14.8V(最大電流:25A)で10分間充電するサイクルを1サイクルとし、このサイクルを480回実施した後、電池を25℃気相雰囲気中に56時間放置し、その放置後582Aで30秒間放電する。30秒目の電圧が7.2Vを下回った時点で寿命としてサイクル数を計算する。   In the light load life test, the battery was discharged at a current of 25 A for 4 minutes and then charged for 10 minutes at a charging voltage of 14.8 V (maximum current: 25 A). It is left in a gas phase atmosphere at 25 ° C. for 56 hours, and after that, it is discharged at 582A for 30 seconds. The cycle number is calculated as the life when the voltage at 30 seconds falls below 7.2V.

上記試験条件で実施した寿命試験結果を表1に示す。なお、表1では、本発明例の電池A1の振動を加えた際の寿命サイクル数に対する百分率を寿命指数として示した。   Table 1 shows the results of the life test conducted under the above test conditions. In Table 1, the percentage with respect to the number of life cycles when the vibration of the battery A1 of the present invention was applied is shown as a life index.

Figure 2011181321
Figure 2011181321

表2に示した結果から、本発明例の電池A1および電池A2は、比較例の電池B1およびB2に比べて振動の寿命に与える影響度が低下し、振動印加時の寿命の向上が認められた。これらの電池を寿命試験終了後に分解調査したところ、比較例の電池B1およびB2については振動印加時に正極集電耳3aが断線して早期に寿命に至っていた。断線した正極集電耳3aの、正極ストラップ2に残存した側と、正極板に残存した側の結晶組織を観察したところ、正極ストラップ2に残存した側に残存した正極集電耳3aは、配向性のない結晶組織であり、正極板側の結晶組織は正極集電耳3aの長手方向に配向した結晶組織を有していた。   From the results shown in Table 2, the battery A1 and battery A2 of the example of the present invention are less affected by the vibration life than the batteries B1 and B2 of the comparative example, and an improvement in the life when applying vibration is recognized. It was. When these batteries were disassembled and investigated after the end of the life test, the positive current collecting ear 3a was disconnected at the time of application of vibration, and the batteries B1 and B2 of the comparative examples reached the end of their lives early. When the crystal structures of the disconnected positive electrode current collecting ear 3a on the side remaining on the positive electrode strap 2 and on the side remaining on the positive electrode plate were observed, the positive electrode current collecting ear 3a remaining on the side remaining on the positive electrode strap 2 was aligned. The crystal structure on the positive electrode plate side had a crystal structure oriented in the longitudinal direction of the positive electrode current collecting ear 3a.

この結果から、比較例の電池B1およびB2においては、正極集電耳3aの結晶組織の不連続な部位で断線が生じていたと考えられる。なお、電池B2のほうが電池B1に対して優れた寿命特性を有していた。これは正極集電耳3aにおける結晶組織が変化する部位が、正極集電耳3aの基部3bよりも正極ストラップ2の内部に位置していることから、この結晶組織が変化する部位への応力の極端な集中が回避されたためと考えられる。   From this result, it is considered that in the batteries B1 and B2 of the comparative example, disconnection occurred at discontinuous portions of the crystal structure of the positive electrode current collecting ear 3a. The battery B2 had better life characteristics than the battery B1. This is because the portion of the positive electrode current collecting ear 3a where the crystal structure changes is located inside the positive electrode strap 2 rather than the base portion 3b of the positive electrode current collecting ear 3a. This is probably because extreme concentration was avoided.

一方、本発明例の電池A1および電池A2は、振動を加えた場合においても、いずれも正極集電耳1aの断線はなく、比較例の電池B1およびB2に対して長寿命であった。但し、本発明例の電池A1については、本発明例の電池A2に比較して若干寿命が短い傾向にあった。電池A1の正極集電耳1aの結晶組織観察を行なったところ、特定の方向に配向しない、第3の領域Aと、正極集電耳1aの長手方向に配向した第2の領域Bの境界部で若干腐食が進行し、その部位で正極集電耳1aが変形していた。本発明例の電池A2については、正極集電耳1aの第2の領域Bと第3の領域Aでごく若干の腐食と変形が進行していたが、電池A1に比較して、より長寿命であった。   On the other hand, the battery A1 and the battery A2 of the example of the present invention did not break the positive electrode current collecting ear 1a even when vibration was applied, and had a longer life than the batteries B1 and B2 of the comparative example. However, the battery A1 of the invention example tended to have a slightly shorter life than the battery A2 of the invention example. When the crystal structure of the positive electrode current collector ear 1a of the battery A1 was observed, the boundary between the third region A that was not oriented in a specific direction and the second region B that was oriented in the longitudinal direction of the positive electrode current collector ear 1a Corrosion slightly progressed, and the positive electrode current collecting ear 1a was deformed at that site. Regarding the battery A2 of the present invention example, the corrosion and the deformation slightly progressed in the second region B and the third region A of the positive electrode current collecting ear 1a, but the lifetime was longer than that of the battery A1. Met.

本発明によれば、鉛蓄電池に振動が加わる場合においても、正極ストラップにおける正極集電耳の断線が抑制され、長寿命の鉛蓄電池を得ることができる。また、本発明は、液式の始動用鉛蓄電池をはじめとする、様々な用途の鉛蓄電池に好適である。   According to the present invention, even when vibration is applied to the lead storage battery, disconnection of the positive electrode current collecting ear in the positive strap is suppressed, and a long-life lead storage battery can be obtained. In addition, the present invention is suitable for lead storage batteries for various uses including liquid type start-up storage batteries.

1 正極板
1a 正極集電耳
1b 基部
2 正極ストラップ
3a 正極集電耳
3b 基部
4a,4b,4c 結晶粒
A 第3の領域
B 第2の領域
C 第1の領域
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode collector ear 1b Base 2 Positive electrode strap 3a Positive electrode collector ear 3b Base 4a, 4b, 4c Crystal grain A 3rd area | region B 2nd area | region C 1st area | region

Claims (2)

鉛合金からなり、正極集電耳を備えた正極格子と、
前記正極格子に充填された正極活物質とからなる正極板の複数を備え、
前記正極集電耳の複数を正極ストラップで接続した鉛蓄電池であって、
前記正極集電耳の厚み方向および長手方向に平行な断面において、
前記正極集電耳は、
前記正極集電耳の長手方向に配向した結晶組織からなる第1の領域と、
前記正極集電耳の先端部において、
結晶粒の前記正極集電耳の厚み方向の寸法を結晶粒径とした際に、
この第1の領域に連続した領域であり、かつ、前記第1の領域の平均結晶粒径よりも大きな平均結晶粒径を有し、かつ、前記した長手方向に配列した結晶組織からなる第2の領域と、
前記第2の領域に連続し、特定の方向に配向しない結晶組織からなる第3の領域とを有することを特徴とする鉛蓄電池。
A positive electrode grid made of a lead alloy and provided with a positive electrode current collecting ear;
A plurality of positive electrode plates comprising a positive electrode active material filled in the positive electrode grid;
A lead storage battery in which a plurality of the positive electrode current collecting ears are connected by a positive electrode strap,
In a cross section parallel to the thickness direction and the longitudinal direction of the positive electrode current collector ear,
The positive electrode current collector ear is:
A first region comprising a crystal structure oriented in the longitudinal direction of the positive electrode current collector ear;
At the tip of the positive electrode current collector ear,
When the size of the positive electrode current collecting ear in the thickness direction of the crystal grain is the crystal grain size,
A second region consisting of a crystal structure that is continuous with the first region, has an average crystal grain size larger than the average crystal grain size of the first region, and is arranged in the longitudinal direction as described above. Area of
A lead-acid battery comprising: a third region having a crystal structure that is continuous with the second region and is not oriented in a specific direction.
前記正極集電耳の、前記正極ストラップから露出する基部における厚み方向において、前記正極集電耳の一方の表面から他方の表面に向けて連続する前記第3の領域を含まず、
前記基部の厚み方向において、前記第3の領域は存在しない、もしくは前記第3の領域が前記第2の領域によって不連続となっている部位を有することを特徴とする請求項1に記載の鉛蓄電池。
In the thickness direction at the base exposed from the positive electrode strap of the positive electrode current collecting ear, the positive electrode current collecting ear does not include the third region continuous from one surface of the positive electrode current collecting ear to the other surface,
2. The lead according to claim 1, wherein in the thickness direction of the base portion, the third region does not exist, or the third region has a portion discontinuous by the second region. Storage battery.
JP2010043926A 2010-03-01 2010-03-01 Lead acid battery Active JP5556240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010043926A JP5556240B2 (en) 2010-03-01 2010-03-01 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010043926A JP5556240B2 (en) 2010-03-01 2010-03-01 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2011181321A true JP2011181321A (en) 2011-09-15
JP5556240B2 JP5556240B2 (en) 2014-07-23

Family

ID=44692639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043926A Active JP5556240B2 (en) 2010-03-01 2010-03-01 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5556240B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335009A (en) * 1992-06-02 1993-12-17 Shin Kobe Electric Mach Co Ltd Manufacture of bunch of electrode plates for lead-acid battery
JPH076766A (en) * 1993-06-14 1995-01-10 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH07245101A (en) * 1994-03-08 1995-09-19 Shin Kobe Electric Mach Co Ltd Manufacture of lead-acid battery electrode plate group
JPH11250894A (en) * 1998-02-26 1999-09-17 Shin Kobe Electric Mach Co Ltd Lead-acid battery, and manufacture thereof
JP2002343334A (en) * 2001-05-16 2002-11-29 Japan Storage Battery Co Ltd Lead storage battery and manufacturing method of same
JP2003331814A (en) * 2002-05-10 2003-11-21 Japan Storage Battery Co Ltd Method of manufacturing control valve lead battery
JP2007157611A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Lead-acid storage cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05335009A (en) * 1992-06-02 1993-12-17 Shin Kobe Electric Mach Co Ltd Manufacture of bunch of electrode plates for lead-acid battery
JPH076766A (en) * 1993-06-14 1995-01-10 Matsushita Electric Ind Co Ltd Lead-acid battery
JPH07245101A (en) * 1994-03-08 1995-09-19 Shin Kobe Electric Mach Co Ltd Manufacture of lead-acid battery electrode plate group
JPH11250894A (en) * 1998-02-26 1999-09-17 Shin Kobe Electric Mach Co Ltd Lead-acid battery, and manufacture thereof
JP2002343334A (en) * 2001-05-16 2002-11-29 Japan Storage Battery Co Ltd Lead storage battery and manufacturing method of same
JP2003331814A (en) * 2002-05-10 2003-11-21 Japan Storage Battery Co Ltd Method of manufacturing control valve lead battery
JP2007157611A (en) * 2005-12-08 2007-06-21 Matsushita Electric Ind Co Ltd Lead-acid storage cell

Also Published As

Publication number Publication date
JP5556240B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5856076B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5798128B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5816285B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5567210B2 (en) Rolled copper foil for secondary battery negative electrode current collector and method for producing the same
JPWO2015060300A1 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP2011091020A (en) Lithium ion secondary battery
JP4160856B2 (en) Lead-based alloy for lead-acid battery and lead-acid battery using the same
JPWO2013161726A1 (en) Aluminum alloy foil for electrode current collector, method for producing the same, and lithium ion secondary battery
JP6055814B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JPWO2013018164A1 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5145861B2 (en) Lead acid battery
JP5830100B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP5556240B2 (en) Lead acid battery
JP5137371B2 (en) Rolled lead alloy sheet for expanded positive grid and lead-acid battery
JP2012140702A (en) Aluminum-alloy foil for positive current collector of lithium-ion battery, and manufacturing method of the same
JP5945148B2 (en) Aluminum alloy foil for lithium ion secondary battery positive electrode current collector and lithium ion secondary battery using the same
JP2013247017A (en) Rolled copper foil for secondary battery negative electrode collector, negative electrode material for lithium ion secondary battery including the same, and lithium ion secondary battery
JP5097184B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPWO2010082229A1 (en) Method for producing non-aqueous electrolyte secondary battery
JP2010165565A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing the same
JP2003100301A (en) Expand grid body for positive pole and method of manufacturing the same
JP2006210134A (en) Lead acid battery and its manufacturing method
JP2003217647A (en) Wound lead-acid battery
JP2003132897A (en) Method for manufacturing expand type electrode plate for positive electrode
JP2010165564A (en) Method of manufacturing non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R151 Written notification of patent or utility model registration

Ref document number: 5556240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350